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The kinetics of new phase nucleation in a binary alloy with the
fcc crystal lattice has been analyzed in detail making use of the
three-dimensional Monte Carlo simulation. The dependences of
various parameters of the process — the average dimension of
new-phase particles, number and volume of new-phase clusters,
distribution function of particles over their dimensions, dispersion,
and supersaturation — on time and the parameters of the system
have been calculated. The approximation proposed considerably
improves our understanding of the mechanisms of nucleation and
growth of the new-phase particles in a metastable nanosystem.

1. Introduction

The greatest progress achieved during last decades in
the fields of physical materials science and solid state
physics is connected with the creation and use of
micro- and nanostructured materials and systems —
such as, e.g., bulk nanocrystalline alloys, microcircuits,
and microchips — the operational characteristics of
which are determined at a microscopic level. If
dealing with such scales, the initial stages of the
new phase appearance (nucleation) which result in
macroscopic effects should be consider at a microscopic
level.

Last years, a new technologically important class
of materials — bulk nanocrystalline alloys which are a
result of the incomplete decomposition of metastable
amorphous multicomponent alloys — has been obtained
[1, 2]. These metallic alloys (metallic glasses) can be
applied as constructional materials in the aviation and
space industry owing to their ability to hamper flawing.
However, the processes of metallic glass formation and
how this glass transforms into a nanocrystal are not clear
enough yet.

In a bulk supersaturated system, the phase transition
of the first kind (in our case, the phase separation) occurs
through the nucleation and the growth of particles of
a new phase. In experimental studies, four consecutive
stages are distinguished: 1) nucleation, 2) the stage
of independent growth of nuclei, 3) the intermediate
or the so-called interim stage, and 4) coalescence and
coagulation (or the so-called Oswald ripening stage)
[3–8].

In the case of the decomposition of a supersaturated
nanoalloy, the analytical analysis of all the stages
of the system evolution becomes complicated by the
circumstance that the conditions in the medium are ever-
changing; namely, the supersaturation tends to zero,
and the nucleation barrier enlarges to infinity [3, 4, 8].
Therefore, the appearance of new fluctuation-induced
nuclei is practically impossible at the late stage of the
phase decomposition process. In this case, nuclei, whose
dimensions were supercritical under initial conditions,
can become subcritical, so that their dissolution may
start (coalescence). From this viewpoint, the final stage
of phase separation is described by the Lifshits—Slezov—
Wagner (LSW) theory of coalescence. Coalescence is
calculated in the mean-field approximation and for
infinitesimally small initial supersaturations, while the
volume of the alloy is supposed infinitely large [5,8]. At
the same time, the problem of description of the initial
decomposition stages (in micro- and nanoalloys, as well
as in macrosystems) remains unresolved.

The vast majority of modern approaches are only
capable to indicate the tendencies at the initial stage
of reaction diffusion rather than to describe the process
itself. Therefore, the task of the creation of such a
computer model, which could reveal the features of the
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new phase nucleation at the initial stages and trace the
evolution of the system parameters in detail at every
stage of the phase separation process, is topical.

Experimental methods for studying the phase
separation in alloys can be complicated and expensive;
this is why the computer simulation of this phenomenon
is rather promising. In particular, such a high-speed
method as the Monte Carlo (MC) one, allows the
sufficient statistics for model nano-, micro-, and
mesosystems that contain about 106 atoms to be
collected within a reasonable time of the computer
experiment. The corresponding MC researches have
allowed the authors of works [9, 10] to simulate the
evolution of such integral parameters as the order
parameter, the temporal dependence of the new phase
volume, and the average dimension of new-phase
clusters.

In the majority of the previous works on the topic
concerned, their authors considered a two-dimensional
model, a simple cubic lattice, and a small number of
atoms in the system [11–13]. The results obtained cannot
be extrapolated to the case of real crystals. Moreover, the
selected characteristics of the models did not enable the
statistical treatment to be carried out, the distribution
function of nuclei in the new phase to be constructed,
and the evolution of the new phase to be studied
both at the beginning and at the further stages of the
decomposition process.

