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A mechanism of electron plasma accumulation and confinement
during the injection of an electron beam widely spread in the
longitudinal velocity into a drift tube in a strong uniform
magnetic field is studied both experimentally and theoretically.
The properties and the formation of a collective electron trap
for the electron beam that propagates in a conducting cylinder
are described. It is experimentally shown that the electron beam
stimulates the development of an instability under the above-
mentioned conditions. The instability leads to the formation of
an electric potential trap. The trap captures electrons during the
formation and confines them inside the drift tube. The theoretical
explanation of the last stage of the experiment (the confinement
of charged particles) is given within the framework of the model
considering the shearless motion of a tubular electron beam with
constant density profile. The dispersion equation is obtained, and
the conditions for the existence of the instability are elucidated.
The results of numerical calculations are in good agreement with
the experiment.

1. Introduction

The results obtained in the experiments on the cooling
of a charged plasma and a plasma which consists
of particles of the same sign of charge indicate the
relative simplicity of its long-term confinement by
external electromagnetic fields [1, 2]. The examinations
of the relaxation of a bounded electron plasma to an
equilibrium state and the dynamics of its parameters
show that the force which restricts a motion of
particles along a magnetic field should not be necessarily
external. It may be self-consistent and appear as a
result of various dynamic processes accompanying, in
our case, the streaming of the charged plasma as

a beam of charged particles spread over velocities
in a magnetic field. It is known that the injection
of a “hot” beam of charged particles with a wide
spread of velocities in the vacuum channel of drift
is accompanied by the conversion of the mono-
flux motion of particles to the multi-flux one. It is
related to the appearance of an electrostatic potential
well at the stage preceding to the formation of an
anticathode. It follows from the experimental results
that the potential well had two maxima [3]. Such
spatial distribution of electrical and magnetic fields
represents an analog of the Penning—Malmberg trap,
being a result of the dynamics of beam particles
in the drift space [4]. The experiments also have
shown that the electron plasma has a rather low
temperature in the drift space in the area between
two maxima of the potential well. The density of the
accumulated electron plasma differs from that of the
basic drifting stream in the course of time by an order
of magnitude. The lifetime of accumulated particles
exceeds the transition time of basic ones by 5—6 orders
of magnitude.

For studying the questions of the accumulation
and the long-term confinement of charged particles in
Penning—Malmberg traps, it is necessary to build up
a general stability theory of similar systems. The basic
theoretical questions of stability for various types of
traps are examined in [5]. In addition, for the last decade,
a lot of theoretical publications considering how the
various edge effects, such as the curvature of sheaths
at the ends of the trap and the free boundary effect [6]
or the end shape effects [7], influence the development
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Fig. 1. Schematic of the experiment: 1 — electron beam; 2 — drift
tube; 3 — intermediate wave guide; 4 — carriage; 5 — electrostatic
analyzer; 6 — high-frequency probe; 7 —incandescent filament; 8
— heating cathode; 9 — anode grid; 10 — entrance grid; 11 —
exit grid; 12 — electrostatic analyzer; 13 — collector grid; 14 —
collector

of instability have been published. In [8], the
development of an instability of hollow electron beams
has been qualitatively predicted. However, on the
whole, such types of the formation are unstable with
lifetimes equal to the time of the diocotron instability
development τd. Here, we offer a physical model which
allows us to give the explanation of the long-term
confinement of a tubular electron beam.

2. Experimental Part

The experiments were performed in the device shown in
Fig. 1 and described in detail in [9]. The hollow electron
beam (the diameter a=2 cm, thickness ∆ = 1÷2 cm, and
an energy of 20÷50 eV) was injected into the drift space
(the tube of the length L ≈ 150 cm and the diameter
D = 4 cm) which was limited from the edges by entrance
and exit plane grids. The tube is cut longitudinally
into two equal parts with an angular dimension of 180◦

(π-electrodes). The constant homogeneous longitudinal
magnetic field has the strength of H = 100 ÷ 1000 Oe.
The working pressure of the mixture (N2, Ar) was 10−6—
10−7 Torr. In the experiments, we determined the time-
averaged distribution function over longitudinal energies
with electrostatic analyzers; the particle density in the
drift space by measuring the frequency of the diocotron
mode with the azimuthal number l=1; the emission
current of the electron gun cathode; the current Iin on
the drift space electrode; the current Iex on the exit; the
oscillations and currents on HF probes; and the currents
on π-electrodes.

