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Analytical estimates of the effective potential of a dust particle
embedded into a plasma are performed with regard for its charging
by plasma current. The plasma dynamics is described within
the drift-diffusion approximation. It is shown that the effective
potential in the case under consideration manifests the Coulomb-
like asymptotic behaviour. The approximate expressions for the
electric grain charge and plasma particle distributions around
a grain are derived and compared with the earlier obtained
numerical solutions of the problem.

Studying the effective potentials of a grain, whose
charge is maintained by plasma currents, still remains
one of the important issues of dusty plasma theory.
This problem has been intensively studied in many
papers within the framework of various models (see,
for example, [1—14] and references cited therein). The
variety of important details such as the dependence
of the effective potentials on the plasma dynamics,
mechanisms of plasma regeneration, charging processes,
the presence of collisions of plasma particles with
neutrals, the existence of ionic bound states, etc. has
been discovered. In particular, it has been shown
that, in the case of the fixed grain charge with
no fluxes through the grain surface, the effective
potential has the Yukawa-type asymptotics and can
be described by the Debye potential with the effective
charge [2, 3]. In such a case, the potential under
consideration does not depend on the details of the
plasma dynamics. If the grain charge is maintained
by the plasma currents, the potential is considerably
dependent on the charging kinetics (in the case of
collisionless plasma at large distances, the potential is
inversely proportional to the square of distance [5—
7], while the asymptotics manifests the Coulomb-like
behaviour in the case of strongly collisional dynamics
[14]). Moreover, it has been established that, in the
latter case, the potential asymptotics is dependent on
the distribution of the sources of plasma regeneration
14, 15].
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However, it is necessary to point out that the
major part of the results mentioned above was obtained
using the numerical studies of the appropriate models.
The problem is that, due to a strong coupling
between plasma particles and grains, the methods of
linear analysis cannot be applied. Nevertheless, as was
shown in [15], linearized equations make it possible
to describe the asymptotic behaviour of the potential.
Since the analytical relations for the effective potentials
can be very useful for various applications in dusty
plasma theory, it looks reasonable to find approximate
analytical solutions of the problem of grain screening,
which describe not only the qualitative asymptotic
behaviour, but give also the quantitative estimates
for the grain charge, plasma particle distributions
around a grain, and effective potential. In the present
paper, we propose such approximate solution for the
case of a dust particle embedded in the weakly
ionized plasma assuming that the grain absorbs all
encountered electrons and ions. We also assume that the
plasma sources, which compensate the plasma particle
absorption by the grain, are located at the boundary of
the system, i.e. at large distances from the grain.

Let us consider a grain located at the origin of
the coordinate system. The grain is surrounded by
the weakly ionized plasma. Due to the absorption of
electrons and ions by the grain, the fluxes of plasma
particles fa toward the grain arise (subscript o labels
plasma particle species, 0 = e — electron, o = i — ion).
In the stationary case, these fluxes satisty the equation

divl, = 0. (1)

In view of the spherical symmetry of the problem,
'y = (Tsr,0,0), one has

10
7"725 (T2]-—‘0'7’) = 07 (2)
or
B,
Far = 7“727 (3)
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where B, is the constant to be determined using
boundary conditions.

We assume that the plasma particle motion is
governed by the drift-diffusive equations. Within such an
approximation, the plasma particle fluxes can be written
as

eona( )
] - = d D, o , 4
(r) —— ————=V&(r) — Do Vne(r) (4)
where D, = T,/(my,vy) is the diffusion coefficient, v,

is the collision frequency, e; = e,e. = —e. The rest of
notation is conventional.

Combining Egs. (3) and (4), we have the equation
for plasma particle densities

dny,(r)  es d®(r) B,
dr ﬁna(r) dr Dyr?

(5)
With regard for the boundary condition
ne(00) = ng, (6)

which means that plasma particle densities are fixed at
a large distance from the grain, the solution of Eq. (5)
can be written as

_ dr
eo®(r)/To nO+D7<, 7’2

T

ne(r)=e e (/T | (7)

Since the grain absorbs plasma particles contacting
its surface, the following boundary condition at the grain
surface can be used:

ne(a) = 0. (8)
Here, a is the grain radius. Equations (7) and (8) yield

D,
By = -, )

%ee,,@(r’)/TG

r
’ Y
f%ee(,¢(7 )/Ts
_eaq>(7n)/T0 a

a_ . (10)
f %eea(}(r,)/Tn

ne(r) = nge

The potential ®(r) is governed by the Poisson
equation

AD(r) = —4r > eong(r) (11)

o=e,i
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As is seen, Egs. (10) and (11) generate a nonlinear
equation for the effective potential. However, since the
plasma particle densities are considerably reduced in
the vicinity of the grain due to the electron and ion
absorption, it is possible to expect the weakening of
the nonlinear effects, as it is observed in the case of
collisionless plasma [7], and thus to make analytical
estimates using a linear approximation. A linearized
version of Eq. (11) looks as

(oo}

/
A — k20 (1 - 9) —k%a/dr’é(g) -
r T

:_I€2Da’2‘/dT,I(E(T/)7
r r’2

a

where k% = > k%, k%, = 4meing/T,.
o=e Z
It is possible to show that, with the accuracy up to
the main contribution of the terms associated with the

plasma particle absorption, Eq. (12) can be reduced to

(13)

The solution of this equation consists of two parts

7t

the first of which describes the screened Debye potential,
while the second one is of the Coulomb-like form.
Equation (14) can be rewritten as