Having all that in mind, we attempted, in this work,
to describe the definite stage of the phase transition of
the first kind — namely, the process of phase formation
at the initial stage of the reaction diffusion — at the
atomic level by applying the three-dimensional (3D)
computer simulation of the crystalline nanoalloy. We
have constructed a kinetic MC model for the phase
decomposition in a binary system with the fcc lattice
and analyzed the alloy decomposition at every evolution
stage of the system concerned. For this purpose, two
following tasks of the research had to be tackled:
— an MC computer model for the microscopic
description of phase transitions in a supersaturated alloy
had to be created, and
— a computer simulation of the kinetics of nucleation
and growth of the new phase in the course of the phase
separation in the binary alloy had to be carried out.

Our research aimed at studying the first order phase
transformations in a binary system and the process of
phase formation. The subjects of the research were the
decomposition kinetics at every stage and the behavior of
the characteristic parameters of the system in the course
of phase separation. The method applied for studying

the kinetics of system relaxation was the method of
MC computer simulation of the vacancy diffusion. We
extensively used the programming languages Borland
Pascal and Borland Delphi 7.0 for the creation of the
computer code, the system of computer mathematics
Waterloo Maple 9.0 for visualizing 3D images, and the
software package Golden Software Grapher 2.0 for the
graphic analysis.

Such an approach allowed us to study, “in situ”,
the reaction diffusion in a supersaturated binary alloy
with the fcc lattice. If the alloy is first heated up to a
high temperature, which corresponds to a homogeneous
solid solution of component B in component A, and
then quickly quenched to a temperature below the
temperature of phase formation, a metastable state of
the solution can be obtained. This nonequilibrium single-
phase state can change to the equilibrium two-phase
one by means of separating — namely, nucleating — a
new phase [14]. The time interval of such a transition
would depend on the initial supersaturation level of the
solution. Such a supersaturated solid solution served for
the initial state in the simulation procedure.

2. Monte Carlo Simulation of the Phase
Separation Process in a Binary Alloy

2.1. Monte Carlo method

The MC method is based on a random choice among the
eligible trajectories of the system in the configurational
phase space.

The first approximation of this method was described
in 1949 in the article by Metropolis and Ulam. In 1953,
a general algorithm for the canonical ensemble was
proposed [12]. It includes the following steps:
1) a portion of the system is selected randomly, and the
random trial variation of its coordinates is carried out;
2) the corresponding variation ∆E of the system energy
is calculated;
3) if ∆E ≤ 0, the new configuration becomes accepted;
otherwise, a random number R from 0 to 1 is generated;
4) if R < exp

(−∆E
kT

)
, the new configuration is accepted;

if R > exp
(−∆E

kT

)
, the new configuration is rejected;

5) the next iteration is carried out starting from step 1.
For the further analysis, we should apply the

fundamental concepts of the microscopic theory of
diffusion in alloys and select a basic model of the metallic
atom diffusion.

Various mechanisms of the atomic motion in the
crystal — simple (motions over the interstitial sites, the
vacancy mechanism of diffusion, mutual rearrangement
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of neighbor atoms) and complicated ones (cyclic
rearrangement of several atoms along some contour,
the shift of an atomic chain, mechanisms involving the
displacement of double and triple vacancies, and so on)
— are considered in the theory [15–20]. We confine
ourselves to the vacancy mechanism of diffusion only,
which is the most probable case for metallic alloys.

2.2. Basic model of the vacancy diffusion

Below, we describe the model and the algorithm of the
MC routine, which were used in the researches.

In order to calculate the configurational energy of the
system, in which atoms were located at the lattice points,
we used the Ising Hamiltonian, which took into account
the energies of pair interatomic interactions only within
the limits of the first coordination sphere [12, 21, 22]. A
single vacancy was introduced into a spatial specimen
with the fcc symmetry; the energy of interaction between
this vacancy and other atoms was supposed zero [23].
The pair interaction potential ΦXY , where the subscripts
X and Y can accept one of the values A (for atoms A), B
(for atoms B), or V (for vacancies), was assigned to every
pair of the particles. In this case, the configurational
energy of the whole system looks like

E =
1
2

N0∑

i=1

Z∑

j=1

ΦXiYj , (1)

where the external summation is carried out over all N0

lattice points of the system, while the internal one only
over the points within the first coordination sphere of
the i -th lattice point.

