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The energies and lifetimes of the quasistationary states of
quasiparticles in an open cylindrical quantum wire have been
calculated numerically in the effective mass approximation making
use of the scattering matrix method. The calculations have been
performed for a GaAs/AlxGa1−xAs/GaAs nanoheterosystem.
The dependences of the quasiparticle lifetimes in quasistationary
resonance states on the geometrical sizes of nanosystems and the
quasiparticle’s longitudinal quasimomentum have been obtained.
The lifetime of quasiparticles in the system concerned has
been shown to decrease exponentially with increase in their
longitudinal quasimomenta. For energies above the potential
barrier, a repulsion of energy levels, which manifests itself through
a nonmonotonic lifetime behavior, is observed.

1. Introduction

The first advances in the creation of lasers based
upon semiconductor quantum wires and semiconductor
quantum dots [1–3], as well as the promising prospects
in the development of essentially new semiconductor
devices, which are based on quantum-mechanical
phenomena, have attracted the efforts of many
researchers to the study of physical processes that occur
in one- and zero-dimensional nanosystems. At present,
a plenty of scientists, both theorists and experimenters,
works in this branch. Modern technological methods
allow complex multilayered nanoheterostructures of
various dimensions to be created [4,5], which stimulates
the intense theoretical studies of physical phenomena in
such nanosystems.

The theory of electron, hole, and exciton spectra,
as well as the theory of the interaction between
those quasiparticles and phonons in closed spherical
multilayered nanosystems in the framework of the
effective mass approximation, has been developed in
works [4–8].

For closed nanosystems, the environment represents
the highest potential barrier with respect to the
potentials of internal layers. Therefore, the wave
functions of quasiparticles, whose energies are lower
than the height of this barrier in the environment,

quickly tend to zero. In closed nanoheterosystems, the
quasiparticle states are stationary, and the quasiparticle
spectrum generally consists of discrete and continuous
parts.

In open nanosystems, where a quasiparticle can
penetrate, owing to the tunnel effect, into the
environment, where its potential energy is smaller
than that in internal layers, the lifetimes of quantum
states are finite. Such states are called quasistationary.
In works [9–13], the researches concerning the
quasistationary states of quasiparticles of the Breit—
Wigner type in open spherical nanoheterosystems in
the energy range below the potential barrier height
and weakly coupled resonance states in the continuous
spectrum range have been carried out. Cylindrical open
nanosystems, which attract a special interest owing to
the opportunity to be the basis for creating a quantum
transistor [14], turned out less studied [15, 16]. At the
same time, the lifetimes of excitons and the resonance
states in the continuous spectrum range have not been
studied at all.

This work aims at studying theoretically the
quasistationary states of electrons, holes, and excitons
in an open complex cylindrical quantum wire (CCQW)
which involves a single potential barrier; in particular,
in a GaAs/AlxGa1−xAs/GaAs nanosystem.

2. Hamiltonian and the Wave Functions of an
Electron and a Hole in an оpen CCQW

We study the electron and hole spectra of an open
CCQW. The construction of the CCQW and the
schemes of the potential energies of an electron and
a hole in it are shown in Fig. 1. The open CCQW
is composed of a GaAs kernel (potential well 0 ) and
an AlxGa1−xAs layer (potential barrier 1 ), both being
embedded into the infinite medium of GaAs (potential
well 2 ). In the effective mass approximation and in the
approximation of the independent bands of light and
heavy holes in the CCQW GaAs/AlxGa1−xAs/GaAs
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Fig. 1. CCQW scheme (a) and the diagrams of the electron and
hole potential energies in a CCWQ (b)

within the concentration range of 0 < x < 0.43, where
AlxGa1−xAs is a direct-band-gap semiconductor, the
theories for electrons and light and heavy holes become
equivalent. A difference between the spectral properties
of electrons and holes arises only at the stage of
numerical calculations because of the different effective
masses of quasiparticles and the different potential fields
acting on them.

In the cylindrical coordinate system with the origin
at the center of the heterostructure, the electron is
characterized by the effective mass µ (ρ) and the
potential energy U (ρ), which are the functions of the
distance from the CCQW axis, because they have
different values in different media:

µ(ρ) =





µ0, ρ < ρ0,
µ1, ρ0 ≤ ρ ≤ ρ1,
µ0, ρ > ρ1,

U(ρ) =





0, ρ < ρ0,
U, ρ0 ≤ ρ ≤ ρ1,
0, ρ > ρ1.

