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Interaction potentials between nuclei evaluated with the help of
the Skyrme force in the frameworks of the extended Thomas—
Fermi (ETF) approximation and the Hartree—Fock—BCS
(HF+BCS) theory have been studied in detail. The amplitude
of the nuclear part of the interaction potential between nuclei
has been shown to grow as the neutron number in colliding
isotopes and the parameter of density distribution diffuseness
in interacting nuclei increase. The growth of the diffuseness
parameter leads to the reduction of the height of the barrier
between nuclei, the deepening of the capture well, and the increase
of the fusion cross-section. The diffuseness of the nuclear part of
the potential evaluated making use of the Skyrme forces has been
demonstrated to exceed that of the nucleon density in interacting
nuclei by approximately a factor of 1.5 at large internuclear
distances. Reasonable values of the diffuseness parameter of the
interaction between medium and heavy nuclei lie in the range
a ≈ 0.75÷ 0.90 fm.

1. Introduction

In order to calculate the various characteristics of
nuclear reactions, it is necessary to know the potential
energy of interaction between nuclei [1–3]. Therefore,
both the magnitude and the radial dependence of
the interaction potential between nuclei at small
internuclear distances are vitally important for the
description of the reaction cross-section in the framework
of any model.

The nuclear interaction energy is caused by both the
Coulomb interaction between protons and the nuclear
interaction between nucleons of colliding nuclei [1–3].
The Coulomb interaction between protons in nuclei
is described rather well, which cannot be said about
the nuclear interaction between nuclei. A rather large
number of various approximations for the nucleus–
nucleus interaction has been proposed at present [1–8],

but they bring about different barrier heights of the
nucleus–nucleus fusion reaction [8,9]. The barrier height
depends on the ratio between the Coulomb repulsive
and nuclear attractive potentials, which act at small
distances between the surfaces of interacting nuclei.

The ratio between the collision energy and the barrier
height governs the mechanism of a nuclear reaction. In
particular, as the collision energy grows, the number
of possible reaction channels increases, and the type of
dominating channels changes. The accurate knowledge
of the interaction potential between nuclei and of the
barrier height is a very challenging problem nowadays.

In order to determine the amplitude of the nuclear
interaction between nucleons which belong to different
nuclei, it is desirable to use the most exact methods
that have been developed for the detailed description
of various characteristics of the ground and excited
nuclear states [10–17]. Using these methods, one can
calculate the energy of interaction between nuclei
with high accuracy. In this work, we use both the
semiclassical and semimicroscopical approaches in order
to determine the potential of interaction between nuclei.
In the framework of the semiclassical approach, the
distributions of the nucleon density of interacting
nuclei and the potential energy of their interaction
are calculated in the ETF approximation with Skyrme
forces. In the semimicroscopical approximation, the
distributions of nucleon density in interacting nuclei are
determined in the HF+BCS approximation with Skyrme
forces, while the potential energy of interaction between
nuclei is calculated in the ETF approximation with
Skyrme forces. Note that the ETF approximation and
the HF+BCS theory with Skyrme forces describe well
the nuclear binding energies, the distributions of nucleon
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density in nuclei, the root-mean-square radii, and many
other characteristics of the ground and excited nuclear
states [10–17].

The reactions of subbarrier fusion [1–3, 18–26] are
important from the viewpoint of the definition of the
nuclear interaction potential, because these reactions
are connected with the interaction amplitude and the
potential behavior at small distances between nuclei.
Now, there is a lot of various models for the description
of subbarrier fusion reactions [1–3, 18–26]. In order to
describe the value of the fusion cross-section adequately,
the fitting of the nucleus–nucleus interaction parameters
is often carried out. For example, the analysis of the
data concerning the subbarrier fusion of nuclei, fulfilled
in works [22–26], gives a rather high value of the
diffuseness (a ≈ 0.8 − 1.5 fm) of the nuclear part of
the internuclear potential parametrized in the form of
the Woods—Saxon potential. The authors of many other
works [1–3,7,18–21] used lower values for the diffuseness
of the nuclear part of the interaction potential between
nuclei (a ≈ 0.6 − 0.7 fm) to describe various nuclear
reactions. Therefore, the comprehensive study of the
diffuseness magnitude for the nuclear part of the
interaction potential between nuclei in the framework
of various models is of substantial interest. It is also
useful to determine the realistic values for the diffuseness
of the nuclear part of the interaction potential between
nuclei parametrized in the form of the Woods—Saxon
potential.