In what follows, we use the modification of the MC
method, the so-called residence time algorithm [10, 12].
This algorithm “forces” the vacancy to jump, and the
direction of its displacement is selected according to the
probability

pi =
νi

Z∑
j=1

νj

, (2)

where νi is the frequency of the atom-vacancy
interchange in the i -th direction, and Z is the number
of neighbor atoms. The total duration of the process is
measured in MC-step (MCS) units and, in fact, coincides
with the number of vacancy jumps.

The expression for the interchange frequency
between the i -th atom and a vacancy (the vacancy
jumps) in the first coordination sphere was taken in the

form

νi = ν0ie
−Qi/(kT ), (3)

where Qi is the activation barrier height for the jump
towards the i -th direction. The amplitude of Qi depends
on the sort of a diffusing atom and the dynamic
characteristics of the crystal lattice (see below).

Provided that the first coordination sphere around
the vacancy includes Z neighbor atoms, which are
capable to make a jump, the probability pi of the event
that just the i -th neighbor atom would be engaged
is proportional to νi (Eq. (3)) and determined by
expression (2). This is the probability of the event that,
of all the neighbor atoms, just the i -th one would appear
at the vacant point in the next configuration, and the
vacancy would occupy its place. (The probabilities are
normalized to unity.)

Although the value of ν0i can vary depending on
the configuration, this dependence was neglected in
calculations. We admitted only the dependence of the
quantity ν0i on the kind of the diffusing atom, by
introducing two constants ν0A and ν0B (which might
be equal to each other) for the corresponding atoms.

Consider a metal with a vacancy at one of the
crystal lattice points. This vacancy is surrounded by Z
neighbor atoms possessing the identical probabilities of
the replacement by the vacancy. The quantity Z is the
coordination number of the lattice (Z = 8 for the bcc
lattice and 12 for the fcc and hcp one). Suppose that one
of the neighbor atoms moves towards the vacancy, while
all the rest atoms remain immovable at their lattice
positions. In this case, the potential energy of such an
atom would change with a distance, in the way shown in
Fig. 1. This means that these two lattice points, where
the potential energy is minimal, are separated from each
other by a potential barrier, the top of which lies between
them.

To calculate the energy Qi, we used the model, where
— the energies of the start and end positions of the atom
in the lattice are different, while the height E0 of the
potential relief is the same for all the atoms, and
— the depth of the well, where the atom is located,
depends on its nearest environment (Fig. 1).

The barrier height for the atom which jumps from
position 1 into position 2 was calculated by the formula
Q1 = E0 −E1, where E0 is a unique constant for atoms
of all kinds (its meaning is explained in Fig. 1), and E1

is the energy of the atom in position 1.
The value of Ei for the i -th atom can be determined

through the pair interaction potentials within the first
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Fig. 1. Sketch of the barrier for the atom jumping from position
1 into position 2. The barrier height is calculated by the formula
Q = E0 − E1

coordination sphere by the formula

Ei =
Z∑

j=1

ΦXiYj . (4)

If this atom adjoins the vacancy, the barrier for his jump
is

Qi = E0 − Ei. (5)

While substituting formulas (3) and (5) into Eq. (2),
the constant E0 can be taken outside the exponent, so
that it can be ultimately cancelled. Then, the expression
for the probability looks like

pi =
ν0ie

Ei/(kT )

Z∑
j=1

ν0ieEi/(kT )

. (6)

Therefore, the algorithm for simulating the vacancy
diffusion is as follows:
(i) The initial configuration of atoms is selected. The
concentration of atoms is C0, and they are rigidly fixed
at the points of the regular fcc crystal lattice, being
randomly distributed over the latter.
(ii) A vacancy is inserted (one of the fcc lattice points is
designated as non-occupied).
(iii) For the given vacancy position, probabilities (6) are
evaluated for all possible jumps by calculating energies
(1) and (4). Afterwards, according to the probabilities
found, the direction of the jump is selected randomly,
by generating a random number R, and the interchange
of the vacancy and the atom is carried out.

