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Thermally induced hydrodynamic fluctuations in a liquid In this work, we propose a consecutive theoretical

subjected to nonhomogeneous conditions (spatial confinement
within a plane-parallel layer) have been studied. In particular,
the self-diffusion coefficient of a liquid Lagrange particle has
been analyzed. The solution of the boundary-value problem for
the hydrodynamic equations, which describe the components of
the velocity field and include terms responsible for an external
fluctuation field, has been obtained in the form of a series
of harmonic functions. The spectral density of the correlation
function (CF) for velocity field fluctuations, which depends only
on a single coordinate normal to the bounding surfaces, has been
calculated making use of the fluctuation-dissipation theorem. The
spectral density obtained served as the basis for the analysis of
the relative difference between the transversal and longitudinal
components of the self-diffusion coefficient of a Lagrange particle
in the liquid.

Nowadays, the dynamics of nonhomogeneous
hydrodynamic systems constitutes one of the most
challenging objects for studying [1—9]. Among the
factors which are responsible for heterogeneity, the
geometric confinement of a system is the most
widespread one. The difference between the dynamical
properties of the spatially confined systems and those of
the bulk ones grows as the characteristic dimensions of
the system decrease. The relevant theoretical analysis,
if any, is rough in many cases and requires further
amendments [7—12].

The self-diffusion coefficient is one of the major
dynamical characteristics of the system. The geometric
confinement of the system results in the relaxation of
long-wave collective hydrodynamic modes which govern
the behavior of the bulk self-diffusion coefficient. The
corresponding reduction of the self-diffusion coefficient
in finite-size systems has been studied in works [7, §],
where the system heterogeneity was simulated by a
plane-parallel layer of liquid with thickness d. Making
use of the theory of coupled modes and basing on
intuitive ideas, the relative reduction of the component
of the liquid self-diffusion coefficient, which is parallel
to the interfaces, has been roughly estimated. The main
contribution, obtained in the approximation d — o0,
behaves as (o/d)log (o/d), where o is the characteristic
molecular size.
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calculation of the self-diffusion coefficient for a Lagrange
particle suspended in a plane-parallel liquid layer.
This solution is known to be the exact long-time
asymptote of the molecular self-diffusion coefficient
[13]. The spectral density of the CF for velocity
field fluctuations, in terms of which the self-diffusion
coefficient is determined, has been obtained from the
Euler hydrodynamic equations supplemented with the
corresponding boundary conditions for the velocity
field components, and using the fluctuation-dissipation
theorem. The transition from the Euler CF to the
Lagrange one has been carried out on the basis of
the approach proposed by M.P. Malomuzh [14, 15].
The result has been expressed as the relative difference
between the self-diffusion coefficient components parallel
and normal to the bounding surfaces. The form of
the components, as well as their relative contributions
within the liquid layer and near the bounding surfaces,
has been analyzed.

Spectral Density of the CF for the Thermally
Induced Fluctuations of the Velocity Field

Consider a liquid layer between two parallel surfaces
separated by distance d. The z-axis of the rectangular
Cartesian coordinate system is directed perpendicularly
to the bounding surfaces, and the z-coordinate is
reckoned from one of the surfaces. The z- and y-axes
can be directed arbitrarily, since the liquid properties
are homogeneous in these directions. If the liquid is
considered incompressible, the equations of motion for
the velocity fluctuation field look like

0 1
ava = _%VQP‘FVAU(X'FUOU (1)
divd =0

where pg is the equilibrium density, v the coefficient of
kinematic viscosity, p the pressure, and o the source of
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spontaneous fluctuations. The velocity components are
equal to zero on the bounding surfaces:

17(t71',y72 - 0) =0,
U (t,z,y,z =d) = 0. (2)

Consider now the Fourier transformations of Eqs. (1)
and boundary conditions (2) with respect to time and
the transverse component of the spatial radius-vector:

©(07,2) = [do [de Ve @ @)

Only the nondivergent part of the velocity is important
for the diffusion coefficient. Therefore, preserving the
previous notations for the Fourier-transforms of the
nondivergent parts of hydrodynamic fields and carrying
out simple transformations, we obtain

(ci—v (4= 5) ) va = o @

The solution is sought by expanding the velocity
field and the source components in a series of harmonic
functions. Taking Eq. (2) into account, those expansions
look as