2. Distribution of the Nucleon Density in
Nuclei

The radial distribution of the nucleon density in
spherical nuclei has been examined in the framework
of various approaches [10–17]. The ETF method with
Skyrme forces allowed one to describe the density
distribution, the binding energies, and other parameters
of nuclei making use of the semiclassical approximation
[10–14]. Another method to describe various properties
of nuclei is the quantum-mechanical self-consistent
HF+BCS method with Skyrme forces which takes the
coupling forces into account as well [10, 15–27]. The
self-consistent HF method describes the distribution
of the nucleon density with high accuracy and is
entirely microscopic [10,15,17]. This method allowed the
majority of various properties of nuclei in the ground and
excited states to be described [10,15–17]. The quantum-
mechanical HF method is rather complicated; on the
contrary, the ETF method is simple and illustrative. Let
us compare the radial distributions of neutron and

Fig. 1. Radial distributions of the proton and neutron densities
in 40Ca and 208Pb nuclei calculated in the framework of the ETF
and the HF+BCS methods. The corresponding proton densities are
compared with the charge densities derived from the experimental
data for electron scattering by those nuclei (expr)

proton densities calculated in the framework of these
methods.

The radial distributions of neutron and proton
densities in the ground states of 208Pb and 40Ca nuclei,
calculated using the ETF approximation with the SkP
set of parameters [16] for Skyrme forces, are presented in
Fig. 1. The obtained density distributions are compared
with the distributions calculated in the self-consistent
HF+BCS approximation with the same set of Skyrme
force parameters, and with the distributions of charge
density derived from the analysis of the experimental
data concerning electron scattering by those nuclei [27].

The proton densities calculated in the ETF
approximation agree well with both the results of
the analysis of experimental data and the densities
calculated in the HF approximation. At the same
time, the densities found in the framework of the
semiclassical approximation fall down more quickly than
the experimental or HF+BCS ones in the diffusion
range and at large distances. Hence, the value of the
diffuseness parameter of the density distribution, which
was determined in the ETF approximation, turns out
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somewhat smaller than those derived from experimental
data or calculated in the quantum-mechanical HF+BCS
approximation.

In the region of the diffusive edge of a nucleus,
the radial distributions of nucleon density calculated
in the HF+BCS approximation agree well with the
distributions obtained on the basis of experimental data
(see Fig. 1). However, the quantum-mechanical radial
distributions of density fluctuate in the internal region
of the nucleus with an amplitude that is substantially
smaller than the amplitudes of experimentally measured
charge densities. The difference between the densities
found in the quantum-mechanical and semiclassical
approximations is connected not only with the
circumstance that the latter does not take shell effects
into account, but also because the constant b1 in the
expression for the kinetic energy is equal to 1/36, in
contrast to the quantum-mechanical value of 1/9 [13],
which causes the difference in the asymptotic behaviors
of these densities. As a result, the densities calculated in
the semiclassical approximation fall down appreciably
more quickly at the nucleus edge than those obtained
in the framework of the quantum-mechanical HF+BCS
approximation (see Fig. 1).

3. Potential Energy of Interaction Between
Nuclei

In the framework of the “frozen density” approximation,
let us define the potential energy of interaction V (R)
between two nuclei positioned at a distance R from each
other as the difference of the binding energies E12(R)
and E1 + E2 of the system composed of two nuclei
separated by a finite (R) or infinite interval, respectively
[8, 9]:

V (R) = E12(R)− (E1 + E2). (1)

The corresponding binding energies of the nuclear
system and nuclei 1 and 2 can be found easily making
use of the semiclassical expression for the energy density
functional if one knows the distribution of nucleon
density in the nuclei:

E12 =
∫

ε[ρ1p(r̄) + ρ2p(r̄, R), ρ1n(r̄) + ρ2n(r̄, R)]dr̄, (2)