(1)

Since the effective mass depends on ρ, the stationary
Schrödinger equation looks like [14]

(
−~

2

2
~∇ 1

µ (ρ)
~∇+ U (ρ)

)
Ψ(~r ) = EΨ(~r ) . (2)

Taking the axial symmetry of the problem into account,
the solution of Eq. (2) is tried in the form

Ψ(ρ, ϕ, z) =
1√
L

R (ρ) eimϕ eikz, m = 0,±1,±2, ...,

(3)

where R (ρ) is the radial wave function.
Substituting Eq. (3) into Eq. (2), we obtain the

equation for the radial wave function

{
−~

2

2

[
1
ρ

∂

∂ρ

(
ρ

µ (ρ)
∂

∂ρ

)
− m2

ρ2µ (ρ)
− k2

µ (ρ)

]
+

+U (ρ)− E

}
Rm,k (ρ) = 0. (4)

One can see that both the magnetic quantum number
m and the quasimomentum of the longitudinal motion
of a quasiparticle k are the parameters of Eq. (4) and,
hence, of the required function Rm,k(ρ) which is sought
in the form

Rm,k(ρ) =





R0
mk(ρ), ρ < ρ0,

R1
mk(ρ), ρ0 ≤ ρ ≤ ρ1,

R2
mk(ρ), ρ > ρ1.

(5)

Substituting Eq. (5) into Eq. (4) brings about three
equations of the same type:

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2
+

2µi

~2
×

×
(

E − Ui − ~
2k2

2µi

)]
Ri

mk (ρ) = 0 , (i = 0, 1, 2), (6)

the solutions of which are the linear combinations of
Hankel functions of different arguments:
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Rmk (ρ) =





R0
mk (ρ) = A(0)

m [H−
m (χ0ρ) + H+

m (χ0ρ)] , ρ < ρ0,

R1
mk (ρ) = A(1)

m

[
H−

m (iχ1ρ) + S1
mk (E) H+

m (iχ1ρ)
]
, ρ0 ≤ ρ ≤ ρ1,

R2
mk (ρ) = A(2)

m [H−
m (χ0ρ) + Smk (E) H+

m (χ0ρ)] , ρ > ρ1,

(7)

where

χ0 =

√
2µ0

~2
E − k2, iχ1 =

√
2µ1

~2
(E − U)− k2. (8)

All coefficients A and the scattering matrix Smk(E)
are determined unequivocally from the normalization
condition and the continuity conditions for the wave
function and the probability density flux at both
interfaces.

Now, according to the scattering theory [17], we
continue analytically the S-matrix into the complex
energy plane (E → Ẽ = E−iΓ/2). The positions of poles
of the real and imaginary parts of the S-matrix coincide
and determine the energy spectrum and the band widths
of the open nanosystem. In so doing, the real part of a
certain position of a pole of the S-matrix is equal to the
energy E of a resonance quasistationary state, while the
imaginary one determines its width Γ which is connected
with the probability for a quasiparticle to tunnel through
the barrier and with the lifetime of the quasiparticle in
this state.

In contrast to the case of the S-matrix for an open
spherical nanoheterosystem [10, 11], where, provided
that the orbital quantum number l equals 0 or 1,
one succeeded in obtaining the analytical solutions of
the relevant dispersion equation. A similar problem for
the investigated case of a cylindrical nanosystem can
be solved only by numerical methods. We also note
that a new fundamental issue arises in this problem: if
the problem is one-dimensional, the S-matrix depends
on both the energy and longitudinal quasimomentum,
contrary to the zero-dimensional case. This results
in that both the energy E and the lifetime τ of
quasiparticles in quasistationary states turn out to be
functions of the longitudinal quasimomentum k.

3. Analysis and Discussion of Results

The numerical calculations of the S-matrix and the
positions of its poles in the complex energy plane allow
the dependences of the resonance energies Eand the

lifetimes τ of both the quasistationary and resonance
states of electrons and holes on the quasiparticle
quasimomentum and the CCQW’s geometrical sizes to
be studied.

Fig. 2 shows the results of calculations of the
resonance energies Ee

nm(k) and the lifetimes τe
nm(k)

of electrons in the quasistationary states of a
CCQW GaAs/AlxGa1−xAs/GaAs as functions of the
longitudinal quasimomentum k at ρ0 = 15 aGaAs, ∆ρ =
ρ1 − ρ0 = 5aGaAs, m = 0 or 1, and for the fixed Al
content x = 0.4. This figure also includes the plots of
the dispersion laws for electrons — Ee

0(k) = ~2k2

2µe
0

and

Ee
1(k) = Ue + ~2k2

2µe
1

— in massive semiconducting
crystals AlxGa1−xAs and GaAs, respectively, which the
corresponding layers of the investigated CCQW are
made up of.

