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The types of phase transitions (PTs) and the conditions for them
to occur in hexagonal ferromagnets (FMs) have been determined.
The fundamental frequencies of the magnetization vector have
been calculated for every ground state of a hexagonal FM. In order
to take the dissipation processes in the system into account, a new
form of the dissipation function proposed by Bar’yakhtar was used.
The dispersion equation for oscillations of the magnetization vector
in a hexagonal FM, taking the dissipation of the spin wave energy
into account in the exchange approximation, has been derived,
and the relevant fundamental frequencies have been calculated.
The results obtained are in full agreement with those of the PT
theory. The tensor of high-frequency magnetic susceptibility for
a hexagonal FM has been calculated as well, which enables the
crystal itself and the spin-orientation PTs in it to be described in
detail.

1. Introduction

The Landau theory of the PTs of the second kind is
a good approximation for the description of the spin-
orientation transformations. It is so, because the latter
are stimulated by the change of anisotropy, which, in its
turn, is a consequence of relativistic interactions which
are small in this case in comparison with the exchange
interaction which governs the magnetization of the FM.
Such PTs were considered in a lot of works (see, e.g.,
work [1]), so that the behavior of the spin wave spectrum
in the vicinity of those PTs is well known. Nevertheless,
the spin wave damping at spin-orientation PTs has
not been taken into account until now. At the same
time, it is obvious that the phenomenon of spin wave
damping must be included into the self-consistent theory
of PTs. If the damping turns out large, this circumstance
will provide one more restriction, in addition to the

Ginzburg—Levanyuk criterion, on the theory.
The investigation carried out in this work has shown

that, in order to describe the spin wave damping, one
has to use the FM dissipation function constructed with
regard for both the symmetry of a crystal and the
conservation law for the component of the magnetization
vector directed along the symmetry axis of the crystal.

2. The Ground States of a Magnetic. Possible
Spin-orientation Phase Transitions

Consider a ferromagnet, whose density of the total
energy looks like

W =
αik

2
∂ ~M

∂xi

∂ ~M

∂xk
+

1
2
K1M

2
z +

1
4
K2M

4
z +

+
1

8χ||M2
0

(
~M2 −M2

0

)2

, (2.1)

where ~M is the vector of the FM magnetization, M0

is the saturation magnetization, αik are the exchange
interaction constants, K1 and K2 are the constants
of anisotropy, and χ‖ is the longitudinal magnetic
susceptibility of the FM. This expression for the energy
density corresponds to the main orders of the anisotropy
energy expansion in a power series of ~M for crystals with
hexagonal symmetry; such crystals can be considered as
uniaxial if the terms of the sixth order in the expansion

are neglected [2]. The term 1
8χ‖M2

0

(
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)2

is
responsible for the variation of the absolute value of the
magnetic moment of the crystal ~M ; the constants that
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Diagram of the magnetization state stability of a uniaxial FM

enters into it obey the following conditions: 1
χ‖M2

0
> 0,

1
4χ‖

À K1, and 1
2χ‖M2

0
À K2.

For the FM of such a type, the following ground
states are possible.

1) The “easy-axis” phase Φ||. Here,

θ = 0, M2 =
1

2χ|M2
0
M2

0 −K1

1
2χ|M2

0
+ K2

≈ M2
0 .

The condition of phase stability is

K1 < −M2
0 K2; (2.2)

2) The “easy-plane” phase Φ⊥. Here,

θ =
π

2
, M2 = M2

0 ,

The condition of phase stability is

K1 > 0; (2.3)

3) The “angular” phase Φ∠. Here,

cos2 θ = − K1

M2
0 K2

, M2 = M2
0 .