E1 =
∫

ε[ρ1p(r̄), ρ1n(r̄)]dr̄, (3)

E2 =
∫

ε[ρ2p(r̄), ρ2n(r̄)]dr̄ . (4)

It is evident that, to determine the potential energy
of interaction, we have to know the distribution of
nucleon density and the energy density functional.
These issues were considered in detail in work [13].
The nucleus–nucleus potential at finite distances
between the surfaces of nuclei is caused by the
interaction of nucleons in the range of “overlapping
tails” of the nucleon density distributions. Therefore,
taking the gradient terms in the kinetic energy
density into account is very important for the
calculation of the potential amplitudes to be
accurate.

When nuclei collide, each of them influences the
nucleon distribution in the other nucleus through
both the Coulomb and nuclear part of the nucleus—
nucleus interaction. The “frozen density” approximation
adopts that the interaction of nuclei does not affect
their nucleon densities. This approximation is obviously
justified at the initial stage of the collision, when the
nuclear densities overlap weakly, and the interaction of
nucleons belonging to different nuclei is small. When
heavy nuclei with near-barrier energies collide, the
density distributions in them also have no time to change
appreciably at the initial stage of the collision. The
time of flight ts across the region of strong interaction
between nuclei, s ≈ 3 fm, can be estimated as ts ≈
Rt[2µs/(e2Z1Z2)]1/2, where Rt is the sum of the nuclear
radii, µ is the reduced mass, and Z1 and Z2 are the
numbers of protons in the interacting nuclei. As a rule,
when heavy nuclei collide, ts ≤ 10−21 s. The relaxation
time for internal nuclear states owing to the nucleon–
nucleon interaction can be evaluated as trelax ≈ 2 ×
10−22/e∗ s [9, 28], where e∗ is the energy of excitation
per one nucleon in the nuclear system, expressed in
MeV. At collisions of two rather heavy nuclei with near-
barrier energies, e∗ is smaller than 5/A MeV, where
A is the number of nucleons in the system. Hence,
trelax ≈ 0.4 × A × 10−22 s. Therefore, in the case of
heavy systems with the number of nucleons of 50 and
more, the relaxation time exceeds the time of flight
across the region of strong interaction. In this case, the
distributions of nucleon density have no time to change
substantially during the flight across the region of strong
interaction, and the “frozen density” approximation is
valid. Since trelax increases with A, the “frozen density”
approximation becomes even more justified for heavier
systems.

Fig. 2 exhibits the nucleus–nucleus potentials V (R)
for 16O—16O, 58Ni—58Ni, 118Sn—118Sn, and 208Pb—
208Pb interactions calculated in the framework of the
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Fig. 2. Potentials of nuclear 16O–16O, 58Ni–58Ni, 118Sn–118Sn,
and 208Pb–208Pb interactions calculated in the framework of the
ETF approximation. Triangles near the abscissa axes denote the
relevant values of the sum of the mean-square radii of colliding
nuclei

ETF approximation. One can see that the depth of
the potential capture well appreciably decreases as
the nucleus mass number increases. The capture well
is absent altogether in the case of the 208Pb—208Pb
system. The shallowing and narrowing of a capture well
in heavy systems, or even its absence, are explained
by a substantial growth of the Coulomb energy of
repulsion between nuclei, when the number of nucleons
in them increases, which cannot be compensated by the
corresponding growth of the nuclear attraction energy.
As the mass number increases, the potential well shifts
towards longer distances. In so doing, the minimum of
the capture well becomes located at a distance, which,
for light systems, is shorter than the sum of mean-square
radii of interacting nuclei and, for medium and heavy
systems, exceeds it (see Fig. 2).