Ve (2) = Z A SN i 2,
m

oo (2) = Z A° sin gy, 2, (5)

where the eigenvalues p,, = mm/d. Making use of
expansions (5) and applying the fluctuation-dissipation
theorem, one can easily find the spectral density
components for the amplitudes of the thermally induced
fluctuations of the hydrodynamic field of velocities:

O~ wo’ O
[—iw +v (k‘ﬁ + an)} 7 )

(AhnAarm), = Re

where

kT

and I',o is the tensor constructed of the d-functions
and the direction cosines in the k-space, cosy, =
ko /k, which makes allowance for the non-homogeneity
of liquid properties towards the longitudinal and
transverse directions for the given confining geometry.
The components of the tensor 'y, are

kako

Faa’ = 5(104’ - 77 (8)
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where

ke =k, ky=0, k.=ky, Kk =k +k%. (9)
The corresponding spectrum of the CF between
thermal fluctuations of the Euler hydrodynamic field of

velocities is

<UZ (P 2, t) var (Fh,z',t’>> =

E,w

= (271)2/03;}"@“5 (F1=71) «

x Z Z <A:;mAa/m’>w

(10)

SIN fln 2 SN s 27

In order to obtain the self-diffusion coefficient for a
Lagrange particle, it is necessary to change over from
the Euler to Lagrange CF. (The latter is of separate
interest, because it is the hydrodynamic approximation
for the CF between molecular variables.) To tackle the
problem, we used the approach proposed in work [14]. It
is based on a non-local connection between the Euler and
Lagrange hydrodynamic variables; if the displacement
of the Lagrange particle is neglected, as it was done in
work [13], the method is reduced to the averaging of
the CF between the Euler variables over the Lagrange
particle’s volume. As a result of the averaging procedure
(6) and taking the §,,,,,/-function into account, we obtain
that

* (=2 = ’og 7R2 °°J2 (kHRL)
(s s (7)), = 30 [

X W (COS fimz — COS o (2 + RL))” dky, (11)
where Ji(y) is the Bessel function, and Ry, = (%VL)M?).
Therefore, on the basis of Eq. (11) and knowing the
specific expression for the Euler spectral density, one
can find the spectrum of the Lagrange CF between the
velocity field fluctuations. The value of this spectrum at
w = 0 is just the self-diffusion coefficient of the Lagrange
particle in the liquid

1, .,/ .
Dy, (2) = 3 <Ua (TH’th) Va (TH’O’t/»L, w=0" (12)
which is the ultimate goal of our research.
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1. Transverse and Longitudinal Components
of the Lagrange Self-diffusion Coefficient

The confinement of a medium changes its dynamic
properties. We are interested in the variation character
of the self-diffusion coefficient of a Lagrange particle
in the liquid. From the viewpoint of the selected
confinement geometry, it is expedient to study the
difference between the transverse and longitudinal
components of the self-diffusion coefficient. In view of
Egs. (6) and (12), we take the explicit form of the T,
component of tensor (8) into account and obtain the
following expression for the transverse component:

2\]/%52/< +um)>x

f T3 (k) R
ko (kff + pi3,)
RL RL ?
X (cospm (2= =7 ) — oS pim z—|—7 dky. (13)
The longitudinal one is determined in terms of the 'y,
component of tensor (8) as follows:

I, _ OR}
D@ = 3y Z/ .

2 um)

it TE (R Re)

2
X (cosum (z - R2L> — COS L, (z—|— R2L>> dky. (14)

The total self-diffusion coefficient of a Lagrange particle
in the liquid is
Dy (2) = Dy(2) + Dit (2). (15)
Therefore, while considering the relative variation of
the self-diffusion coefficient in the longitudinal and
transverse directions, stimulated by the finite-size
effects, we obtain
Di(z) ~ Di(2) Dy (2)
Dy (2) Dy(2)
Provided that Dy, (z), according to Egs. (13) and (15), is
expressed in the form

Z/ J? kHRL w2
by (k

o)

=1-2

(16)

Dy(z2) =
SV2

666

2
X (cosum (z - RQL) — COS fim <z + P;“)) dky, (17)
its longitudinal component Dﬁ(z) is
Dl(s) =~ | 5-Du(2) (18)
- do o=1
Thus, we get
Dit(z) — D] (2) d1n Dy (2)
— =142 | —— . 1
Dy(2) + 0o o1 (19)

