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A new approach to the problem of the sesquialteral molecular light
scattering by single-component fluids is reported, and the main
results are reviewed. The scattering intensity is expressed in terms
of the third thermodynamic moment of density fluctuations. The
analysis of its relative magnitude and the temperature dependence
with the Van der Waals model reveals that the sesquialteral
scattering can be detected experimentally. It is shown that, with
the sesquialteral scattering effects incorporated into the overall
scattering pattern, the well-known features of the temperature
behavior of the depolarization ratio in the vicinity of the critical
point can be explained in a single way.

Spectroscopy of molecular light scattering is one of the
most efficient methods for obtaining the information
about the thermodynamic parameters and kinetic
coefficients of a substance. The analysis of the scattering
intensity in the non-critical temperature region enables
one to directly study the asymptotic behavior of
the pair correlation functions (CFs) for permittivity
fluctuations de which, in turn, are related to the thermal
fluctuations of the concentration, temperature, and
mutual orientation of molecules. As the liquid-vapor
critical point (CP), the one under discussion below,
is approached, the contribution from the long-wave
density fluctuations becomes dominant. With their pair
CF proportional to the isothermal compressibility 8 of
the fluid, these fluctuations manifest themselves as an
anomalous increase in scattering (the critical opalescence
phenomenon).

The study of the critical opalescence and the
interpretation of experimental data are complicated by
a number of factors, one being the multiple scattering
effects. In studies of them, the attention is typically
centered on the the double scattering (see [2]). We
recall that the concept of multiplicity comes into play
whenever the iteration procedure is employed to solve
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the integral equation describing the wave propagation
in a fluctuationally inhomogeneous medium. The field
of the scattered wave is of the form E, = E(gl) +
E((f) —s—E((XB) + ..., where E((l") is the contribution to the a-
component of the field from the nth step of the iteration
procedure, and the scattering intensity is determined
by the tensor Ing = > «f » where the correlators
n,m>1

ITg o< E((Xn) x B S represent the contributions
of the multiplicity (n 4+ m)/2 from the groups of n
and m fluctuations. Here, the angle brackets denote
the averaging over the permittivity fluctuations, the
asterisk means taking the complex conjugation, and the
subscripts specify a polarization state of the scattered
field. The correlators I'j7" are expressed in terms of the
convolutions of electromagnetic field propagators Tpz(r)
and many-point CF's for the permittivity fluctuations; in
fact, the latter are replaced by the corresponding CF's for
the density fluctuations.

Customarily, the multiple scattering effects are
treated as parasitic against the background of the
single scattering, which is the result of a number
of approximations usually made in calculating their
intensities. Namely, the main contribution to the
multiple scattering is believed to be made by successive
re-emissions from the density fluctuations that are at the
distances r > \ > r. apart, where A is the wavelength
of light in the medium, and r. is the correlation
radius. This allows one to replace the propagators
Top(r) by their asymptotic wave-zone expressions and
to pass from the many-point CFs to the corresponding
asymptotes. In fact, the factorization of the many-point
CFs and the imposition of a quasi-Gaussian fluctuation
model are made. As a result, any new information
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of higher CFs, which is in principle hidden in the
scattering effects of higher multiplicities, is completely
lost. Moreover, the effects of fractional multiplicities,
including the sesquialteral scattering (scattering effects
of the multiplicity 3/2), are negligible in such a model
3, 4].

As a key experimental argument in support of this
approach, the form of the temperature behavior of the
depolarization ratio A in the critical region is considered.
Since the intensity I, of the depolarized scattering due
to the anisotropy fluctuations is not practically changed
as CP is approached, the intensity of the depolarized
part of the double scattering increases as Iyq o< 52, and
the intensity of the polarized scattering is determined
mainly by the intensity of the single scattering due to
the density fluctuations, I; « 3, we get the relation

Ia + Idd

A= T

~ A~ + B (1)
for a single-component fluid, where A and B are
constants. By estimates [3] for xenon placed into a
spherical volume of radius 0.1cm, the first term on
the right-hand side of formula (1) is dominant in the
temperature region 7 = [T — T,.|/T. > 10~2 (where the
double scattering can be ignored), and the the other
term is dominant in the interval 107% < 7 < 1072
(where the depolarization due to the double scattering is
considered to be prevailing); the minimum of A occurs
at 7~ 1x 1072,