The condition of "angular"phase stability is
{

K2 > 0,
−M2

0 K2 < K1 < 0.
(2.4)

It is convenient to analyze these data in the
framework of the graphic method, by considering the
common phase diagram for all the ground states of the

uniaxial FM. We adopt the temperature as a parameter
which governs the variation of the anisotropy constants
K1 and K2 [3, 4]. From the diagram (see Figure), one can
see that, if M2

0 K2 < 0, the stability regions of the phases
Φ‖ and Φ⊥ overlap. In the region 0 < K1 < −M2

0 K2,
the energies of both phases are minimal, and the phases
are stable. As can be easily seen, the energies of these
phases become equal if K1 = − 1

2M2
0 K2; but if we leave

this line towards either side, the energy of either of these
phases will be lower than that of the other. Therefore,
one of the phases will be more profitable by energy,
although the other still remains stable with respect to
small perturbations.

Provided K1 > − 1
2M2

0 K2, the uniaxial FM changes
from the phase Φ‖ to the phase Φ⊥; in this case, the
moment undergoes a stepwise reorientation from the
“easy axis” to the “easy plane” configuration. It means
that the transformation from the phase Φ‖ to the phase
Φ⊥ occurs as the PT of the first kind [1]. At K1 >
−M2

0 K2, the phase Φ|| becomes unstable, and only the
phase Φ⊥ remains stable. If one moves in the opposite
direction, the transition of the first kind will also occur,
but now from the phase Φ⊥ to the phase Φ‖.

On the contrary, if M2
0 K2 > 0, the regions of

stability of the phases Φ‖ and Φ⊥ do not overlap. In the
range −M2

0 K2 < K1 < 0, there exists the third phase
Φ∠ we agreed to call “angular”. Therefore, provided
K1 < −M2

0 K2, the value θ = 0 and the phase Φ‖ is
stable, while, at K1 > −M2

0 K2, the quantity θ becomes
nonzero. The symmetry of the phase Φ∠ is evidently
lower than that of the phase Φ‖, because, in the former,
the moment deviates from the selected axis. Hence, the
magnetization itself changes continuously in the course
of the Φ‖ → Φ∠ transition, but the symmetry of the
system drops down (the symmetry axis z disappears).
Thus, the transition Φ‖ À ∆Φ∠ is a typical PT of the
second kind. The role of the order parameter at this
transition is played by the angle θ. Analogously, one
can easily verify that the transition Φ∠ À ∆Φ⊥ is also
of the second kind.

Thus, if M2
0 K2 > 0, the transition from the phase

Φ‖ to the phase Φ⊥ occurs by means of two PTs of
the second kind: Φ‖ À ∆Φ∠ at K1 = −M2

0 K2, and
Φ∠ À ∆Φ⊥ at K1 = 0 [5].

3. Dissipation of the Spin Wave Energy

For the theory of PTs to be consecutive in the
framework of the spin wave theory, the problem of spin
wave dissipation should be considered. The damping
of spin waves in the ground state has evidently to be
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considerably smaller than their activation frequency,
both becoming zero at the PT point [6].

As is known, the basic equation, which describes the
dynamic and relaxation properties of the FM, is the
Landau—Lifshits equation

∂ ~m

∂t
= −γ

[
~m ~H

]
+

1
M0

R, (3.1)

where ~H = −δW

δ ~M
is the effective magnetic field. As was

shown above, the modulus of the magnetization vector
~M can be considered constant, (M2 ≈ M2

0 ), so that
the unit vector of magnetization ~m = ~M/M0 can be
introduced.

Let us write down the phenomenological relaxation
term in the Landau—Lifshits equation in the following
form:

~R =
δQm

δ ~H
, (3.2)

where Qm is the dissipation function which was
constructed taking the FM symmetry into account [7]
and looks like

Q =
γM0

2
λe

(
∂ ~H

∂xi

)2

, (3.3)

where λe is a constant which characterizes the relaxation
processes caused by the exchange interaction. In this
formula, the summation over the dummy index is
implied.

In the case concerned, this dissipation function
characterizes the dissipation of the spin wave energy
only in the exchange approximation. In order to take
the relaxation processes that are stimulated by the
relativistic interaction into account, a corresponding
term is to be introduced into Eq. (3.3). This will be made
in the further works.