Calculating the integral on the right-hand side of
Eq. (17), we obtain the following expression for the
Lagrange self-diffusion coefficient:

90 Z I (Rypim/0) Ky (RLpim/0) %
16m2v Ry, < (Rppm /o)’

2
X 12 <cos JTi (z - R2L) — COS U, (z + R2L>) , (20)

where K7(y) is the Macdonald function. Since Ry, < d,
expression (20) can be simplified:

DL(Z) =

X

_ Bu) _ RiY))?
DL(Z)NZ (cos pi (2 — & )/ﬂcosum (z+ 4))

1. Rufim _
X(lnw+<RLMmﬁ) 2+,

2
(21)
where C, is the Euler constant. The main contributions

to the relative difference between the components of the
self-diffusion coefficient, in accordance with Egs. (19)

and (20), are
DEGR) = Di(=) | ypipay,
D 1o
z z\2 bHR R
(-6 -me (), &
where

ﬂa=;<um<?)>_(920+063f>+
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Ry (37 1. 8nd Rp\”
+7L (u—anRL)+0<dL> . (23)
is the dimensionless Lagrange self-diffusion coefficient in
the same approximation.

Equations (22) and (23) demonstrate that the
difference between the longitudinal and transverse
components is very large with respect to the value of
the total self-diffusion coefficient in the middle of the
liquid layer and near its bounding surfaces.

Near the bounding surfaces (at z = 0 and z = d),
this difference is determined, according to Eq. (22), by
the expression

Di(2) - D)(2) _ 5R R\’
LDL(z)LNI_2<_12:iJ+O<dL> >><

><<RL (37 — 11r187rd> +o0 <RL>2>
d \12 2 Ry d
Here, it is positive and amounts to almost 80% of
the total self-diffusion coefficient amplitude. Therefore,
the contribution of the transverse component to the
Lagrange self-diffusion coefficient dominates, while only
a share of 20% belongs to the longitudinal one.

At the midpoint of the liquid layer (z = d/2), the
main contributions to the difference concerned are

W@l—Q(Z—(2)2+O<?>)X

(-G ()

Now, the difference becomes negative and amounts to
approximately 100% of the value of the total self-
diffusion coefficient. his means that the longitudinal
component dominates in the middle of the liquid layer,
while the transverse one can be neglected there.

The studies how the confinement effects influence
the behavior of the self-diffusion coefficient have already
been attempted in works [7,8]. In these works, the
relative difference between the longitudinal component
of the Euler self-diffusion coefficient in the spatially
confined liquid and the self-diffusion coefficient Dy
in the bulk (the unconfined case) was evaluated in the
framework of the theory of coupled modes and using the
d — oo approximation. In the course of calculations, the
parameter of the wave number k cutoff was introduced.
Its physical interpretation was intuitively identified with
the inverse molecular size o~ !. As a result, the main

(24)

(25)
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contribution to the relative difference was written down
in the form

Il 2
Dy(d) — Dpux o d 1
PG == (1 () +2) o (3) 0

where A and B are constants.

Our result is more rigorous. According to it, the
relative difference between the longitudinal component
and the total Lagrange self-diffusion coefficient
demonstrates a logarithmic behavior in the case of
a spatially confined liquid. In accordance with the
relations given above,

D} (2) - D(2)
DL(Z)

(G ) (8) (+5-()

(27)

_ DL
DL(Z)

=2f"1(z)x

In fact, the role of our cutoff parameter is played by
the quantity Ry '. Expressions (22) and (27), which are
valid for small d ~ 10Ry,, contain the dependence on the
z-coordinate (the z-axis is directed perpendicularly to
the bounding surfaces) and the information concerning
the competition between the longitudinal and transverse
components of the Lagrange self-diffusion coefficient at
an arbitrary distance from the surfaces. The longitudinal
component Dﬁ(z) includes, according to Egs. (16), (22),
and (23), the main dependence of the Lagrange self-
diffusion coefficient on the z-coordinate. The component
Di-(2), according to Eq. (27), is considerably smaller and
depends on z very weakly; its behavior is determined
by the contribution ~ (Ry,/d)In (Ry/d). While moving
normally to the liquid layer, the self-diffusion coefficient
of the Lagrange particle in the liquid changes essentially,
and, at d — oo, approaches the value of that in the
unconfined liquid.