Relation (1) is in good accord with the data of
many experiments [2], though some deviations from
law (1) have been reported. Of those, the main ones
are: 1) a more rapid (than linear) increase of A with
B in the temperature region 107% < 7 < 1073[5]; it
was interpreted as a manifestation of triple scattering
effects which cause the appearance of an additional
term proportional to 32 on the right-hand side of (1);
2) a certain decrease in A in the temperature region
7 <1 x 107% [6]; the authors, however, questioned the
validity of this result.

The present work reports on a new approach to the
problem of the sesquialteral molecular light scattering
by fluids, which was offered by us in [7,8]. The intensity
I 5 of the sesquialteral scattering is expressed in terms
of the third thermodynamic moment of the density
fluctuations. The estimates of its relative magnitude
with the Van der Waals model reveal a possibility of
experimental registration of the contribution of I 5. In
this connection, the role of the sesquialteral scattering
effects in the formation of A is scrutinized. It is shown
that their presence in the overall scattering pattern may
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cause the above peculiarities of the temperature behavior
of A.

Our analysis is based upon the suggestion that
the contribution I is of the greatest relative
magnitude at a certain distance from CP, where all the
distances between the three contributing-to-scattering
fluctuations satisfy the relation r < r. < A, and the
use of asymptotic expressions for the three-point CFs
is therefore impossible. This condition is surely satisfied
for the temperature interval 7 > 1 x 10~ typical of the
majority of light-scattering experiments. For instance,
for xenon (T, ~ 290K), the corresponding values of the
correlation radius 7, < 7 x 107% c¢m, being almost an
order of magnitude less than a typical light wavelength
A~ 5x 107° cm. In the case of four fluctuations,
however, even for these values of temperature there
exists such a configuration of their spatial locations that
one pair of the fluctuations is at the distance r > A > r,
from the other; in other words, it is still possible to
factorize the four-point CF and to pass to the above-
mentioned quasi-Gaussian fluctuation model.

The computation of the intensity Iy 5 is carried out
in several steps. At first, the contributions to the total
scattering intensity from the so-called compact groups of
fluctuations (all the distances, within which |r; —r;| <
A) are analyzed. These contributions are formed by
those domains of the integration variables, where the
internal propagators describing the re-emission processes
within a compact group reveal a singular behavior. With
the methods of the theory of generalized functions, the
peculiarities of this behavior can be determined, and the
desired contributions can be exerted from each iteration
step. It turns out that, in the case of single-component
fluids, the compact groups cause mainly the polarized
scattering (the subscripts a = 3, which become equal to
the corresponding subscript for the incident wave, are
further omitted). At a distance R away from a system
of volume V, the intensity of scattering by a pair of
compact groups comprising n and m fluctuations is

4 ) n+m—2
o :IOkOVsm v/ 1 y
167T2R2 380
X /dr < (6e(r))™(de(0))™ > exp(—iq - r), (2)
1%

where Iy and ko = 27/ )¢ are, respectively, the intensity
and the wave vector of the incident wave (of length
Ao) in vacuum, q is the wave vector change in the
medium due to the scattering, ¥ is the angle between
the polarization unit vector and the direction toward
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the point of observation, and &g is the equilibrium value
of the permittivity of the medium. In what follows, the
factor in front of the parentheses is left out.

At the second stage, the contributions to intensities
(2) from the short-range correlations between the
compact groups separated by distances r < r. < A
are calculated. In this case, with the correlation between
fluctuations being slightly non-local, these contributions
can be expressed through the moments of order (n +m)
of the thermodynamic permittivity fluctuations Ae. By
defining the thermodynamic contributions to the nth
power of the permittivity by

— 1
Ale™) =" —e = ;/dré(s"(r)), (3)
1
where V is some macroscopic volume, we obtain
1 n+m—2 B
" x <) V{(Ag)™t™). (4)
350

The choice of V is dependent of the temperature region
under consideration and is discussed below.

In the opposite case where the long-ranging
correlations between compact groups are of significance,
formula (2) is in complete agreement with the hypothesis
of the algebra of fluctuating quantities [9].