For carrying out the calculations, it is more
convenient to pass to new variables. Let us rotate the
Cartesian coordinate system in such a way that axis 3
should coincide with the direction of the magnetization
vector in the ground state. This can be made with the
help of the following transformation:



mx

my

mz


 =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ







m1

m2

m3


 , (3.4)

where θ is the polar angle; and m1, m2, and m3 are
the components of the magnetization vector in the new

coordinate system. Note that the angle θ does not vary
but accepts quite definite values determined by the
direction of the magnetization vector ~M . If axis 3 is
taken for the axis of quantization, then |~m| ≈ m3, while
m1 and m2 are small fluctuation-induced deviations
from the equilibrium position.

Let us decompose Eq. (3.1 ) into its components,
taking transformation (3.4) into account and using
expression (2.1 for the energy density in the FM without
the last summand which is responsible for the variation
of the absolute value of the magnetic moment (since
M2 ≈ M2

0 ):

ṁ1 = −Ω2m2 + λe∇2Ω1m1,

ṁ2 = Ω1m1 + λe∇2Ω2m2. (3.5)

Here, the notations

Ω1 = [K1(sin2 θ − cos2 θ)+

+M2
0 K2 cos2 θ(3 sin2 θ − cos2 θ)]− α∇2,

Ω2 = −[K1 cos2 θ + M2
0 K2 cos4 θ]− α∇2

are used; and ṁ1 and ṁ2 stand for the derivatives with
respect to τ = γM0t.

Assuming that m ∼ exp (−iωτ + i~κ~r), the temporal
and spatial Fourier transforms of Eqs. (3.5) look like
(−iω + λeκ

2Ω1

)
m1 + Ω2m2 = 0,

−Ω1m1 +
(−iω + λeκ

2Ω2

)
m2 = 0. (3.6)

Equations (3.6) bring easily about the law of spin wave
dispersion

ω = − i

2
λeκ

2 (Ω1 + Ω2)±

±1
2

√
−λ2

eκ
4 (Ω1 + Ω2)

2 + 4Ω1Ω2 (λ2
eκ

4 + 1). (3.7)

Consider the frequencies of spin waves in the ground
states of the FM. If the FM is in the Φ‖ state, we obtain

ω = −iλeκ
2
(
ακ2 − (K1 + M2

0 K2)
)±

± (
ακ2 − (K1 + M2

0 K2)
)
. (3.8)
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One can easily see that the condition

ωIm

ωRe
=

κ→0
λeκ

2−→
κ→0

0 ¿ 1, (3.9)

for the spin waves to exist in the ground state Φ‖ is
satisfied. Here, ωIm and ωRe are the imaginary and
real parts of the spin wave oscillation frequency (3.8),
respectively; the former characterizes the spin wave
damping, and the latter determines the frequency of the
spin wave activation. This state possesses a “gap”, i.e.
ωRe(κ → 0) 6= 0.

In the cases where the FM is in the Φ⊥ or Φ∠ ground
state, the spin wave frequency looks like

ω = − i

2
λeκ

2
(
K1 + 2ακ2

)±

±
√
−λ2

eκ
4K2

1 + 4ακ2(K1 + ακ2) (3.10)

for the phase Φ⊥ and

ω = − i

2
λeκ

2

(
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+ 2ακ2
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±

±
(
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4
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)2

+

+4ακ2

(
−2K1(K1 + M2

0 K2)
M2

0 K2
+ ακ2

))1/2

(3.11)

for the phase Φ∠. It is evident from expressions (3.10)
and (3.11) that, in the ground states Φ⊥ and Φ∠ which
are gapless, the condition for the spin waves to exist,
namely,

ωIm

ωRe
=

κ→0

λeκ

F (K1, K2)
−→
κ→0

0 ¿ 1, (3.12)

where F (K1,K2) is a certain constant composed of the
anisotropy ones, is also satisfied. The gap absence in
the phases Φ⊥ and Φ∠ is a consequence of the fact that
the ground states of these phases are degenerate, being
characterized by a continuous parameter of degeneration
ϕ0, the angle between the vector ~M0 and the x-axis in
the base plane [8].

