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The electron energy band spectra of silicon have been calculated
by using an analytic approximant of the total atomic potential in
the direct space with regard for a finite size of a model Coulomb
well in a vicinity of the atomic nucleus. The band energies have
been evaluated in a wide range of the single parameter β defining
the well depth. The approximate criterion for the choice of β
for silicon has been obtained. The Hamiltonian matrix has been
calculated within the mixed basis (MB) of one-particle states
consisting of core Bloch functions and plane waves. The reasons
for a considerable dispersion of the band energies calculated with
different pseudopotentials justified in the density functional theory
are qualitatively established.

1. Introduction

Values of the band energies of electrons in semiconductor
crystals obtained by different authors by the method
of local electron density functional (LDA) indicate a
significant dispersion [1, 2]. Especially, this concerns
the results obtained by the solution of the Kohn—Sham
one-particle equation in the basis of plane waves with
different a priori atomic pseudopotentials [3,4]. The
last ones differ from one another by values of the radii
rl (l = s, p, d), i.e. by the distances from the atomic
nucleus, at which the local part of a pseudopotential
equals the corresponding potential which acts on an
electron in the state l at points r ≥ rl. The choice
of radii rl is physically unjustified. Each collection of
rl corresponds to own pseudopotentials. In particular,
hard [3], soft [4], and ultrasoft [5] pseudopotentials are
characterized, respectively, by small, intermediate, and
great values of rl. Thus, we deal with the well-known
phenomenon of the multiplicity of pseudopotentials [6].
The quantitative criterion for the differences between
hard, soft, and ultrasoft pseudopotentials consists in
the difference of the corresponding depths of potential
wells Wl(r = 0). Possibly, it is one of the reasons for
quantitative differences of the parameters of the electron
energy spectrum obtained on their basis under otherwise
equal conditions, i.e. for the same exchange-correlation

potentials, the identical numbers of plane waves in the
basis, etc.

The goal of this work is to study the sensitivity of the
band energies to the choice of a model of the potential of
a crystal, in particular to the depth of a model Coulomb
potential well. We will illustrate this dependence by the
direct calculation with the use of a mixed basis [7,8].
This allows us to explain simultaneously the dispersion
of the band parameters which are obtained with the help
of different pseudopotentials, though their theoretical
base is practically common. In addition, we mention the
increasing interest in the approaches which are based on
potentials in the direct space in the connection with the
investigation of nanostructures [9]. Just such potentials
are used in calculations in the present work.

2. Model Potential

The potential of a crystal which acts at a site of the
lattice c is a superposition of one-site terms

v(r− c) =
∑

C

v(r− c−C), v(r) =

= vn(r) + ve(r) + vxc(r), (1)

i.e. the sum of the potentials of nuclei vn, electrons ve,
and exchange-correlation potential vxc. We replace the
Coulomb potential of a nucleus vn(r) = −A/r which is
divergent on the site by the approximate expression

vna(r) = −Aerf(
√

pr)/r, vna(0) = −2A
√

p/π. (2)

That is, we replace the Coulomb potential vn by the
potential well with depth vna(0) which depends on the
nucleus charge A and the parameter p. The potential vna

takes the Coulomb form under the condition erf(
√

pr) =
1 which is satisfied with high accuracy for r ≥ 2/

√
p.

Increasing p, we reduce the interval 0 ≤ r ≤ 2/
√

p, where
vna differs from the Coulomb potential.
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Fig. 1. Model Coulomb potentials of a nucleus of Si for small values
of the well depth

Fig. 2. Model Coulomb potentials of a nucleus of Si for great values
of the well depth

In Fig. 1, we show the curves of the model potential
(2), for which the Coulomb behavior is revealed at
distances from the nucleus r ≥ 0.01 a.u. Such potentials
do not ensure, as will be shown below, the correct values
of the energies of electrons in all bands.

In Fig. 2, we give the curves of the model potential
(2), for which the Coulomb behavior is revealed at
distances from the nucleus r ≥ 0.0001 a.u. Such
potentials ensure, as will be shown below, the correct
values of the energies of electrons in all bands. To what
extent is the model potential

v(r) = vna(r) + ve(r) + vxc(r) (3)

suitable for the calculation of the electron energy
spectrum of crystals?