The authoress is grateful to O.V. Zatovskyi for
his heading of the work and to M.P. Malomuzh for
constructive discussions.

1. Ortiz de Zarate J.M., Redondo L.M. // Europ. Phys. J. —
2001. — 21. — P. 135 — 144.

2. Sokolovska T.G., Sokolovskii R.O., Holovko M.F. // Phys.
Rev. E. — 2000. — 62, N 5. — P. 6771 — 6779.

3. Pagonabarraga I., Hagen M.H.J., Lowe C.P., Frenkel D. //
Phys. Rev. E. — 1999. — 59, N 4. — P. 4458 — 4469.

4. Pagonabarraga I., Hagen M.H.J., Lowe C. P.,Frenkel D. //
Ibid. — 1998. — 58, N 6. — P. 7288 — 7295.

667



E.I. SAKHNENKO

10.

11.

12.

13.

14.

Zatovskii A., Zvelindovskii A.V. // Zh. Tekhn. Fiz. — 1990.
—60,N9.  P.129 — 132.

Teizeira J., Zanotti J.-M., Bellissent-Funel M.-C., Chen
S.-H. // Physica B. — 1997. — 234—236. — P. 370 — 374.

Bocquet L., Barrat J.-L. // J Phys.: Condens. Matter. —
1996. — 8. — P. 9297 — 9300.

Bocquet L., Barrat J.-L. // Europhys. Lett. — 1995. — 31,
N 8. — P. 455 — 460.

Travis K.P., Todd B.D., Evans D.J. // Phys. Rev. E. —1997.
— 55, N 4. — P. 4288 — 4295.

Ortiz de Zarate J.M., Cordon R.P., Sengers J.V. // Physica
A.—2001. — 291. — P. 113 — 130.

Chavez-Paez M., Medina-Noyola M., Valdez-Covarrubia M.
// Phys. Rev. E. — 2000. — 62, N 4. — P. 5179 — 5186.

Fisher 1.Z. // Zh. Eksp. Teor. Fiz. — 1971. — 61, N 4. —
P. 1647 — 1659.

Lokotosh T.V., Malomuzh N.P. // Physica A. — 2000. — 286.
— P. 474 — 488.

Bulavin L.A., Lokotosh T.V., Malomuzh N.P., Shakun K.S.
// Ukr. J. Phys. — 2004. — 49, N 6 — P. 556 — 562.

668

15. Lokotosh T.V, Malomuzh N.P., Shakun K.S. // J. Chem.
Phys. — 2003. — 118, N 23. — P.10382 — 10386.

Received 26.10.05.
Translated from Ukrainian by O.I. Voitenko

KOEO®IILIEHT CAMOANDY3II JIATPAHXKEBOI
YACTUHKU OBMEYKEHOI PIIVHNI

O.1. Caxnenxo
Peszowme

Ha ocnosi anaJiisy koedinienra camoaudy3il larpaHKeBol YaCTHH-
KU PiOUHE PO3IVIAHYTO TEIIOBi rinpommuamiuni duykryamnil pigu-
HHU B HEOJHOPIJIHMX yMOBaX, 3MOJIeJIbOBAHUX IIJIOCKOIIapaJIeIbHUM
mapoM. 3HalIeHO PO3B’sA30K KpaiioBol 3ajad4i 3a HAABHOCTI CTO-
POHHBOTO (DIIYKTYAIIAHOrO TOJIS JJIst TiAPOAMHAMIYHUX DPiBHSIHB
KOMIIOHEHT NOJIs MIBUJKOCTI y BHIVISAI PO3KJIAMYy 3a TapMOHiY-
oM QysKIigMu. CoekTpasbHy IyCTHHY KOPeJsIiiinol dyHKIT
diryKTyariiil mosst MBUIKOCT, K& 3aJIeXKUTh JIMIIE BiJl OHIET KO-
OPAMHATH, HOPMAJIBHOI JI0 OOMEXKYIOYUX [IOBEPXOHb, OTPUMAHO 3
BUKOPUCTAaHHAM (iyKTyariiHo-qucunaTuBiol Teopemu. Ha 11 oc-
HOBI IIPOAHAJII30BAHO BiJHOCHY PI3HMIIO IIOIIEPEYHOI Ta ITO3/I0BXK-
HBOI CKJIaJOBHUX KoedirienTa camoaudysil larpaHkeBol YJaCTHHKHI
pimuH".
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