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We study the energy spectra and electron density distributions
in model quasi-one-dimensional nanocluster systems with two
electrons interacting via the Coulomb law (long-range interaction)
or in a contact manner (short-range interaction) covering various
regimes of the electronic correlation (by dealing with clusters of
different lengths). It is shown that, in a strong correlation regime,
the general structure of energy spectra turns out to be invariant
relative to the nature of interaction. In this case, the system
with the Coulomb interaction becomes a quasi-classical one in
which the electron density is localized at the edge points of a
cluster, whereas the system with a contact interaction remains in
a quantum state where the density spreads over the whole cluster.
The verification of a strongly correlated energy structure by using
the methods of dipole and quadrupole spectroscopies is assumed.

1. Introduction

The progress in nanotechnology, which manifested
itself in the creation of elliptic quantum dots
[1] and quantum rings [2], starts the systematic
investigations of quasi-one-dimensional (Q1D) cluster
systems in semiconducting heterostructures [3—6]. On
the preceding stage of the studies of nanostructures,
the main attention has been paid to two-dimensional
(2D) quantum dots with the axial symmetry [7—10] and
to quantum wires which are one-dimensional (1D) or
Q1D infinite systems [11—13] (we mention the problem
of Wigner crystallization in such systems [7, 12, 14]).
The Q1D cluster systems combine individual features
of the mentioned structures and are considered as Q1D
quantum wells or quantum wires of a finite length [3]
(including the closed ones [5]) with a finite electron
occupation close to the occupation in the quantum
dots.

The practical possibility to change a geometry and
sizes of nanoclusters gives an opportunity to vary
the regime of electron correlation in such systems,
which must be reflected in the corresponding changes
of their electronic structure. The correlation regime
is supposed to be weak (strong) if the interaction
factor insignificantly (decisively) affects the electron
structure of a system against the background of the
action of the other factors. The first calculations of
the electronic structure of model Q1D clusters with
occupations from 2 to 4 electrons (Ne = 2 ÷ 4)
were carried out even before the experimental creation
of such systems [15, 16]. In [15], the diversity of
electronic structures for planar geometrically similar
Q1D clusters of various lengths (Ly = 10Lx, Ly =
10k nm, k = 0 ÷ 3) with Ne = 2, 2D Coulomb
interaction, and absolutely rigid boundaries, is obtained.
Only the lowest state of a transversal quantization
is taken into the account. It was shown that, in a
nanorange of lengths, there exists a possibility to realize
all the regimes of electron correlation: from a weak
one (short clusters, Ly is of about several nm), when
the electronic structure almost cannot be distinguished
from that in the systems without interaction, to a
strong regime (long clusters, Ly

>∼100 nm) with the
absolutely different electronic structure which already
has features of the Wigner structure for infinite systems
(level degeneration, density localization). However, at
the large length, the other states of a transversal
quantization, beside the ground state, also must affect
the electronic structure of the geometrically similar Q1D
clusters. In [16], a 1D description of Q1D nanoclusters
(also the geometrically similar ones) with Ne = 2÷4,
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in which the cluster transversal size is taken into
the account by adding a core to the 1D Coulomb
interaction, is used. The smallness of the core value
(∼ 10−4 as much of the cluster length) makes, however,
the interaction to be exclusively 1D Coulomb, which
excessively strengthens the correlation regime in short
clusters and leads to low-probability effects of the
density localization [6].

The chain of transformations of the electronic
structure with a change of the correlation regime from
the states of a Wigner-type crystal to the states of
the Fermi-liquid type was recently presented for 3D
spherical Coulomb nanoclusters with Ne = 2, Ne =
3, and parabolic boundaries (parabolic confinement)
[17]. But, in [18], a wide mainly classical view on the
electronic structure of 2D elliptic quantum dots with
Ne = 2 and Coulomb interaction, but with certain
limitations from above (below) on the confinement
parameters (on the range of correlation regimes), is
given. Clusters with small occupation are evidently the
most suitable objects for establishing the correspondence
between peculiarities of the electronic structure and
the correlation regimes. The circle of Q1D cluster
systems used in the given context [15, 16, 18] is
quite limited and, in the light of modern experimental
possibilities, will undergo the development, particularly
by attracting Q1D clusters of the “wire” configuration.
The investigation of such a cluster model is the subject
of the present work.

So, as a model object of investigation, we choose
a Q1D cylindric two-electron cluster with the elliptic
confinement: it is variable parabolic in the longitudinal
direction (the x axis) and constant parabolic in the
transversal direction (the yz plane). The energy spectra
and electron density distributions in the cases of the
Coulomb and contact interactions of carriers in the
dependence on the cluster length with the coverage of
all the regimes of electron correlation are calculated
and compared. A system with the contact interaction
is introduced as a model alternative by the interaction
nature (short-range — long-range interactions) to the
Coulomb system. Numerical estimations in the Coulomb
system are made with material parameters which
correspond to GaAs: the effective mass of carriers m∗=
0.067me and the dielectric coefficient ε = 12.4. In
the system with the contact interaction, we took the
parameters m∗ and W, where W is an integral three-
dimensional interaction power. As reference parameters,
the effective Bohr radius a∗=~2ε/e2m∗ and the atomic
unit of energy (Hartree) E∗=~2/m∗a∗2 =e2/εa∗ are also
used. In GaAs a∗=9.8 nm, E∗=11.9 meV.