It should be noted that, if the relaxation term in the
equation of the magnetic moment motion (3.1 ) is used
in the Landau—Lifshits (~RLL = λγM0

[
~H − ~m(~m ~H)

]
)

or Gilbert (RG = a
M0

[
~M, ∂ ~M

∂t

]
) form, the spin wave

damping ωIm turns out independent of κ and, in the
gapless ground states Φ⊥ and Φ∠ of the FM, larger than
the activation frequency ωRe [7]:

ωIm

ωRe
=

κ→0

λ

κF (K1, K2)
−→
κ→0

∞. (3.13)

This means that, formally, the spin waves with κ → 0
do not exist in the Φ⊥ and Φ∠ phases. Therefore, the
relaxation term in the Landau–Lifshits or Gilbert form
does not describe the processes of the spin wave energy
dissipation correctly. The reason is that these relaxation
terms do not take a crystal symmetry into account.

While using the dissipation function in form (3.3),
the condition for the spin waves to exist is satisfied in all
the ground states of the uniaxial FM and at every value
of κ. Therefore, form (3.3) for the relaxation function
completely corresponds to the PT theory.

Note that the dissipation is considered inherently
small in all the relaxation terms indicated above (λe ¿
γM0, λ ¿ γM0, and a ¿ γM0), but it is the very
form of the relaxation term, the Landau—Lifshits or
the Gilbert one (in essence, proceeding from the general
physical concepts, it is simply the moment of the friction
forces), that brings us to contradictions in some cases.

It is worth noting that the indicated essence of this
contradiction (the nonzero damping for spin waves at
κ → 0) and its absence in the case where the dissipation
term is taken in form (3.3) require to be discussed in
more detail. If form (3.3) is used, the zero damping arises
in the cases of both gap and gapless spectra. To a great
extent, this is a result of theoretical speculations in the
framework of the selected model, where the dissipation
term is written down in the exchange approximation
only, form (2.1) is used for the density of the FM
total energy, and no anisotropy in the base plane is
taken into account. From the viewpoint of experimental
manifestations in real magnetics, on the contrary, the
zero damping at κ → 0 in the nonzero-gap phase
Φ‖ (formula (3.8)) has no physical meaning. Making
allowance for the relativistic contributions to the spin
wave energy dissipation (3.3) results in a finite value of
the damping for the spin waves with κ → 0. In the cases
of degenerate states of the phases Φ⊥ and Φ∠, both the
existence of the gapless spin waves and the vanishing of
their decay decrements at κ → 0 are a consequence of the
availability of a continuous parameter of degeneration
ϕ0 in these cases [8]. These requirements are satisfied
by the choice of the dissipation term in form (3.3),
unlike the results, which would be obtained if this term

672 ISSN 0503-1265. Ukr. J. Phys. 2006. V. 51, N 7



SPIN WAVE DAMPING STIMULATED BY EXCHANGE INTERACTION

were selected in the Landau—Lifshits or Gilbert form.
It is this circumstance that determines the advantage of
representation (3.3).

4. Tensor of High-frequency Magnetic
Susceptibility

In order to calculate the high-frequency susceptibility
tensor, consider a uniaxial FM in an external magnetic
field ~Hext. In this case, the expression for the energy
density includes the term WH = − ~M ~Hext, so that
Eqs. (3.6) look like

(−iω + LΩ1)m1 + Ω2m2 = Lh1 + h2,

−Ω1m1 + (−iω + LΩ2)m2 = Lh2 − h1, (4.1)

where L = λeκ
2, and h1and h2 are the components of

the external magnetic field in the new coordinate system(
~h = ~H/M0

)
.

The components of the magnetization vector and
those of the external magnetic field are coupled to
each other: mi(~κ, ω) = χij(~κ, ω)hj(~κ, ω). Making
use of Eqs. (4.1), we can calculate the tensor of
magnetic susceptibility in the coordinate system (1, 2,
3):

χij =




L(LΩ2−iω)+Ω2
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

−iω
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

0

iω
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

L(LΩ1−iω)+Ω1
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

0

0 0 0


 .