In the experiments performed, a special attention was
paid to analyzing the ion background formed by beam
electrons ionizing the residual gas. In our experiments,
the influence of the ion background arising from the
ionization of the residual gas by beam electrons was not

Fig. 2. Current Iex versus Iin for a pulsed beam with UB=50 V,
(τ : pulse duration, T : time between pulses). 1 — τ = 400 µs, T =
800 µs, 2 — τ = 400 µs, T = 2.8 ms

essential. In Fig. 2, we show the dependence of the
current passed through the drift space Iex on the current
at the entrance Iin, when the voltage at the electron
gun cathode is U=–50 V. It is seen from Fig. 2 that,
as Iin increases, the movement along curve 1 from
point 0 to point B is realized along its lower branch.
When Iin decreases, the movement along the curve from
B to 0 occurs along its upper branch. Thus, curve
1 of Fig. 2 exhibits a hysteresis on the dependence
Iexversus Iin which, however, is opposite in nature to
the well-known similar hysteresis dependence for the
monoenergetic beam [6] and the beam having a strong
spread over longitudinal velocities, when they are in the
stationary regime. Meanwhile, in curve 2 of Fig. 2, the
hysteresis in Iex versus Iin dependence is absent. Curve
2 differs from curve 1 only in the delay time between two
subsequent periodic current pulses. This time is 3.5 times
larger for curve 2 as compared to curve 1. The different
behaviours of curves 1 and 2 in Fig. 2 points out to the
presence of a noticeable space charge in the drift space
even after switching-off the beam injection pulse. Indeed,
only the presence of trapped electrons, which drift for a
comparatively long time in the magnetic field and whose
effect is essential in 400 ms after the injection pulse end,
may explain the reverse hysteresis on the Iex versus Iin

dependence, curve 1 in Fig. 2. When the beam of 400
µs in duration with the 400-µs pause between pulses is
injected, the drift space cannot be freed, due to inertia,
from the space charge accumulated during the previous
current pulse. The time-averaged distribution functions
of the incident, passing, and reflected beams, which were
measured under these conditions, have a spread over
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Fig. 3. Oscillograms: 1 — a negative voltage pulse at the electron
gun cathode; 2 — current on one of the π-electrodes; 3 — the same
as in 2, but with the 0.3-ms positive pulse of the 1-V amplitude
on the second π-electrode (2 ms sweeps)

longitudinal velocities ∆v
vdr

≈ 0.7 ÷ 0.8. Figure 3 shows
the oscillograms of the negative voltage on the electron
gun cathode (curve 1); the current on the π-electrodes
(curve 2); and the current on the same π-electrode when
a positive pulse of 0.3 msec in duration and of the 1-
V amplitude is applied to the other electrode (curve
3). The oscillations registered with the π-electrode
correspond to the diocotron branch of charged plasma
oscillations with the azimuthal wave number l=1. It
is easily seen from Fig. 3 that the noticeable “tail” of
oscillations exists during more than 1 ms after the end
of the beam injection pulse. It is also seen that the
oscillation period increases with time, and the times
of growth and disruption of oscillations do not exceed
their period, as it follows from oscillogram 3 in Fig.
3 where the positive pulse is applied to one of the
π-electrodes for the demonstration of this fact. The
pulse with the 1-V amplitude totally damps the “tail”
oscillations during its period of 0.3 ms. Our experiments
show that the diocotron mode of oscillations with l=1
is excited, as a rule, also during the beam injection,
the frequency of these oscillations being always higher
than the frequency of “tail” oscillations. The presence of
diocotron oscillations points out that, in the drift space
apart from the beam electrons passing through it, the
electrons are present with the lifetime not less than the
diocotron oscillation period to excite these oscillations at
all.