From Fig. 2, one can see that the dispersion curves
Ee

0(k) and Ee
1(k) divide the plane (E, k) into three

regions: (I) the region, where E < Ee
0(k); here, the

S-matrix has no poles, and, accordingly, there are
no quasiparticle bound states; (II) the region, where
Ee

0(k) < E < Ee
1(k); here, the S-matrix has poles in

the complex energy plane which determine the energy
and the lifetime τ ∼ Γ−1 of quasiparticles in the
quasistationary states of the Breit—Wigner type; and
(III) the region, where E > Ee

1(k); here, quasiparticles
are in weakly bound resonance states above the potential
barrier.

Let us analyze the electron states in regions II and
III in detail. As is obvious from Fig. 2, every fixed
k-value in region II is connected with a certain finite
number of resonance quasistationary states; as k varies,
these states form resonance quasistationary bands. The
number of bands is determined by geometrical sizes of
the CCQW, as well as by the effective masses and the
potential energies of a quasiparticle in various media
of the system. In region III, the number of resonance
quasistationary states is unlimited, and all of them are
characterized by short lifetimes.

The main features of the electron resonance bands are
as follows. The k-dependence of the quasiparticle energy
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Fig. 2. Dependences Enm(k) (a) and τnm(k) (b) for nm-states
(n = 1, 2; m = 0, 1) for ρ0 = 15aGaAs and x = 0.4

is approximated very well in all resonance states by the
quadratic law Ee

nm(k) = Ee
nm + ~2k2

2µe
nm

, where Ee
nm is

determined by the solution of Eq. (6) at k = 0; and the
values of the averaged effective electron mass µe

nm are
very close to the corresponding effective electron masses
in GaAs. Notice that we use the term “the averaged
effective mass” to emphasize the fact that a quasiparticle
moves in a longitudinal direction simultaneously in all
the CCQW layers as an entire quantum-mechanical
object possessing the quasimomentum k, although it
dwells in different layers with different probabilities.
Since the particle is located in GaAs with the highest
probability, it is natural that its averaged mass is rather
close to µGaAs. As the band number N increases, the
averaged effective mass of the quasiparticle grows a
little, because the “effective height” of the potential
barrier (a distance from the resonance level to the
potential-barrier top) decreases, and the quasiparticle
penetrates into AlxGa1−xAs, where its effective mass
is larger than that in GaAs, with higher probability.
All the bands of the resonance energies Ee

nm(k) of
quasiparticles are characterized by the maximal value
of the longitudinal quasimomentum k̄e

nm, at which the

Fig. 3. Dependences of the electron energy spectrum En (а) and
the electron lifetime τn (b) on ρ0 for ∆ρ = 5aGaAs and x = 0.4

energy of the quasiparticle is lower than the potential
barrier height. In quantum-mechanical states with k >
k̄e

nm, quasiparticles are characterized by short lifetimes
(Fig. 2,b); therefore, we call such states “weakly bound
resonance states”.

In Fig. 3, the dependences of the energy spectrum
and the lifetime of an electron on the dimension of the
inner conductor of the quantum wire at k = 0 are
depicted. The shadowed region in panel a marks the
energy range below the potential barrier height. In this
region, the energy spectrum falls down monotonously,
while the lifetime grows exponentially. In the energy
range above the potential barrier height, a poorly
pronounced effect of level repulsion is observed. Such
an effect is explained as follows. For an electron
with energy higher than the potential barrier height,
semiconducting media 0 and 1 are nothing else but
the potential wells of various widths. Were these wells
independent, each of them would possess an own system
of quantum-mechanical levels. The widening of well 0
makes the dimensional quantization weaker, which is
accompanied by a decrease of the corresponding level
energies. In the case where quantum wells 0 and 1 form
a single quantum-mechanical system for the electron, the
energy levels which correspond to states with identical
symmetry repulse one another. The wider the quantum
well 1, the more is the number of quantum-mechanical
levels in it, and the more pronounced is the effect of
level repulsion. As a result, the energy spectrum of the
electron in the range above the potential barrier height
includes quickly and slowly descending sections. In the
range of the energy level repulsion, the quasiparticle
changes its localization in the nanosystem. The slowly
descending sections of the energy spectrum correspond
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a b

Fig. 4. Dependences of the excitation energy E
nhmh
neme (a) and the lifetime (b) of the exciton on ρ0 for ∆ρ = 5aGaAs and x = 0.4

to energies, at which the electron is located in medium
1 with higher probability. The lifetime of such states
weakly depends on the size of well 0, which is illustrated
by the dependences τ(ρ0) in Fig. 3,b. The quickly
descending sections of the energy spectrum in Fig. 3,a
correspond to the states, where the electron is located
in medium 0 with higher probability. In this case, the
lifetime of such states grows exponentially, as their
energy diminishes.