For a single-component fluid, the fluctuations Ae are
reduced to the thermodynamic density fluctuations Ap:
Ae =~ (0g/0p)rAp. The intensity I15 = I'2 + I?! is
expressed through the third moment ((Ap)3), the formal
expression for which is found with the grand canonical
ensemble. We have (kg is the Boltzmann constant and
P is the pressure):

2 (0’ - 3
I 5 x " 3eg ((%)TV«Ap) )=
_ 2 (0N R (08
-5 05), (), o

Thus, we reduce the problem to evaluating the
thermodynamic derivative in formula (5). For the
temperature region under consideration, its functional
structure can be estimated with the help of the Van der
Waals model. We find

1 [/ 9e\® K212
Lisox —— | p— B__6P.w3, 6
o (o) Tors ©)

where P, is the pressure value at CP, and the parameter
w = p./p — 1 describes deviations of the density from its
critical value. In this model, as we see, the sesquialteral
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scattering comes into play when a shift, planned or
accidental (because of an experimental error), from the
critical isochore occurs, and its contribution is negative
for w > 0.

Note that, in the limiting case w — 0, 7 — 0, the
equality I; 5 = 0 represents the orthogonality relation
for the fluctuating scalar quantities with different scaling
dimensions; according to the fluctuation theory of phase
transitions (see [9]), it must hold for any system
that possesses the symmetry with respect to conformal
transformations. That fact that this relation occurs
along the critical isochore w = 0 for arbitrary values
of 7 should be treated, in our view, as a specific feature
of the Van der Waals model. Calculations, for instance
with the use of the Dieterici equation of state, give

3 422
I 5 x —% (pg—;)T k VT (8% + 4P.wp3?) for the region

of slightly non-local fluctuations. We see that a negative
sesquialteral scattering occurs in this model even if w =
0. Also, it is not difficult to verify that the intensity I 5
remains negative for any shifts into the region w < 0 as
long as the inequality 7 > 2|w| holds true. However, with
the goal of obtaining the lower limit to 7 5, we restrict
our consideration to the Van der Waals model.

To further analyze the temperature behavior and
the magnitude of I; 5, we take advantage of a widely
believed statement that the quantity (pde/0p)r slightly
depends upon 7 in the vicinity of CP (see review [2]) and
also make certain assumptions as to the temperature
behavior and a numerical value of the parameter V.
In our opinion, in the above-mentioned (hydrodynamic)
temperature region, two limiting cases can occur: 1)
relatively far away from CP, the linear size V1/3 is
much greater than the range of action of intermolecular
forces, yet remaining small as compared to A [10]; if
we additionally assume that V is slightly dependent of
temperature in this case, then the intensity |I; 5| o 3
as CP is approached (regime I); 2) as we move to a
closer vicinity of CP, where r. increases drastically, the
volume V becomes more definite [9]: V ~ 4713 /3 oc 53/2;
correspondingly, |1 5| o< 33/2 (regime II).

Our quantitative estimates are consistent with the
results of our treatment of the experimental data of work
[11] for xenon, where the dependence of the ratio A on
the quantity D = kg *[(e0 — 1)(g0 + 1)/127] 2 (kgT3) "
was studied in detail, if we take the values V ~ (0.25 +
4.5) x 10717 ¢cm? to be the upper limit, beyond which
regime II develops. In other words, we expect regime
IT to be certainly underway for the values r. = (0.85 +
2.2) x 1075 cm (the temperatures 7 < (0.65+3.0) x 1073
in the case of xenon).
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To make estimates within the Van der Waals model,
let us set r. = ro7 /2, V = 4nrd/3 and f =
(6P.)~tr~1. For regime II, with the formulas of work
[8], for the relative magnitudes of the intensity I 5
in comparison with I7, the polarized double scattering
intensity Iy, and the intensity I;4, we get