The presence of these “tails” on oscillograms in Fig. 3
confirms that the lifetime of the part of electrons is
considerably larger than the period of the l=1 diocotron
mode. Using the relation for the drift frequency of a
rotating hollow beam in the crossed own electrical and
longitudinal magnetic fields ω = b

2

(
ω2

pe/(2ωHe)
)

b ≈ 0.5,
H = 1 kOe under our experimental conditions), one
can estimate the electron density ne with the help of
oscillograms of Fig. 3 as follows: ne ≈ 4×106 cm−3. The
particle density of the injected beam is nb ≈ 2×07 cm−3.

Fig. 4. Spatial distribution of the potential in longitudinal
direction, the beam current being equal to 10 mA (1), 17 mA
(2), and the amplitude of diocotron oscillations (3), B=1000 Oe,
UB=30 V, τ=1 ms

This estimate shows that a fraction of electrons drifting
for a long time τ ∼ 1 ms in the magnetic field is
noticeable and amounts to ne/nb ≈ 0.2.

The spatial distributions of potential in the direction
of movement of particles along the magnetic field are
presented in Fig. 4. The distributions were taken with
the HF probe, the probe at a floating potential.

For the beam current IB ≤ ICr ≈ 15 mA, the
potential distribution in the longitudinal direction has a
typical form for velocity-spread electron beams, i.e. the
distribution of the “bell” type (curve 1). Such potential
distribution leads to the accelerated loss of electrons
from the drive space caused by the electric fields of the
space charge of the beam. The radial localizations of the
direct and reverse flows of electrons in the drive space
coincide. The beam current being increased, IB ≥ ICr,
the potential form in the drive space essentially changes
with the formation of a potential pit for electrons at the
drive space center (curve 2).

A transformation of the potential distribution in the
longitudinal direction is accompanied by the excitation
of oscillations of the beam density which have been
identified in [9] as the diocotron oscillations with the
l=1 mode. In Fig. 4, the distributions of diocotron
oscillations in the drive space are seen to correlate with
the spatial localization of the potential pit (curve 3).

3. Theoretical Model

The theoretical description of the phenomena denoted
in Section 2 may be made within the framework of the
following model. We consider the hollow electron beam
which is contained in a cylindrical waveguide with
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Fig. 5. Profile of the electron beam density. R1 and R2 — inner
and external electron beam’s radii, Rc — waveguide wall, and ne

— unperturbed electron density

Fig. 6. Experimental (1, 2) and qualitative theoretical dependences
(3) of a voltage drop on the radius. Beam current 10 mA (1) and
17 mA (2)

superconductive walls in an external constant magnetic
field ~H0 ↑↑ ~ez. The profile of the electron beam density
distribution function is shown in Fig. 5. The unperturbed
beam velocity is constant and equals vz0 in the axial
direction.

It is obvious that such a beam will be subjected to
the diocotron instability because of a shear of the medial
angular velocity which exists in the system [5]. However,
it is possible to select such a profile of the electric field,
at which the beam will make motion with a constant
value of the angular velocity Ω = const. For this
purpose, it is necessary that the electric field intensity
E linearly depend on the radius r in the field of II. Such
a dependence corresponds to the system including two
surface charges of opposite signs (the first charge, σ1 =
−(eneR1)/2, is located on the interior border of a beam
r = R1, the second one, σ2 = (eneR

2
2)/(2Rc), is located

on the wave guide wall r = Rc). Thus, in the system
consisting of a hollow beam and two surface charges
σ1 and σ2, the medial angular velocity is constant
Ω = ωe

2

[
1±

√
1− (2Ω2

e)/ω2
e

]
(ωe = (eH)/(mec) is the

Larmor frequency, and Ω2
e = (4πe2ne)/me is the electron

plasma frequency), and the diocotron instability will not
develop.

One can see that, at such allocation of charges, the
potential in the region 1 should be constant. Therefore,
without any loss of generality, the field 1 can be
counted both as a vacuum and as a metal as well. The

last statement corresponds to the general expedients of
producing of hollow beams.

In Fig. 6, the experimental dependences of a voltage
drop on the radius are given (curves 1 and 2) relatively
to the above-stated theoretical assumptions (curve 3)
concerning surface charges.