The energy and lifetime dependences for heavy and
light holes in an open quantum wire are qualitatively the
same as those for electrons. Quantitative discrepancies
are connected with a lower potential barrier height
Uh and different values of the effective mass of
quasiparticles.

On the basis of the dependences of the electron
and heavy hole energies in the lowest energy bands at
k = 0, the numerical calculations of the dependence
of the exciton excitation energy on the radius of inner
conductor 0 of the open quantum wire were carried out
by the formula

Enhmh
neme

= Ee
neme

+ Eh
nhmh

+ Eg − Eeh, (9)

where Ee
neme

and Eh
nhmh

are the electron and hole
energies, respectively; Eg is the energy gap width; and
Eeh is the energy of electron–hole coupling, which is
determined by the formula

Eeh =
∫

Ψe∗
neme

Ψh∗
nhmh

e2

|~re − ~rh|Ψ
e
neme

Ψh
nhmh

d~red~rh.

(10)

Since the lifetime of an exciton in the inner conductor
of the quantum wire depends on the electron and hole

lifetimes in states neme and nhmh, respectively, and
the quasiparticle coupling energy is considerably lower
than the energy of their dimensional quantization, the
estimation of τnhmh

neme
can be performed using the formula

1
τnhmh
neme

=
1

τ e
neme

+
1

τh
nhmh

. (11)

The results of calculations of Enhmh
neme

and τnhmh
neme

for the lowest five energy levels are shown in Fig. 4.
Since the binding energy for an exciton Eeh is low,
as compared to the energy Ee

neme
+ Eh

nhmh
+ Eg, the

behavior of the curves Enhmh
neme

(ρ0) is governed by the
dependences of the dimensional quantization energies of
electrons and holes. Therefore, if the inner conductor of
the quantum wire is narrow, a nonmonotonic behavior
of the exciton excitation energy is observed, which is
also reflected on the corresponding lifetimes τnhmh

neme
of

the exciton inside the nanosystem.
The general conclusions are as follows. The method

of the S-matrix, which is mainly used for spherically
symmetric problems [10–13], allows the spectral
characteristics of open complex cylindrical quantum
nanoheterosystems with resonance quasistationary
states to be calculated. The variation of the barrier
thickness weakly affects the position of electron energy
levels in the range below the potential barrier height
and drastically changes the energies of the weakly bound
resonance states in the range above it. The dependence
of the lifetime of quasiparticles in the resonance states
with energies above the potential barrier height on
the barrier thickness has a nonmonotonic character
connected with the variation of the localization of
quasiparticles. The dependences of the exciton excitation
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energy and the exciton lifetime on the nanosystem’s sizes
reproduce the characteristic properties of electrons and
holes.
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ЕНЕРГЕТИЧНИЙ
СПЕКТР ТА ЧАСИ ЖИТТЯ
КВАЗIЧАСТИНОК У ВIДКРИТОМУ
ЦИЛIНДРИЧНОМУ КВАНТОВОМУ ДРОТI

В.А. Головацький, В.I. Гуцул

Р е з ю м е

У наближеннi ефективної маси, використовуючи теорiю S-
матрицi, чисельними методами отримано енергiї та часи життя
квазiстацiонарних станiв квазiчастинок у вiдкритому складно-
му цилiндричному квантовому дротi. Конкретний розрахунок
виконано для системи GaAs/AlxGa1−xAs/GaAs. Отримано за-
лежностi часiв життя квазiчастинок у квазiстацiонарних резо-
нансних станах вiд геометричних розмiрiв наносистеми i вiд
поздовжнього квазiiмпульсу. Показано, що в резонансних ста-
нах дослiджуваної наносистеми часи життя квазiчастинок екс-
поненцiально зменшуються зi збiльшенням поздовжнього ква-
зiiмпульсу. В областi енергiй, вищих за висоту потенцiального
бар’єра, спостерiгається розштовхування енергетичних рiвнiв,
яке проявляється в немонотоннiй поведiнцi часiв життя.
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