2.3. Basic characteristics

We propose a new approach to study the decomposition
process at phase transitions of the first kind, which is
based on the computer model of the vacancy diffusion
described above. In the framework of this approach,
we investigated the equilibrium states of the binary
alloy. The results obtained were used for plotting
the dependence of the concentration on time and the
distribution function of clusters over their dimension
f(r), i.e. the number of nuclei with the size r. The
model allows such most important characteristics of the
distribution function as the average size (radius) 〈r〉 and
the number N of the clusters, the dispersion Dr, the slope
Sk, and the peak sharpness Kr to be calculated, provided
that the MCS number and the initial concentration C0

are fixed, using the relevant formulas

Dr =

√√√√√
n=N∑
n=1

(rn − 〈r〉)2

N
, Sk =

n=N∑
n=1

(rn − 〈r〉)3

N (Dr)3
,

Kr =

√
n=N∑
n=1

(rn − 〈r〉)4

N (Dr)4
− 3, 〈r〉 =

n=N∑
n=1

3
√

Nn

N
.

Here, N ≡ N(t) is the time-dependent number of
clusters of the new phase, Nn is the number of atoms
in the n-the cluster (n = 1 . . . N), and the size rn is
defined as rn = 3

√
Nn.

The results obtained for the function f(r) will also
be compared in the space of average quantities, where
the role of the parameter is played by the ratio between
the new phase particle radius r(t) and the average radius
〈r〉 rather than the radius r itself. The ratio u = r/ 〈r〉
is a normalized dimension, which we introduce, in fact,
in order to carry on a comparative analysis of our
results with those of the well-known LSW theory [5, 8].
The average volume of the particles in the new phase
is determined by the formula 〈V 〉 = N−1

∑N
n=1 N

n
,

and the total volume of the new phase by the formula
Vtot =

∑N
n=1 Nn, so that the volume fraction of the

new phase is ρ = Vtot/N0. The dispersion D, the slope
Sk, and the peak sharpness Kr of the function f(u) are
determined by the formulas

D =

√√√√√
N(t)∑
n=1

(un − 1)2

N (t)
, Sk =

N(t)∑
n=1

(un − 1)3

N (t) D3
,
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Kr =

N(t)∑
n=1

(un − 1)4

N (t)D4
− 3.

Here, ū = 1. (The magnitudes of Sk, as well as of Kr,
in the usual space and in the space of average quantities
coincide.)

In the following analysis, only those particles, in
which one atom B was surrounded by not less than
Nmin = 10 atoms of the same sort, were attributed to
the new phase. Such a choice of the minimal number
of surrounding atoms Nmin was relative. In our case,
the given value for Nmin was caused by the alloy model
with the fcc crystal lattice, where Z = 12. (The kinetics
of phase separation in the cases, where Nmin = 5, 13, or
20, was considered separately.)

We also determined the running supersaturation in
the alloy during the phase separation process as the
function of the MCS. For this purpose, we had to know
the concentration of component B outside the particles
of the new phase, i.e. in that portion of the alloy, where
there were no nuclei of the new phase. Below, we use the
notation C for this concentration.

2.4. Simulation algorithm

Hence, the algorithm of the numerical method is as
follows:
1) the size of the system N0 and its initial configuration
— the thermodynamic parameters and the initial
concentration of the supersaturated alloy C0 — is set
by selecting the positions of atoms randomly in space;
2) the values of the quantities N , rn, Dr, D, Sk, Kr, C,
f(r), f(u), ρ, and E at t = 0 are determined;
3) the MC method described above is applied for
simulating the vacancy diffusion within the time interval
of the MCS;
4) new values of the characteristics listed in item 2 are
determined at a new moment corresponding to the MCS.

2.5. Model of a metastable alloy

In our opinion, the proposed kinetic model of the
reaction diffusion is adequate to the model of a
regular solid solution, because the former takes into
consideration the influence of the interatomic interaction
only in the first coordination sphere. Following the
theory of a regular solid solution, the metastable state of
a binary alloy can be studied making use of the stability
and decomposition criteria. From this standpoint, it is
easy to construct a decaying metastable alloy. For this
purpose, the energies of pair interaction ΦAA and ΦBB

should be set so that the energy of ordering or the energy
of mixing Emix = 0.5(ΦAA + ΦBB) − ΦAB be negative
(the alloy which tends to decay). Therefore, the pair
interaction energies ΦAA = ΦBB = −2 × 10−20 J and
ΦAB = −1.8 × 10−20 J at the temperature T = 300 K
were adopted.