We seek the electron energy spectrum of a crystal by
using the Schrödinger equation

(T + V (r))Ψkα(r) = EkαΨkα(r), (4)

in which T = −∇2/2 is the operator of kinetic energy,
V is the potential acting on an electron in the crystal, Ψ
is the eigenvector, and E is the eigenvalue of the energy
at the point k of the Brillouin zone in the energy band
with number α. The wave function of an electron in the
crystal is sought in the mixed basis:

Ψkα(r) =
∑

t

∑

d

akta,α|kta〉+
∑

G

aα(k + G)|k + G〉,

(5)

where a are the variational coefficients of the expansion
in Bloch core states

|kta〉 = N−1/2
∑

D

eik(a+A)ϕt(r− a−A) (6)

and in plane waves

|k + G〉 = Ω−1/2 exp(i(k + G)r). (7)

Here, t = {nlm} are the quantum numbers of states
of the core, a are the coordinates of an atom in the
elementary cell, G is a vector of the reciprocal lattice, N
is the number of elementary cells in the crystal, A are
vectors of the Bravais lattice, ϕ are the wave functions
of electrons of the atomic core [11], and Ω is the crystal
volume.

Substituting (5) in (4), we get the block system of
linear homogeneous equations

(
Hktd,kt′d′ − ESktd,kt′d′ Hktd,k+G′ − ESktd,k+G′

Hk+G,kt′d′ − ESk+G,kt′d′ Hk+G,k+G′ − EδG,G′

)
×

×
(

aktd,α

aα(k + G)

)
= 0, (8)

in which Hαβ are the matrix elements of the
Hamiltonian, Sαβ is the overlap matrix on a mixed basis,
and a are the variational coefficients. In order to solve
the system of equation (8), it is necessary to deduce
the formulas for elements of the matrices S and H. The
Hamilton operator H = T + V , where T and V are the
operators of kinetic and potential energies, respectively.
We approximate the latter by the following formula:

V (r) =
20∑

i=1

cie
−pir

2
+ e−αr2

(
erf(

√
βr

r
− erf(

√
γr)

r
), (9)
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in which the coefficients ci,pi determine the long-range
“soft” part of the potential of an atom, and α, β, and
γ correspond to the “hard” component localized in the
vicinity of the atomic nucleus. The matrix elements of
the first term in (9) are obtained analytically [10]. We
determined the matrix elements of the second term in
(9) with the help of the integral representation

erf(
√

pr)
r

=
2√
π

√
p∫

0

exp(−t2r2)dt (10)

and the integration over the coordinates and the variable
t.

We take the wave functions in the form of Cartesian
Gaussians [11]

ϕnem(r−A) =
∑

i

ciNi(x−Ax)l(y −Ay)m(z −Az)n×

× exp(−αi(r−A)2). (11)

3. Matrix Elements of the Potential

The matrix elements of the first term in (9) on the Bloch
functions of the s-symmetry centered at the lattice sites
a, b with coordinates B are determined by the formulas

〈ska |V (r− c−C) |skb〉 = QGF, (12)

where Q is the structural factor,

Q = exp(−ika + ikb + ikB), (13)

G is the function which defines the diminution of a
matrix element in the coordinate space,

G = exp(−αiαj(B + b− a)2/sij), sij = αi + αj ,
(14)

F is the function which depends on the centering
coordinates of wave functions and potentials,

F = (π/sij)3/2erf(s1/2
ij |D− c−C|tmax)/|D− c−C|,

D = (αia + αj(b + B))/sij . (15)

The matrix elements of the second term in (9) on the
Bloch functions s and plane waves look as

〈ska|V (r− c−C)|k + G〉 =

= π/αiexp(t0
√

π erf((−t2)1/2tmax)/(−t2)1/2, (16)

where

t0 = −1
4
(−4iαiGa + (k + G)2)/αi,

t2 = −1
4
(4iαiGa− 4iαiGc + 4α2

i (a− c−C)2−

−(k + G)2 + 4iαik(a− c−C))/αi,

tmax = (βj/(αi + βj))1/2. (17)

The results of calculations are given in Table 1.
The band energies of electrons at the point Г of the
Brillouin zone are calculated with different values of the
parameter β. The larger the β, the deeper is the potential
well. The counting origin for the energy is chosen at the
top of the valence band.