Note that, in the absence of dissipation (L = 0), the tensor of magnetic susceptibility has the well-known value [8].
In the (x, y, z) coordinate system, the tensor of magnetic susceptibility looks like

χij =




(L(LΩ2−iω)+Ω2) cos2 θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

− iω cos θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

− (L(LΩ2−iω)+Ω2) cos θ sin θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

iω cos θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

L(LΩ1−iω)+Ω1
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

− iω sin θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

− (L(LΩ2−iω)+Ω2) cos θ sin θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

iω sin θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2

(L(LΩ2−iω)+Ω2) sin2 θ
(LΩ1−iω)(LΩ2−iω)+Ω1Ω2




.

From this expression, one can always determine the form
of the tensor of high-frequency magnetic susceptibility
for each ground state of the FM. Knowing the tensor of
magnetic susceptibility and following a standard routine
[9], one can easily find the spectra of spin waves taking
into account the dipole interaction for all the three
ground states.

5. Conclusions

The use of the relaxation term in the Landau–
Lifshits or Gilbert form for the description of the
spin wave damping turns out incorrect in some cases.
This is because those representations were constructed
irrespectively of the crystal symmetry.

In this work, the dissipation function, which makes
allowance for both the conservation law for the
magnetization vector component along the axis of crystal
symmetry and the specific symmetry of the crystal, was

considered. The selected dissipation function has been
shown to describe relaxation processes in the exchange
approximation in total agreement with the PT theory (at
an arbitrary value of the vector κ, the dissipation part
of the spin wave oscillation frequency is much smaller
than its activation part).

The dissipation function presented in the form,
which was proposed by Bar’yakhtar taking into account
Landau’s speculations concerning the importance of the
symmetry factor, produced correct results and brought
us to the conclusion that the spin wave damping does
not impose any restrictions on the Landau theory, when
the latter is applied to the description of spin-orientation
PTs. However, it is of importance that the results
were obtained in the exchange approximation. For the
relaxation processes in FMs to be described in more
details, the term which is responsible for the relaxation
caused by relativistic interaction is to be introduced into
the dissipation function.
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The tensor of high-frequency magnetic susceptibility
of a hexagonal FM, which was calculated in this work
taking into account the dissipation of the spin wave
energy, enables one to describe more accurately and
comprehensively both the crystal itself and the PTs that
occur in it.

To summarize, the author tenders his sincere thanks
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valuable discussions, and his help in the work. The
author is also grateful to Yu.I. Dzhedzherya for
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ЗАТУХАННЯ СПIНОВИХ ХВИЛЬ
ВНАСЛIДОК ОБМIННОЇ ВЗАЄМОДIЇ
ПРИ СПIН-ОРIЄНТАЦIЙНИХ ФАЗОВИХ ПЕРЕХОДАХ
У ФЕРОМАГНЕТИКАХ ГЕКСАГОНАЛЬНОЇ СИМЕТРIЇ

О.Г. Данилевич

Р е з ю м е

Визначено умови та типи фазових переходiв (ФП) у гексаго-
нальному феромагнетику (ФМ). Розраховано власнi частоти
коливань вектора намагнiченостi для кожного основного ста-
ну ФМ гексагональної симетрiї. Для врахування дисипатив-
них процесiв в системi, використано нову форму дисипативної
функцiї, що була запропонована В.Г. Бар’яхтаром. Отримано
дисперсiйне рiвняння та власнi частоти коливань вектора на-
магнiченостi в гексагональному ФМ з урахуванням дисипацiї
енергiї спiнових хвиль в обмiнному наближеннi. Одержанi ре-
зультати повнiстю вiдповiдають теорiї ФП. Також розраховано
тензор високочастотної магнiтної сприйнятливостi для гекса-
гонального ФМ, що дає можливiсть повнiше описувати як сам
кристал, так i спiн-орiєнтацiйнi ФП, що вiдбуваються в ньому.

674 ISSN 0503-1265. Ukr. J. Phys. 2006. V. 51, N 7