The analysis of the first and the second derivative
of the Gibbs potential density (the energy per atom)
for the simplified model of a regular solution testifies to
that the alloy with the selected parameters is metastable
within the concentration intervals 0.003 < C0 < 0.1
and 0.9 < C0 < 0.997, and absolutely unstable if
0.1 < C < 0.9.

3. Kinetics of New Phase Nucleation and
Phase Separation. Results and Discussion

Computer experiments were carried out for the fcc
crystal lattice composed of 250 thousand, 500 thousand
or 1 million atoms (the spatial analogs of the
100×50×50, 100×100×50, or 100×100×100 lattice,
respectively). The results obtained for the case with 500
thousand atoms will be reported below as an example.
The periodic Born– Karman boundary conditions were
applied along all the axes. The model parameters were
the temperature T = 300 K, the pair interaction energies
ΦAA = ΦBB = −2×10−20 J and ΦAB = −1.8×10−20 J,
and the component mobilities (jump frequencies) ν0A =
1× 1013 Hz and ν0B = 3× 1013 Hz.

Fifty independent experiments were carried out. In
order to study the thermodynamic properties of the
ordered alloy, about 1010 MCSs were generated in every
experiment.

Below, we report the basic results of computer
experiments concerning the phase separation in a
supersaturated binary alloy. The behavior of the
function f(u) can essentially vary depending on the
initial supersaturation value. As a matter of fact, the
cases of low and high initial supersaturations C0 may be
conventionally distinguished.

The evolution of the distribution function f(u) at
all the stages of decomposition is presented in Figs. 2
and 3. Here, only those particles were considered as the
particles of the new phase with minimal dimensions,
which were composed of not less than 10 atoms
(Nmin = 10) of the sort B only. One can see that
the unimodal distribution function, in the case of low
initial supersaturation, first quickly becomes exponential
(Fig. 2,a) and, afterwards, bimodal (Figs. 2,b–e). At the
final stage, the distribution function becomes unimodal
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Fig. 2. Evolution of the distribution function of new-phase particles over their dimensions from the initial nucleation stage till the final
stage of phase separation (coalescence) at a low initial supersaturation C0 = 0.05 and at various numbers of MCSs: 0 (a, the initial
distribution), 9.4× 108 (b), 1.5× 109 (c), 2.2× 109 (d), 3× 109 (e), and 5.4× 108 (f )
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Fig. 3. The same as in Fig. 2, but at a high C0 = 0.1. The numbers of MCSs are 0 (a, the initial distribution), 1× 108 (b), 2× 108 (c),
and 4× 108 (d)

again (Fig. 2,f ). At low initial supersaturation values,
this process looks like a “flowing” from one maximum to
the other. Such a “flowing” process corresponds to the
stage of independent growth and the interim stage [3,4].

At high initial supersaturation values, the behavior
of the distribution function differs drastically. Namely,
the distribution function remains unimodal, and its
maximum moves towards larger dimensions (Figs. 3,a—
d).

The results obtained demonstrate the characteristic
features of the system evolution. These include the
opportunity of a three-stage decomposition process in
a binary alloy at low initial supersaturation values
(nucleation, slow growth, and coalescence) and a two-

stage decomposition at large initial supersaturation
values (first, the appearance and the quick growth
of the new phase occur simultaneously; afterwards,
the slow coalescence and coagulation take place also
simultaneously). The reduction of C0 results in slowing
down the whole process of phase separation.

Let us consider the process of decomposition in more
details. The first stage is the nucleation.

3.1. Nucleation

At this stage, nano-, meso-, and macroparticles of the
new phase arise. The model allows the emergence of the
new phase to be traced for various initial conditions.

ISSN 0503-1265. Ukr. J. Phys. 2006. V. 51, N 6 611
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a b
Fig. 4. Number of new-phase particles N (a) and the dispersion D (b) as the functions of the MCS number for various initial values of
C0 = 0.1 (×), 0.075 (4), 0.05 (◦), and 0.025 (¦)

Fig. 5. Temporal dependences of the energy of the whole system
for various initial values of C0. The notations are the same as in
Fig. 4. The decrease of the initial supersaturation results in the
increase of the nucleation and growth times

The relevant dependences of the new-phase particle
number and the particle dimension dispersion on the
MCS number are depicted in Fig. 4.