The dispersion equation featuring the propagation
of electrostatic waves in a cold electron hollow
beam is possible to obtain from the equations of
magnetohydrodynamics using the approach enunciated
in [5]. Considering small harmonic additives to the
velocity ~v, potential ϕ, and density ne, it is possible to
easily obtain the equation
{[

ε1κ2R1
J ′l (κ2R1)
Jl (κ2R1)

− κ2R1
I ′l (κ2R1)
Il (κ2R1)

− lε2

]
×

×[Jl (κ2R1) N ′
l (κ2R2)− J ′l (κ2R2) Nl (κ2R1)]κ2R2

}/

/{
Jl (κ2R2)
Jl (κ2R1)

κ1R2

G (R2, Rc)
[
Kl (κ1Rc) I ′l (κ1R2)−

−K ′
l (κ1R2) Il (κ1Rc)

]
+

+
[
lε2

Jl (κ2R2)
Jl (κ2R1)

− ε1κ2R2 · J ′l (κ2R1)
Jl (κ2R1)

]}
=
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a

c

b

d

Fig. 7. Areas of stable oscillations in the space of parameters δ1 = R1
R2

, δ2 = R2
Rc

and τ = Ωe
ωe

for different values of the azimuthal wave
number l. a, b, c, d correspond to l = 1, 2, 3, 4, respectively

= ε1κ2R1[Jl (κ2R2)N ′
l (κ2R1)− J ′l (κ2R1) Nl (κ2R2)]+

+κ1R1[Jl (κ2R1)Nl (κ2R2)− Jl (κ2R2)Nl (κ2R1)]×

×I ′l (κ1R1)
Il (κ1R1)

+ lε2

[
Jl (κ2R1) Nl (κ2R2)−

−Jl (κ2R2) Nl (κ2R1)
]
, (1)

where G(R2, Rc) = Kl (κ1Rc) Il (κ1R2) − Kl (κ1R2)×
×Il (κ1Rc), Jl(x), Nl(x), Il(x), and Kl(x) are the
Bessel functions, Neumann functions, modified Bessel
functions, and Macdonald functions, respectively, and l
is the order of a relevant special function. The following
notations are also introduced:

ε1 = 1− Ω2
e

(ω − lΩ− kzvz0)
2 − (ωe − 2Ω)2

,

ε2 =
Ω2

e (ωe − 2Ω)

(ω − lΩ− kzvz0)
[
(ω − lΩ− kzvz0)

2 − (ωe − 2Ω)2
] ,

ε3 = 1− Ω2
e

(ω − lΩ− kzvz0)
2 ,

κ1 = κ3 = kz, κ2
2 = k2

z
ε3
ε1
, where kz is the

longitudinal wave number, l is the azimuthal wave
number. Hatches in Eq. (1) mean the derivatives with
respect to the argument of the appropriate higher
transcendental function, for example, dJl(κir)

dκir

∣∣∣
r=Ri

=

J ′l (κiRi). Equation (1) relates the oscillation frequency
ω to the azimuthal wave number kz, longitudinal wave
number l, and the parameters R1, R2, Rc, ωe of the
equilibrium state.

556 ISSN 0503-1265. Ukr. J. Phys. 2006. V. 51, N 6



STABILITY OF AN ELECTRON BEAM

In the case of long-wave oscillations (kz = 0)
considered in experiments, Eq. (1) takes the form

2 (1 + ε2 − ε1)[
(R2/Rc)

2l+1

(R2/Rc)
2l−1

− (ε2 − ε1)
] = (R2/R1)

2l
(
(R1/R2)

2l− 1
)
×

×
(

ε1
(R1/R2)

2l + 1

(R1/R2)
2l − 1

− 1− ε2

)
. (2)

Let’s note that Eq. (2) in extreme cases, i.e. in the
limit R1 → 0 or R2 → Rc, describes the dispersion
properties of a plasma cylinder or a plasma pipe,
respectively [5].

Equation (2) is the sixth-order equation for the
frequency ω. Therefore, its analytical solution is
not obviously available. However, it is possible to
numerically determined values of such parameters as
R1/R2, R2/Rc, Ωe/ωe, at which the development of an
instability is possible.