—kDr

P(r) = (14)

O(r) = ¢ e ko 4942 ]odr et (15)
or /3

Using the boundary condition
dd q
°oF == 16
dr|,_, a? (16)

where ¢ is the stationary grain charge to be determined
from the condition of the zero value of the electric
current through the grain surface, we obtain

q e~kor 4y
r e—kDa(k;Da + 1) + Cl ’

o(r) = (17)
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Fig. 1. Dependences of the normalized grain charge z on A = akp
at t =T;/Te = 1,d = D;/D. = 0.001: 1 — the collisionless OML
theory (based on the approach presented in [7]), 2 — results of
numerical studies [14], 8 — the curve described by Eq. (23)

which is in agreement with the estimates presented in
[15]. Here,

C) = 2a2/dr

A

e*kDr
3

=e (1 - A)+Ei(1,4)4%, (18)

r

akp, and Ei(n,z) is the integral exponent,
o0
Ei(n,z) = [ dt t ™ *'. In the system with no plasma

1

particle absorption by a grain (C; = 0), Eq. (17) recovers
the well-known Derjagin—Landau—Verwey—Overbeek
potential [16].

At kpr > 1, Eq. (17) reduces to the Coulomb
potential with the effective charge
Cq
e*kD“(k:Da + 1) + C4 '
Obviously, this effect is related to the plasma
currents associated with the plasma particle absorption
by the grain. As was mentioned above, the total electric

current through the grain surface is equal to zero in the
stationary state, which requires

Td
Dino/

q=q

(19)

dr

geeeé(r)/T — Deno/ eei‘I’(T)/Ti. (20)
T r
a a
In the linear approximation, this gives
T dr D, — D,
—®(r) = . 21
/ r2 (r) a(D.e;/T; — Die./Te) (21)

a
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Fig. 2. Dimensionless potential e.®/T. vs distance R = rkp at
t =T;/Te = 1,d = D;/D. = 0.001 for different values of the
normalized grain radius A = akp: 1 —A=01;2—A=1; 3 —
A=14

The substitution of Eq. (17) in (21) leads to the
following formula for the grain charge:

- G*kDa(kDa+1)+Cl a(Di—De) (22)
- Cy Deci/T; — Diec/T.”
The dimensionless grain charge z = ge./(T.a) is
appropriately given by
1—-d
= f(A)—— 23
= W e (23

where f(A) = (274 + Ei(1,A)A?)/Cy; d = D;/D.,
t="T;/T..

Since the diffusion coefficient for electrons is usually
much larger than that for ions, one has

z~tf(A), (24)

i.e. the dimensionless grain charge is proportional to
the ion to electron temperature ratio. The dependence
of z on the dimensionless grain radius is presented
in Fig. 1. As is seen from the comparison with the
appropriate numerical results, the obtained estimates
give quantitative predictions of the same order as those
obtained on the basis of the numerical solution of the
problem. Unfortunately, the qualitative behavior of the

analytical results is not in so good agreement with the
numerical studies.
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Fig. 3. Normalized density distribution of electrons ne/neg (1) and
ions n;/nio (2),at t =1,d =0.001. a — A=0.5,b— A=0.1

Notice that, in spite of the long-range asymptotics
of the potential, the induced charge density decreases
exponentially.

Di Ti
(1-5) (1) 0 etor

(1+ %)

p(r) = z{f:egng(r) = nge oy

(25)

Equations (10), (17), and (22) give the approximate
solution of the problem under consideration. The
typical behaviour of the dimensionless potential e, ® /T,
and plasma particle densities as functions of the
dimensionless distance kpr are presented in Figs. 2—4.
These dependences are in qualitative agreement with the
numerical results, and thus the obtained solution can be
used for analytical estimates of the effective potentials in
the appropriate cases. In particular, relations (19), (22)
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Fig. 4. Plasma particle density distribution for different values of
t = T;/Te. Curves 1, 2 are all the same as in Fig. 3 (a), curve 8
describes the normalized electron density distribution mne/neo at
t = 0.1; the normalized ion density distribution n;/n;o at ¢ = 0.1

coincides with 2

can be used to find the effective charge for a Coulomb-
like potential.
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JTAJIEKOJINHI E@EKTUBHI ITOTEHIIAJIM B3AEMOJIIT
ITOPOILIMHKHN ¥V ITJTA3SMI

A.T. Bazopooniti, A.I. Momom
Pesome

IIpoBeneno anasiTuyani HOCTiIKEeHHS €()EKTUBHOIO ITOTEHIAJLY

IIOPOIIMHKY Yy INIa3Mi 3 ypaxyBaHHAM 11 3aps/KaHHs ILJIa3MO-
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BUMH cTpyMamu. JluHamika IJIa3MH ONHCYETBCH y ApeidoBO-
nudysiiinomy HabmmKenHi. [lokaszaHo, IO y PO3IVISHYTOMY BH-
magky eQeKTHBHUN I[OTeHIiaJ Ma€ KYJIOHIBCbKY ACHMIITOTHKY.
Otrpumano HabIuKeHI BUpa3W sl €JEKTPUYHOTO 3apsify MOpO-
MIMHKY 1 PO3IOiIY IJIa3MOBUX YaCTHHOK HaBKosio Hel. IIposese-
HO MOpIBHSAHHS 3 OTPUMAaHUMH PaHillle YHUCIOBUMHU PO3B SI3KaMU

3a1a4i.
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