In accordance with the model, the initial
concentration C0 was selected randomly, and the phase
separation began as the particle dimension dispersion
increased (Fig. 4,b).

Figure 4,a demonstrates that the reduction of
initial supersaturation brought about the appearance
of maxima in the evolution plots N(t). The maximum
point, which corresponded to the maximal number of
the new-phase particles, became shifted towards larger
times. The appearance of the maximum testified to that
the process of new phase nucleation took place. The
model made it possible to check the number of nuclei and
their dimensions visually, with the help of the Maple 9.0
program (see below). For the description of the initial
stage to be complete, the evolution of the distribution
function dispersion for various values of C0 is shown
(Fig. 4,b).

3.2. Evolution of the basic characteristics

Depending on the initial supersaturation C0, the shapes
of the dependences E(t), ρ(t), 〈V 〉 (t), 〈r〉 (t), N(t), and
C(t) also changed. For large supersaturation values, the
two-stage process of phase separation in the alloy was
observed, when, right after the fast (short by time)
nucleation, there occurred a quick transition to the stage
of coalescence and coagulation. In fact, the stage of
the independent growth of new-phase nuclei and the
intermediate stage disappear [3–8]. Such a conclusion
can be drawn while comparing Figs. 3—7. It is also
confirmed by visual observations. As the magnitude of
C0 decreased, a gradual increase of the nucleation and
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Fig. 6. The same as in Fig. 5, but for the evolution of the average
dimension 〈r〉 of new-phase particles

growth times was observed (see a shift of the maximum
in the dependence N(t) and the inclination of the
dependence D(t) towards larger MCSs, respectively,
in Figs. 4—7), as well as the transition from the
two- to three-stage process (nucleation, growth, and
coalescence).

The behaviors of the average radius 〈r〉 and the
average volume 〈V 〉 of new-phase particles in the course
of the phase decomposition process are demonstrated in
Fig. 6. The time-variation of the concentration C in the
alloy is shown in Fig. 7.

Figures 3–7 confirm our thesis about the dependence
of the decomposition stage number on the magnitude
of initial supersaturation. The results testify to that
the higher is C0, the faster the alloy relaxes to
the equilibrium state and approaches the stage of
coalescence and coagulation.

One can see that, for large values of C0, the fast
nucleation and slow following processes are observed.
A similar behavior was observed in amorphous alloys
and quickly tempered metallic glasses Al88Y7Fe5,
Al92Sm8, Al85Ni5Y10, and Al90Ni6Nd4 [2]. The process
of transformation of metallic glasses into crystals is
often consists of two stages: a plenty of fine-grained
structures emerges quickly at the first stage, while
the second one is characterized by the slow growth of
those structures [1, 2]. In the course of the collective
nucleation and decomposition in a metastable alloy,
there is the opportunity for the alloy to exist in the
state of incomplete decomposition, with the formation of
a nanocrystalline structure made up of a large number of
new-phase nuclei surrounded by the depleted phase.

Fig. 7. Dependences of the concentration in the parent phase on
time in the course of the decomposition. The notations are the
same as in Fig. 4

Therefore, the process of decomposition in a strongly
defective supersaturated alloy with the nucleation of
the new phase can run with some delay in the state of
incomplete decomposition. Such a state can be observed
as amorphous by x-ray diffraction analysis, if the radii
of the new-phase nuclei are small.

The behavior of the concentration in the simulated
alloy is not obvious a priori. Namely, the higher the
initial value C0, the lower is its asymptotic value and the
more quickly the latter can be reached. In this case, the
width of the distribution function f(u) (the dispersion)
in the space of relative dimensions is larger for higher
values of initial supersaturation.

Such a scenario explains the change of the average
radius in time for various initial concentrations. The
higher the initial supersaturation (concentration), the
larger is the average radius of the new phase nuclei and,
correspondingly, the average volume (Fig. 6).