In Fig. 7, the areas of stability in the space of the
parameters R1/R2, R2/Rc, Ωe/ωe are given for various
values of the azimuthal wave number l. The algorithm
of areas of stability is as follows: at the fixed values
R1/R2, R2/Rc, Ωe/ωe, the relevant frequencies were
determined. In the case when all the solutions were real
(Imω = 0), the relevant point was mapped in the space
(for presentation, black colour in Fig. 7 shows the
stability area projections onto the δ1δ2-plane). It is
apparent from Fig. 7 that stable oscillations occur in an
electron plasma hollow beam in those areas, where the
Larmor frequency ωe is much higher than the plasma
frequency Ωe, and the beam external radius differs
slightly from the radius of the wave guide. In addition,
the relative share of stable oscillations (the ratio of the
volume of areas where the stable solutions exist to the
volume of space δ1δ2τ) decreases with increase in l. It is
also possible to plot the area of existence of quasi-stable
(Im(ω)/Re(ω) << 1) oscillations. In Fig. 8, the area of
solutions with Im(ω)/Re(ω) ≈ 10−3 is given. Though,
such oscillations are unstable; however, their increment
is much less than the oscillation frequency.

The existence of quasi-stable oscillations may
explain, in our opinion, a series of experiments [3, 9,
11] stated in Section 2, in which the electron beam
(with δ1, δ2 ∼ 1 and τ << 1) exists the enough long
time (τ ∼ 10−3 s) much exceeding that required for the
diocotron instability development, τD ∼ 10−5 s.

Fig. 8. Area of quasi-stable (Im(ω)/Re(ω) << 1) solutions for the
l=1 mode (quasi-stable oscillations take place in the area below
the surface)

4. Conclusions

Thus, we come to the conclusion that, when electron
beam with a large velocity spread is injected, the long-
lifetime electrons are accumulated in the drift space
located in the magnetic field, the accumulated density
of particles being a noticeable fraction of the injected
electron beam density.

It is experimentally proved that:
a) oscillations of non-neutral particles in the drive space
have diocotron nature.
b) oscillations are localized in the drive space along the
axial direction.
c) oscillations exist for aa rather long time, 10 msec,
after the impulse termination. That may be caused by
the capture of slow particles during the injection.

The theoretical explanation of the experimental
results mentioned above can be given within the
framework of the model considering a tubular electron
beam with constant density profile. The dispersion
equation obtained under the assumption of the shearless
rotation of a tubular beam predicts the existence of
stable oscillations in cases where the external beam
boundary is close to a wave guide wall. It is shown
that, with increase in the azimuthal wave number l,
the relative share of stable oscillations of an electron
plasma tubular beam decreases. It is shown that, at
small densities of electrons, the existence of quasi-stable
oscillations is possible. The theoretical estimation of the
lifetime of entrapped particles in the case of quasi-stable
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oscillations Im(ω)/Re(ω) ≈ 10−3 demonstrates a good
agreement with the experimental results.
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СТIЙКIСТЬ ЕЛЕКТРОННОГО ПУЧКА IЗ СИЛЬНИМ
РОЗКИДОМ ЗА ШВИДКОСТЯМИ
У САМОУЗГОДЖЕНIЙ ПАСТЦI
ПЕННIНГА—МАЛМБЕРГА

В.I. Лапшин, I.К. Тарасов, I.В. Ткаченко, В.I. Ткаченко

Р е з ю м е

Експериментально i теоретично дослiджено процес накопичен-
ня та утримання заряджених частинок пiд час iнжекцiї труб-
частого електронного пучка, що є розмитим за швидкостями.
Пучок було iнжектовано у камеру дрейфу, що перебувала у
сильному зовнiшньому поздовжньому магнiтному полi. Експе-
риментально доведено, що пiд час iнжекцiї формується колек-
тивна самоузгоджена електронна пастка. Пiд час формування
вона захоплює електрони пучка i утримує їх у просторi камери
дрейфу. Iснування колективної самоузгодженої пастки (остан-
ню стадiю експерименту) теоретично можна пояснити за допо-
могою моделi, що розглядає еволюцiю безширової ротацiї труб-
частого електронного пучка. Аналiтично отримано дисперсiйне
рiвняння для такого пучка та проведено оцiнку утримання за-
ряджених частинок у пастцi. Для цього у просторi парамет-
рiв експерименту було побудовано поверхнi, що вiдокремлю-
ють нестiйкi коливання вiд стiйких. Результати теоретичних
дослiджень добре узгоджуються iз експериментом.
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