Fig. 3. Interaction potentials V (R) between a 40Ca nucleus and
various Sn isotopes and the radial distributions ρp(R) and ρn(R)

of the proton and neutron densities, respectively, in the same
isotopes, calculated in the framework of the ETF approximation

In the “frozen density” approximation, the potential
energy of interaction between nuclei sharply increases
at distances shorter than the sum of the radii of
the surfaces of the nuclei, which is caused by the
substantial repulsion of the latter. This repulsion
is a result of the nuclear matter compression and
the strong density overlapping of interacting nuclei.
The sharp growth of the potential energy stimulated
by the strong density overlapping leads also to the
density relaxation. Therefore, making use of the “frozen
density” approximation, one may analyze nucleus–
nucleus potentials V (R) only in the vicinity of the
barrier and at the touching point of nuclei. If the
distance between nuclei is shorter, the “frozen density”
approximation can be valid only at high collision
energies.

The capture well plays an important role when two
heavy nuclei collide. The nuclei cross the barrier rather
quickly and become captured in the well at the initial
stage of collision. In the capture well, various states of
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Fig. 4. Interaction potentials between 40Ca and 208Pb nuclei
calculated in the ETF and HF+BCS approximations. The results
of calculations of the interaction potential between the same nuclei
making use of the expressions from works [1,4–8] are also depicted

the system of two strongly overlapped nuclei become
occupied, and various processes, which are conditioned
by different open reaction channels and determined
by the probabilities of transitions between them,
commence. The complicated excited system of strongly
overlapped nuclei, which has been formed in the capture
well, is the input channel for the formation of a nucleus
or a fusion-fission reaction. The states formed in the
capture well and connected with nuclei that fly apart
give contributions to the elastic and various inelastic
reaction channels. Whence, it follows that the absence of
the capture well in the case of heavy systems leads to the
change of the mechanism of the nuclear reaction course
and makes the formation of the compound nucleus more
difficult.

In Fig. 3, the interaction potentials V (R) between a
40Ca nucleus and five tin isotopes 100Sn, 114Sn, 118Sn,
124Sn, and 132Sn, calculated in the ETF approximation,
are shown. The neutron and proton densities for those Sn
isotopes are depicted in this figure as well. As the mass
number of Sn isotopes increases, the neutron distribution
densities become more expanded; the same is true for the
proton distribution densities, but to a lesser degree. This
results in the formation of neutron clouds around the Sn
isotopes with a large excess of neutrons. The indicated
properties of the proton and neutron densities bring
about the appearance of the strong isotopic dependence
of the nuclear interaction potential. In particular, as the
mass number of Sn isotopes increases, the barrier height
decreases, and the potential capture well becomes deeper
and “wider”.

As was noted above (see also Fig. 1), the
distributions of nucleon density calculated in the
HF+BCS approximation possess a thicker diffusion layer
of the nucleus, in comparison with those found in the
ETF approximation. Therefore, it is useful to confront
the potentials obtained in the framework of different
approximations.

In Fig. 4, the interaction potentials between 40Ca
and 208Pb nuclei, calculated in the HF+BCS and ETF
approximations, are shown. The potential calculated
in the HF+BCS approximation, if compared with
that found in the semiclassical approximation, is
characterized by a smaller height of the barrier and a
deeper and wider capture well (see Fig. 4). The reason
is that the nucleon density distributions calculated
in the HF+BCS approximation possess a thicker
diffusive layer of the nucleus, in comparison with that
found in the semiclassical approximation. As a result
of such a distribution of the nucleon densities, the
nuclear interaction of nuclei at large distances between
their surfaces turns out stronger in the HF+BCS
approximation than that in the ETF one, while the
Coulomb interaction is practically identical in both
cases. The increase of the nuclear part of interaction
between nuclei at large separations between their
surfaces leads to a reduction of the barrier between them.
Owing to a higher diffuseness of the nucleon density, the
region, where the densities belonging to different nuclei
strongly overlap, diminishes. As a result, the nuclear
repulsion at short distances between interacting nuclei
reduces, which leads to the widening and deepening
of a well. This emphasizes the crucial influence of the
diffuseness in the distribution of the nuclear matter
density on the parameters of the interaction potential
between nuclei.