3.3. Coalescence and coagulation stage

The distribution functions, obtained in the course of
evolution, made the numerical analysis, carried out
according to the quantitative statistical characteristics,
which are calculated by the formulas quoted above,
eligible at the coalescence stage as well.
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Fig. 8. Histograms of the distribution function of new-phase particles over their dimensions in the normalized space (u = r/ 〈r〉) at the
final stage of decomposition (t = 8×109 MCS) for various values of C0 = 0.1 (a), 0.075 (b), 0.05 (c), and 0.025 (d) and their comparison
with the theoretical LSW curve obtained by formula (7) (solid curve)

At this stage, we have analyzed such characteristics
as the average radius and the volume of the new-phase
particles and the concentration in the parent phase
during the phase decomposition. The results of the
corresponding comparative analysis of the distribution
function f(u) obtained in the framework of our MC
model with the results of the LSW theory are depicted in
Fig. 8. Here, we monitored the evolution of the function
f(u) for various values of C0.

The LSW theory brings about the universal function
f(u) describing the distributions of new-phase nuclei
over the dimension, the asymptotic shape of which does

not depend on the initial distribution. In this theory,
the average size of aggregates 〈r〉 coincides with the
critical radius rcr for the running supersaturation, which
varies in time, and increases following the asymptotic
law 〈r〉 ∼ t1/3. The total number of grains in a unit
volume varies as N ∼ t−1, and the supersaturation drop
as ∆C ∼ t−1/3. Such a conclusion was also confirmed
by the computer calculations carried out by the authors
in the framework of the Fokker–Planck model, where
atoms became attached to and detached from the new-
phase nuclei following the continuous scheme of bonding
monomers: N−1 ↔ N ←→ N +1 [4]. As a consequence,

614 ISSN 0503-1265. Ukr. J. Phys. 2006. V. 51, N 6



3D MONTE CARLO SIMULATION OF PHASE SEPARATION

the well-known expression for the distribution function
of nuclei over their dimensions was obtained.

According to the LSW theory, the function f(u) at
the stage of coalescence looks like [8]

f (u) =





34e

25/3

u2 exp[−1/(1− 2u/3)]
(u + 3)7/3(3/2− u)11/3

, u <
3
2
,

0, u ≥ 3
2
.

(7)

It follows from the analysis of the results exposed
in Fig. 8 that, at the final stage of decomposition,
the parameters of the distribution function tend to
the values which are close to those obtained in
the framework of the LSW theory of coalescence.
The comparison evidences for a qualitative similarity
between our distribution function and that of the LSW
theory. However, the more detailed analysis reveals the
discrepancies in such characteristics as the sharpness,
inclination, and dispersion of the peak, which increase
as the initial supersaturation grows (see the table).

The fact that the linear approximations 〈V 〉 ∼
t1 and Vtot ∼ t1 cannot coincide with the temporal
dependences of the LSW theory deserves attention.
This is mostly connected with the fact that time in
computer simulation is reckoned in MCS units and
is not proportional to the actual time. Nevertheless,
the approximations given enable one to estimate the
tendencies of changes of the process parameters and their
rates. The approximation 〈r〉 ∼ tn (〈V 〉 ∼ tm) brings
about the value of the exponential factor n(m) within
the limits from n = 0.2 (m = 0.6) for C0 = 0.1 to
n = 0.15 (m = 0.54) for C0 = 0.025.

If more prolonged time intervals are analyzed, MC
simulations reveal the simultaneous coalescence and
coagulation. This results in a small number of the new-
phase particles, so that plotting the distribution function
over particle dimensions becomes inexpedient owing to
poor relevant statistics.

Fig. 9. Visualization of the new-phase particles in the 3D binary
system at the final stage of the decomposition. The number of
atoms equals 500000, C0 = 0.075, and the number of MCSs equals
7500 (the Maple 9.0 program was applied). Isolated black dots
correspond to the atoms of the sort B. Their large aggregations
visualize the clusters of the new phase

3.4. Visual monitoring

As was said above, the model allowed all the results of
calculations to be checked up visually with the help of
the Maple 9.0 program. Figure 9 shows the example of
such a verification.

4. Conclusions

A computer model of the vacancy diffusion has been
developed on the basis of the MC method. An approach,
which uses this model for studying the decomposition
processes at the phase transitions of the first kind, has
been proposed.