T a b l e 1. Values of the band energies in Si at the point Γ which depend on β. The degeneration multiplicity is
given in the parentheses near the number of a band

Number β

of a band 1.0× 104 5.0 · 104 1.0× 105 2.5× 105 1.0× 106 2, 0× 106 5.0× 106 1.0× 107

i Ei, eV
1 –1706.96 –1750.42 –1757.7 –1762.22 –1765.08 –1765.59 –1765.63 –1765.59
2 –127.92 –130.09 –130.56 –130.67 –131.04 –131.17 –130.99 –130.90

3 (3) –88.21 –88.20 –88.32 –88.19 –88.43 –88.54 –88.34 –88.26
4 –11.49 –11.64 –11.68 –11.68 –11.71 –11.71 –11.71 –11.72

5 (3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 (3) 2.90 2.89 2.89 2.91 2.89 2.88 2.88 2.88
7 4.29 3.94 3.84 3.83 3.74 3.68 3.74 3.76

8 (2) 8.02 8.02 8.03 8.00 8.05 8.05 8.03 8.01
9 8.45 8.31 8.27 8.41 8.23 8.27 8.25 8.24

10 (3) 11.72 11.69 11.68 11.77 11.69 11.70 11.69 11.67
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It is seen from Table 1 that the positions of the
bottom Γ1(E4) and the top Γ25(E5) of the valence band,
as well as the bottom of the conduction band Γ15(E6),
are practically adequate in a wide range of values of the
parameter β. However, values of the energy of the level
E1s(E1) are very sensitive to a change of β. They are
stabilized beginning from β = 2.0 × 106. For the level
E2s(E2), the dependence on β is noticeable, whereas
it is slight for E2p(3). This is explained by the fact
that the screening of the Coulomb potential is smallest
for 1s-electrons. The attractive potential of the nucleus
acting on 2s-electrons is screened by 1s-electrons which
are closer to the nucleus, and the Coulomb potential
of the nucleus acting on 2p-electrons is screened by the
repulsive potential of 1s- and 2s-electrons. As seen from
Table 1, the model potential (3) with β = 1.0 × 107

ensures the stabilization of the energy spectrum of Si in
all bands.

The comparison of the results of our calculations
with those of other authors and experiments is given in
Table 2. For all results, the used methods are based on
the common base of the local electron density functional.

Our values of the electron energies of Si at the high-
symmetry point Г presented in Table 2 were calculated
in MB. The results of other authors were obtained
with the help of the norm-preserving pseudopotential
on plane waves (PW) and localized orbitales (LO) [12],
with a correction of the self-action (SIC-LDA) [13],
with screened exchange (sX-LDA) [14], with optimized
effective potential (KLI) [15], method LMTO [16], and
the experimental data are taken from [13]. The data
given in Table 2 confirm the reality of the approach
with MB, and the differences of the band energies
calculated within LDA from the experimental data are
characteristic of semiconductors and dielectrics [18].

4. Discussion of Results and Conclusions

For small values of the parameter β (104 , 5×104),
the corresponding depths of model Coulomb wells are
1542.52 and –3495.17 a.u., respectively. The last ones
are much greater than the energy of the atomic level of
Si, E1s = −68.812 a.u., but they cannot ensure the

T a b l e 2. Band energies of Si (in eV) calculated in this
work, by other authors, and experimental data

i Method
PW LO SIC-LDA sX-LDA KLI LMTO MB Exp.