For comparison, the interaction potentials calculated
making use of simple expressions proposed in works
[1, 4–8] are also presented in Fig. 4. The potentials
that were suggested in works [5, 6] are determined only
until the touching point of nuclei; therefore, they are
plotted only up to this point, Rt ≈ 11.5 fm. Figure 4
also exhibits the results that use the parametrizations
of the potential proposed by Bass in 1974 and 1980 [1]
and marked as Bass 1974 and Bass 1980, respectively.
One can see that the interaction potentials calculated
in different approximations considerably differ from one
another in the barrier region. Different parametrizations
give different barrier heights, which results in the
ambiguity of the description of the fusion and fusion-
fission reactions of superheavy nuclei. We note that
the halfwidth of the maximum in the cross-section
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of the superheavy-nucleus formation reaction is about
3 MeV [30], which is much less than the uncertainty
of the barrier height connected with the use of
various theoretical approximations for the nucleus–
nucleus interaction.

4. Diffuseness of the density distribution and
the diffuseness of the nuclear part of the
interaction potential between nuclei

4.1. Diffuseness of the density distribution
and the properties of the nuclear interaction
potential

In order to study the influence of the density diffuseness
of colliding nuclei, which are in the ground state, on the
nucleus—nucleus potential, let us parametrize the
nucleon densities of nuclei in the ground states by the
expression

ρn(p)(r) = ρ0n(p)/{1 + exp[(r −Rn(p))/d]}. (5)

Such a parametrization of the radial distribution of
nucleon density has often been used in nuclear physics
[31]. The parameters of this distribution ρ0n(p) and Rn(p)

were found by the direct variational method at a fixed
value of the diffuseness d. By varying ρ0n(p) and Rn(p),
we minimized the nucleus binding energy calculated
taking into account the gradient corrections to the
kinetic energy functional for Skyrme forces SkP. The
diffuseness d for the neutron and proton densities was
varied within the interval from 0.5 to 0.8 fm with a step
of 0.05 fm. The radial distributions of the neutron and
proton densities of 64Ni and 100Mo nuclei in their ground
states with such values of the diffuseness d are plotted
in Fig. 5. These densities were used to calculate the
interaction potentials between 64Ni and 100Mo nuclei,
which are also displayed in this figure. While calculating
the potentials, the ETF method with Skyrme forces SkP
was used. For a comparison, the results of calculations
of the potential between those nuclei, carried out in the
HF+BCS approximation with Skyrme forces SkP, are
shown (see Fig. 5).

At large distances between nuclei, the potential
calculated in the HF+BCS approximation is close to
the potential which uses the density parametrization (5)
with the diffuseness d = 0.55 fm. However, at shorter
distances, it is close to the potential calculated with the
diffuseness of about 0.6 fm (see Fig. 5).

As the diffuseness of the density distribution grows,
the potential capture well shifts towards longer distances
between colliding nuclei, its depth increases, and the

Fig. 5. Interaction potentials V (R) for 64Ni and 100Mo nuclei for
various values of the diffuseness d of the ground state densities
calculated in the semiclassical approximation. For comparison,
the interaction potential between nuclei found in the HF+BCS
approximation with Skyrme forces SkP is shown, as well as the
proton and neutron densities in the ground state for various d

height of the potential barrier decreases. The reason
is that the nucleon densities become more expanded
as the density distribution diffuseness grows, so that
the nuclear interaction at large distances between
nuclei increases, and the barrier height decreases. As
the density distribution diffuseness grows, the nuclear
densities come into the strong overlapping at shorter
distances between nuclei, so that the nuclear repulsion
between nuclei, caused by the compression of the nuclear
matter, decreases. This results in the widening and
deepening of the capture well.
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The table shows the dependences of the potential
barrier height and the bottom energy of the capture
well on the diffuseness d of the ground state density.
The potential barrier height decreases almost linearly
with the growth of the diffuseness d, whereas the bottom
energy of the capture well decreases much more quickly.
The depth of the well, i.e. the difference between the
barrier height and the well bottom, increases with the
growth of d.

The HF+BCS approximation describes well the
experimental radial distributions of the nucleon density;
therefore, the potentials calculated making use of the
density parametrization (5) with the diffuseness d ≈
0.55 ÷ 0.6 fm are close to the realistic one at various
distances between nuclei.