The kinetic analysis of the new phase nucleation,
which accompanies the decomposition of a supersatura-

Dependence of the asymptotic, in time, values of the distribution function parameters on the initial concentration C0

C0 t, MCS 〈r〉 〈V 〉 Vtot D Sk Kr N

LSW analytical model
≈ 0 −→∞ ∼ t1/3 ∼ t1 const 0.215 –0.920 0.675 ∼ t−1

MC model
0.1 8× 109 8.2(∼ 1.4× 10−10t1) 640(∼ 3.8× 10−8t1) 2.2× 10−14t 0.225 –0.06 –0.364 98 + 4.8× 1011t−1

0.075 8× 109 7.6(∼ 1.1× 10−10t1) 480(∼ 2.83× 10−8t1) 2.5× 10−14t 0.218 –0.28 0.046 76 + 5.5× 1011t−1

0.05 8× 109 6.9(∼ 1.2× 10−10t1) 360(∼ 2.33× 10−8t1) 3.5× 10−14t 0.204 –0.32 0.180 78 + 4.4× 1011t−1

0.025 8× 109 6.2(∼ 0.8× 10−10t1) 260(∼ 1.44× 10−8t1) 4.4× 10−14t 0.198 –0.55 0.577 53 + 1.4× 1011t−1
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ted nanoalloy, has been carried out making use of the
computer simulation method. The following graphical
dependences have been plotted: the dependences of the
average radius and the volume of the new-phase particles
and the concentration in the parent phase on time; the
distribution functions of nuclei over their dimensions
at every stage of the phase separation process and for
various initial concentrations; and the time evolution of
the distribution function dispersion. The results of
the computer experiments for various input parameters
have been compared.

The numerical calculations testify to that the higher
the initial supersaturation, the faster the alloy relaxes
to the equilibrium state and the faster it approaches
the coalescence one. An increase of the C0 value for
the simulated nanoalloy leads to the disappearance
of the independent growth and interim stages. Such
a conclusion brings us to the necessity of taking
the interaction of the new-phase nuclei into account
when considering the kinetics of the initial stages of
the decomposition in nanoalloys with nonzero initial
supersaturations [24,25].

The MC model proposed in this work gave, at the
final stage of the decomposition, the distribution of
nuclei which is close to that of the LSW theory. The
increase (decrease) of supersaturation resulted in the
increase (decrease) of a discrepancy between our results
obtained for the final stage of decomposition and those
of the LSW theory.

The MC model demonstrated that, depending on
the degree of initial supersaturation, the two- (for large
supersaturations), three-, or even four-stage (for small
supersaturations) processes of phase separation may
occur.

The comparison of the characteristic times showed
that, if the magnitude of C0 is large, the nucleation
stage is fast in comparison with the following ones. In the
course of the collective nucleation and decomposition in
a metastable alloy, there exists the opportunity for the
alloy to be in the state of incomplete decomposition with
the formation of a nanocrystalline structure composed
of a large number of new-phase nuclei surrounded by
a depleted phase. The two-stage behavior is observed
in amorphous alloys and quickly quenched metallic
glasses: at the first stage, a large number of fine-
grained structures quickly appears; on the second, these
structures slowly aggregate [1, 2].

The analysis carried out in this work is to be
continued by the studies of the kinetics of the initial
stages of the phase separation in a binary alloy, provided
that several new phases can emerge, in case of the

reaction diffusion in the binary diffusion pair. The
simulation of a multicomponent system is also needed
and planned to be done in the future.

The work was executed in the framework of the
CRDF Program: CGP 2006-A, EMM Sciences, Proposal
number 15484.
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3D-МОДЕЛЮВАННЯ МЕТОДОМ МОНТЕ-КАРЛО
ПРОЦЕСУ РОЗПАДУ В БIНАРНОМУ СПЛАВI

А.С. Шiрiнян, Ю.С. Бiлогородський

Р е з ю м е

Проведено детальний аналiз кiнетики зародкоутворення нової
фази в рамках тривимiрного моделювання методом Монте-
Карло в бiнарному сплавi з ГЦК-ґраткою. Розраховано вiд-
повiднi величини процесу, такi, як середнiй розмiр частинок
нової фази, кiлькiсть кластерiв нової фази, об’єм, функцiю
розподiлу частинок за розмiром, дисперсiю, пересичення в за-
лежностi вiд часу та параметрiв системи. Застосоване набли-
ження дозволяє значно покращити наше розумiння механiзму
зародкоутворення в системi, яка перебуває в метастабiльному
станi.
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