I I

| 1,5| _ K1|W‘7_1/27 | 1,5| :Kd|w|7'1/27

.[1 Id

I

Bl — Kol 2, g
dd

where the proportionality coefficient K; =

(pg—Z)T kpT/8meori P. is determined only by the
parameters of the substance of the system, and the
coefficients Ky = 45/4¢ (pg—;)TLrgké and Kgq ~ 8Ky
additionally depend upon the characteristic linear size
L of the system and the wavelength A\g. Using data [11]
for xenon, for a system with L = 0.547 cm and a light
wave with Ao = 4.88 x 10™° c¢m, we have: K; =~ 0.65,
Ky~ 1.6x10%, and Kgq ~ 1.3x10°. As 7 decreases from
1x1072 to 1 x 10~* along the w = 6.8 x 10~ isochore,
the ratio |I5|/I1 increases from 0.14 to 0.44, and the
ratios |I1 5|/1q4 and |11 5|/ 144 decrease, respectively, from
3.4 to 1.1 and from 28 to 8.8. At the same time, the
relative fractions Iy/I; = Ry7 ' (Ry = Ki1/Kg) and
Lia/Ii = Ragm™ ' (Rag =~ %Rd) of the polarized and
depolarized double scatterings increase, as compared to
I, from 0.041 to 0.41 and from 5.1 x 1073 to 5.1 x 1072,
respectively.

Thus, far enough from CP and off the critical
isochore, the sesquialteral scattering can prevail over the
double one. The negative sign of I 5 for w > 0 makes
it possible to separate I, 5 from the total scattering
intensity. Indeed, with the sesquialteral scattering
present, the relation

I+ Iig (8)
Ii+15+ 1

should be used instead of formula (1) for the ratio A.
Rewrite (8) as

A:

Ijg 1+ LI+ 17!
LA 1+ 1,05}

(9)

and take into account that I, =~ const as CP is
approached. We see that if Iy 5 = 0, then the left-
hand side of (9) proportional to the quantity kT 3/A
should be a monotonic function of the quantity kgT'5.
As CP is approached, this function initially increases
rapidly, because of the rapid decrease of the denominator
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on the right-hand side of (9). Then it becomes linear
and gradually flattens out in the close vicinity of CP,
where the growth of the intensity I slows down. In the
presence of the contribution I; 5 < 0, such a monotonic
behavior may be violated: we expect that the above
function will decrease after the initial increase, pass
through a minimum, then increase again, and gradually
flatten out. Moreover, if the temperature regime II is
achieved on the interval of decrease and, in addition, the
condition I; 5 > I, is met, then the quantity kg7 G/A
is expected to decrease by the law const — (k:BTﬁ)l/ 2,

The results of the processing of experimental data
[11], which is carried out in [8,12] for the non-critical
isochore w = 6.8 x 1073 of xenon, agree well with
these conclusions. Namely: 1) the (DA)~! versus D1
dependence is non-monotonic indeed, the maximum and
minimum being reached at 7 ~ 4.1 x 1073 and 7 ~
1.8 x 1074, respectively; 2) the (DA)~! versus D~1/2
dependence seems to be linear as 7 decreases from
6.5 x 107% to 1.8 x 1074,

Taking into account the above-listed properties of
I, 5, consider the effect of the sesquialteral scattering
on the ratio A at w > 0 in more details. According to
the foregoing estimates, this scattering can considerably
exceed the double scattering contribution in the region
7 > 1073, If so, and if the temperature regime I is
realized, then the sesquialteral scattering will cause a
temperature dependence of the same type (1) as that
typical of the double scattering:

I, I,

A ———M— ~ — +
L —|hLs| 6L

Io|11 5]

" A1
e ~ AT + Cwp,

(10)

C being a constant. The emergence of a noticeable

depolarized double scattering in the region 7 < 1073

and the simultaneous presence of I; 5 < 0 can manifest

themselves as the rate of the increase of A with 3 getting

higher:

An totlaa o n Laa | La|l1s5]
L —|Ls| L L I? I?

Laalli 5|

~

~ A7 + BB+ Cwp® + Dwf, (11)
where the exponents x = 1, y = 3 for regime I, z = —1/2,
y = 3/2 for regime II, and D is a constant. Finally,
with the rate of increase of |I 5| reducing in regime
II, and the rate of increase of Iy being higher than
the preceding one, a fall in A may occur in the region
7 < 1074, In particular, if we extrapolate relations (7) to
this temperature region, formula (8) takes the form A ~
Rya/ (1 — Kiw+/T + Rg). This function has a maximum
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at 7% = K?w?/4, whose location is determined, for a
given isochore, by the coefficient K; alone and should
depend on neither L nor A\g. For xenon, 7* ~ 0.1w?; in
the case of COy (K7 =~ 1.1), this maximum moves away
from CP: 7* = 0.3w2.