4.2. Diffuseness of the potential and the nuclear
fusion cross-section

The characteristics of nuclear reactions are often
calculated making use of the Woods—Saxon
parametrization of the nuclear part of the interaction
potential between nuclei [1–3,7, 18–20,22–24]

V (R) = −V0/{1 + exp[(R−Rpot)/a]}. (6)

Therefore, it is necessary to determine at what value
of the parameter a the Woods—Saxon potential is
close to the realistic potential found in the HF+BCS
approximation. For this purpose, we determined first
the parameters V0, Rpot, and a in Eq. (6) by fitting
the potential which had been calculated in the ETF
approximation with the value d = 0.55 fm for the
diffuseness of the nucleon density distribution, in the
range of distances R larger than the sum of nucleus radii
Rt. Afterwards, we fixed the obtained value of Rpot and
used it when fitting the potential which had been found
in the ETF approximation for other values of the nucleon
density distribution diffuseness. The dependences of V0

Dependences of the potential barrier height Vmax, the
bottom energy of the capture well Vmin, and the
diffuseness a and the depths V0 of the Woods—Saxon
potential on the diffuseness d of the nucleon density in
the ground state for the system 64Ni+100Mo

d, fm Vmin, MeV Vmax, MeV V0, MeV a, fm
0.50 131.9 145.5 –73.18 0.74
0.55 126.5 139.1 –82.72 0.82
0.60 120.1 136.7 –93.33 0.89
0.65 112.7 132.4 –104.60 0.96
0.70 104.2 129.9 –116.90 1.03
0.75 94.3 126.8 –129.54 1.10
0.80 82.8 125.7 –143.22 1.17

and a on d given in the table were determined just in
such a way.

The diffuseness a and the depth V0 of the Woods—
Saxon potential grow practically linearly as the nucleon
density diffuseness d increases (see the table). The
diffuseness of the nuclear part of the potential between
nuclei, calculated by the ETF method and using
Skyrme forces, is approximately 1.5 times larger at large
distances than the diffuseness of the nucleon distribution
in interacting nuclei.

As was pointed out above, the potential, which had
been calculated using the nucleon density in form (5)
for the density distribution d = 0.55 fm, corresponds
at large distances to the potential determined for the
HF distributions of nucleon density. This value of the
density diffuseness corresponds to the diffuseness of the
Woods—Saxon potential a ≈ 0.82 fm (see the table). The
Woods—Saxon potential agrees well at large distances
with the nuclear part of the potential calculated in
the ETF approximation for the density distribution
diffuseness d = 0.55 fm. However, in the internal
nucleus region, the Woods—Saxon potential tends to V0.
Therefore, they appreciably differ there.

The obtained value of the Woods—Saxon potential
diffuseness, a ≈ 0.82 fm, is in agreement with those
proposed earlier. For example, the very close value
of the diffuseness of the nucleus–nucleus potential at
large distances, a = 0.788 fm, was found in work
[8]. A somewhat smaller value of the diffuseness, a =
0.7176 fm, was obtained in work [5]. In work [7], by
analyzing the elastic scattering of nuclei, the value a =
0.657 fm, which is very close to a = 0.65 fm proposed
by Bass in 1980 [1], was found. In work [32], where
the reactions of nuclear fusion were studied regularly,
three values of the diffuseness have been proposed for
light (a = 0.481 fm), medium (a = 0.675 fm), and
heavy (a = 0.895 fm) systems of interacting nuclei.
The analysis of data concerning the subbarrier fusion
of various nuclei, carried out in works [22–26], led to
rather large values of the diffuseness a ≈ 0.8 ÷ 1.5 fm;
and, while studying the subbarrier fusion of 16O and
208Pb nuclei, the value a = 1.005 fm was obtained [26].
The values of the diffuseness calculated in the case of
the interaction between medium and heavy nuclei, which
differ substantially from a ≈ 0.82 fm, do not consist with
the realistic distributions of the nucleon density in nuclei
and nucleon–nucleon forces.