4 –11.95 –11.72 –11.89 –12.47 –11.88 –11.87 –11.72 –12.5
5(3) 0 0 0 0 0 0 0 0
6(3) 2.54 2.64 2.54 3.37 2.86 2.59 2.88 3.05
7 3.39 3.51 3.41 — 3.88 3.88 3.76 4.1

correct values of the band energies of electrons in all
bands. To a less extent, this concerns values of the
energies of direct gaps (i.e. the distances between the
top of the valence band taken as the counting origin for
the energy of electrons and the bottom of the conduction
band) which coincide to within 0.01 eV for all values
of the parameter β. Values of the parameter β = 105,
2.5×105 correspond to the depths of model Coulomb
wells equal to –4958.33 and –7861.44 a.u., respectively,
and values of the band energies approach essentially the
correct ones. A further increase of the parameter β to
106 gives a model Coulomb well depth equal to –15760.1
a.u. But it is also insufficient in order to obtain the
band energies of electrons in all bands to within 0.01
eV, though the levels of the populated valence band are
already quite exact. A further increase of the parameter
(β = 2 × 106, 5×106, and 107) gives the depths of
model Coulomb wells equal to −22303.6, −35286.6, and
−49918.3 a.u., for which the band energies of electrons
are stabilized. For four last greatest depths of the wells,
the ratios of their values to the energy of the atomic
level E1s in Si are 229, 324, 513, and 725. In this
case, the values of the energy levels of electrons are
practically identical in all bands, and a further increase
of the parameter β does not lead to a significant change
in the calculated electron energy spectra. Thus, the
approximate criterion of the choice of this parameter
for Si is the condition vna(0)/E1s ≥ 229, whereas it is
somewhat stronger for diamond, for which vna(0)/E1s ≥
300 [17].

The results of calculations of the band energies
of electrons by the mixed-basis method for a wide
range of values of the depths of model Coulomb
potential wells allow us to conclude that a significant
dispersion of values of the energies obtained with various
pseudopotentials is mainly conditioned by the differences
of the depths of potential wells.

We should like to indicate the advantages of the
mixed-basis method. The Bloch localized functions
inherent in MB allow one to essentially decrease the
number of plane waves in expansion (5). For example,
the results given in Table 1 are derived from the system
of equations (8), where the size of the matrix for Si
equals 951 (941 plane waves and 10 localized functions).
The values of the band energies calculated in [12]
with the use of atomic a priori pseudopotentials are
somewhat worse than those obtained by us. However,
the size of the secular matrix in [12] has the order of
about 105, and such a problem should be solved on
a supercomputer. The mixed-basis method deals with
a true wave function, on the basis of which one can
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calculate dipole matrix elements. But this cannot be
performed with pseudowave functions used in [12] and
in related approaches, because there exists no transition
from a pseudowave function to a wave one [6,18]. The
core states included in (5) allow one to execute the
calculations of the intensity of core-valence luminescence
[19], which is also beyond the scope of pseudopotential
methods. The mixed-basis method proposed by us has
no symmetry limitations characteristic of the methods,
in which the muffin-tin potential is used [16].

We thank V.G. Litovchenko for the fruitful
discussion of the results of this work.
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ПРО КРИТЕРIЙ ПОБУДОВИ ЛОКАЛЬНОГО
МОДЕЛЬНОГО ПОТЕНЦIАЛУ КРЕМНIЮ

С.В. Cиротюк, С.Н. Краєвський, Ю.Є. Кинаш

Р е з ю м е

Розраховано електроннi енергетичнi спектри кремнiю за допо-
могою аналiтичної апроксимацiї повного потенцiалу атома у
прямому просторi, яка враховує скiнченнiсть модельної куло-
нової ями в околi ядра атома. Дослiджено залежнiсть розра-
хованих зонних енергiй вiд єдиного параметра β, який визна-
чає глибину ями. Розрахунки зонних енергiй електронiв про-
ведено з рiзними значеннями цього параметра. Отримано наб-
лижений критерiй вибору величини β для кремнiю. Матрицю
гамiльтонiана розраховано у змiшаному базисi одночастинко-
вих станiв, що складається з функцiй Блоха атомних серце-
вин i плоских хвиль. За допомогою рiзних псевдопотенцiалiв,
обґрунтованих у теорiї функцiонала повної електронної густи-
ни, якiсно встановлено причини дисперсiї розрахованих пара-
метрiв електронних енергетичних зон.
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