Thus, the inclusion of sesquialteral scattering effects
into the overall scattering pattern makes it possible
to explain the well-known features of the temperature
behavior of the depolarization ratio in the vicinity of
CP in a single way. Under certain conditions, the
sesquialteral scattering contribution can be separated
from the total scattering intensity. This fact offers an
opportunity of the direct experimental evaluation of the
third thermodynamic moment of the density fluctuations
and the associated thermodynamic parameters, such as
the gap critical exponent related to the third derivative
of the Gibbs potential with respect to pressure.

1. Fabelinskii I.L. Molecular Light Scattering. — Moscow:
Nauka, 1965 (in Russian).

2. Lakoza E.L., Chalyi A.V. // Uspekhi Fiz. Nauk.— 1983.—
140, N 3.— P.393—428.

3. Oztoby D.W, Gelbart W.M. // J. Chem. Phys.— 1974.— 60,
N 9.— P. 3359—3367.

4. Lakoza E.L., Chalyi A.V. // Zh. Eksp. Teor. Fiz. — 1974. —
67, N 3.— P.1050—1059.

5.  Trappeniers N.J., Michels A.C., Huijser R.H. // Chem.
Phys. Lett.— 1977.— 48, N 1. — P.31—35.

6. Trappeniers N.J., Michels A.C., Huijser R.H. // Chem.
Phys. Lett.— 1977.— 34, N 1. — P.192—196.

762

7. Sushko M.Ya. // Ukr. Fiz. Zh.— 2004.— 49, N 7. — P.712—
717.

8. Sushko M.Ya. // Zh. Eksp. Teor. Fiz.— 2004.— 126, N 6. —
P.1355—1361.

9. Patashinskii A.Z., Pokrovskit V.L. Fluctuation Theory of
Phase Transitions. — Moscow: Nauka, 1982 (in Russian).

10. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous
Media. — Moscow: Nauka, 1982 (in Russian).

11. Trappeniers N.J., Michels A.C., Boots H.M.J., Huijser R.H.
// Physica A (Amsterdam). — 1980.— 101, N 3.— P.431—458.

12. Sushko M.Ya. // Condens. Matter Phys. — 2006.— 9, N 1
(45).— P.37—45.

IIOJIYTOPHE MOJIEKYJISIPHE PO3CIAHHS CBITJIA
B PIIMHAX

M.A. Cywko
Pezmowme

Buknaneno HoBuit mijxizg 10 npobsiemMu oLy TOPHOTO MOJIEKY ISP~
HOI'O PO3CisIHHSI CBITJIa B OJJHOKOMIIOHEHTHUX PiJUHAaX Ta HaBelIe-
HO OIVIsiJT OCHOBHHUX pe3yJIbTaTiB. |HTEeHCUBHICTb DO3CiSIHHS BUpa-
JKAETHCS Yepe3 TPeTiit TepMoguHaMiaHuil MOMEHT (DIIYKTYAIi ry-
cruan. AHaui3 11 BIIHOCHOT BEJIMUMHY Ta TEMIIEPATYPHOI 3aJI€2KHO-
cri 3a gonomororo mozesti Ban-nep-Baasibca Bka3ye Ha MOXKJIMBICTD
eKCIIepHMeHTaJIbHOI peecTpallil nmosyTopHoro poscisinus. [lokaza-
HO, 1[0 BpaxyBaHHs €(EKTIB IOJyTOPHOIO PO3CiSIHHSI B 3araJib-
Hill KAPTUHI PO3CiSIHHS NO3BOJISIE €IMHUM YUHOM ITOSICHUTH BigoMi
0COOJIMBOCTI TeMIlepaTypHOI MOBEIiHKU KoedilieHTa nernossipusa-
il B OKOJIi KPUTHYIHOI TOYKU.
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