In order to investigate the influence of the potential
diffuseness on the cross-section of near-barrier fusion,
we fulfilled calculations for the reaction between 64Ni
and 100Mo nuclei making use of the CCFULL code [20].
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This computer program calculates the cross-sections of
nuclear fusion taking into account the coupling between
channels with low-located multipole surface-vibration
excitations in both nuclei. In so doing, the nuclear part of
the interaction potential between nuclei is parametrized
in the form of the Woods—Saxon potential (6). The
code takes into account the nonlinear effects of coupling
with many-phonon multipole excitations of the surface.
The parameters of the 2+ and 3− excitations, which
are necessary for calculating the cross-sections with
the help of the CCFULL code, were taken from the
corresponding compilations of experimental data [33,34].
The parameters for the nuclear interaction potential
were the same as in the table. The results of calculations
and the experimental data are compared in Fig. 6.
It is evident that the potentials calculated with small
values of the density diffuseness result in the strongly
underestimated cross-sections of fusion within the whole
energy range. As the diffuseness of the nucleon density
distribution d grows, the cross-section of fusion increases,
which is connected with the lowering of the fusion barrier
height. However, the slopes of the cross-section vs energy
curves remain practically constant at subbarrier energies
for various d. We emphasize that we did not intend
to describe the fusion cross-section; our main purpose
was to reveal the connection between the diffuseness of
the density distribution, the diffuseness of the Woods—
Saxon potential, and the fusion cross-section.

5. Conclusions

We have calculated the interaction potentials between
nuclei in the framework of the HF+BCS theory and
the ETF approximation, by making various assumptions
concerning the nucleon density distribution in the
ground state of nuclei. The obtained potentials were
calculated in the “frozen density” approximation which
is valid for the near-barrier and higher energies
of collisions. The barrier heights agree well with
various approximations that were proposed earlier for
the nucleus–nucleus interaction. The variation of the
isotopic composition of interacting nuclei has been
demonstrated to affect the height and the thickness of
the fusion barrier substantially.

The diffuseness of the nucleon density distribution in
nuclei is rigidly bound with the diffuseness of the nuclear
interaction potential. The diffuseness of the potential is
approximately 1.5 times higher than that of the density
distribution and is close to a ≈ 0.82 fm. The values of
the diffusenesses of the charge distribution and, owing to
the isotopic symmetry, the neutron density distribution

Fig. 6. Energy dependences of the cross-section of the nuclear
fusion reaction 64Ni+100Mo for various diffusenesses d of the
densities in the ground states of the nuclei

in medium and heavy spherical nuclei are practically
constant and close to d = 0.55 fm (see Table 6.3 in
work [31]). Therefore, the diffuseness of the potential in
the case of the interaction between either medium or
heavy spherical nuclei can accept neither very low nor
very high values.

It has been shown that the parametrization of the
nuclear part of the interaction potential between nuclei
in the Woods—Saxon form is not satisfactory.
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РОЗПОДIЛ ГУСТИНИ
ТА ПОТЕНЦIАЛ ВЗАЄМОДIЇ ЯДЕР

В.Ю. Денисов, В.А. Нестеров

Р е з ю м е

Детально дослiджено потенцiали взаємодiї ядер, обчисленi з
використанням сил Скiрма в рамках модифiкованого набли-
ження Томаса—Фермi i теорiї Хартрi—Фока—БКШ. Показа-
но, що величина ядерної частини потенцiалу взаємодiї мiж
ядрами росте зi збiльшенням кiлькостi нейтронiв в iзотопах,
що зiштовхуються, i величини параметра дифузностi розподi-
лу густини взаємодiючих ядер. З ростом параметра дифузно-
стi розподiлу густини взаємодiючих ядер вiдбувається змен-
шення висоти бар’єра мiж ядрами, збiльшення глибини ями
захоплення i поперечного перерiзу злиття. Показано, що ве-
личина параметра дифузностi ядерної частини потенцiалу на
великих вiдстанях мiж ядрами, обчислена iз силами Скiрма,
перевищує величину параметра дифузностi розподiлу густи-
ни нуклонiв у ядрах, що взаємодiють, приблизно у 1,5 ра-
за. Реалiстичнi значення параметра дифузностi ядерної вза-
ємодiї мiж середнiми та важкими ядрами лежать в iнтервалi
a ≈ 0, 75÷ 0, 90 фм.
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