2. Basic Model Relations

The starting (3D) Hamiltonian of the investigated
two-electron cluster system which contains the kinetic
energy, potential of confinement, and interaction
between electrons can be written in the effective mass
approximation as

H3D =
∑

i=1,2

{
− ~2

2m∗
∂2

∂r2
i

+
m∗

2
(
ω2

xx2
i + ω2

⊥(y2
i + z2

i )
)}

+

+V 3D
int (r1 − r2), (1)

where ri = (xi, yi, zi), ωx, and ω⊥ are the
frequency parameters of the longitudinal and transversal
confinements which are related to the corresponding
length parameters lx = (~/m∗ωx)1/2 and l⊥ =
(~/m∗ω⊥)1/2. The interaction of electrons V 3D

int (r1−r2)
is given by means of the Coulomb potential

V 3D
Coul(r1 − r2) =

e2

ε|r1 − r2| , (2)

or the contact potential with the power W

V 3D
δ (r1 − r2) = Wδ(r1 − r2). (3)

The transversal confinement parameter l⊥ determines
the transversal cluster size. Let l⊥ be comparable with
the electron layer thickness in GaAs-heterostructures
[10] (the tough version of the transversal confinement):
l⊥/a∗=0.3 (l⊥'3 nm, ~ω⊥'130 meV). The parameter
lx is supposed to be free, which allows us to change the
cluster length. The general distinction of the introduced
cluster model from the models considered in [15,16,18]
lies in the initial three-dimensionality and the mutual
independency of parameters of the longitudinal and
transversal confinements.

Applying the coordinate transformation

R=(X,Y, Z)=(r1+r2)/2, r=(xr, yr, zr)=r1−r2 (4)

to Hamiltonian (1), we separate the center-of-mass
motion (with the mass M∗ = 2m∗) and the relative
motion (with the mass µ∗ = m∗/2): H3D = H3D

c.m +H3D
rel ,

H3D
c.m = − ~2

2M∗
∂2

∂R2
+

M∗

2
(
ω2

xX2 + ω2
⊥(Y 2 + Z2)

)
, (5)

H3D
rel = − ~2

2µ∗
∂2

∂r2
+

µ∗

2
(
ω2

xx2
r + ω2

⊥(y2
r + z2

r )
)

+ V 3D
int (r).

(6)
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Let us assume that a model system is quasi-one-
dimensional if lx > 3l⊥ (~ω⊥/~ωx > 9). Intending
to proceed to the 1D description, we demand that
the energy shift of the ground state in systems
without interaction which is conditioned by the
interaction (perturbation), ∆E3D

int = 〈gr.st.|V 3D
int |gr.st.〉,

be noticeably smaller than ~ω⊥. The energy shifts are
given by the expressions

∆E3D
Coul = E∗

√
2
π

a∗√
l2x − l2⊥

ln
lx +

√
l2x − l2⊥

l⊥

(lx > l⊥), (7)

∆E3D
δ =

W√
2πlx2πl2⊥

. (8)

Both these relations are monotonously decreasing
functions of lx. For Q1D clusters with a chosen value l⊥
and at lx > 3l⊥, we get the estimation ~ω⊥/∆E3D

Coul >
6.7 in the Coulomb case. But, in the case of the contact
interaction, we consider the inequality ~ω⊥À∆E3D

δ as
a limitation from above on the initially indeterminate
parameter W : W ¿

√
(2π)3lx~2/m∗. If the conditions

~ω⊥ À ~ωx, ∆E3D
int , are fulfiled, the transition to the 1D

description is carried out by averaging the interaction in
(6) with the non-perturbed wave function of the ground
state of the relative motion in the transversal direction,

ψ⊥gr(yr, zr) =
1√

2πl⊥
exp

(
−y2

r + z2
r

4l2⊥

)
, (9)

and leads to the 1D Hamiltonian H1D = H1D
c.m + H1D

rel .
Using the units ~ωx for energies and lx for lengths here
and further (in this case, a unit of mass is m∗, and a
frequency unit is ωx), we present its constituents as

H1D
c.m = −1

4
∂2

∂X2
+X2

(
E1D

c.m ≡ EN = N +
1
2

)
,(10)

H1D
rel = − ∂2

∂x2
r

+
x2

r

4
+ V 1D

int (xr). (11)

The energy reference point in the 1D description is the
ground state energy of the transversal motion of a non-
disturbed system. In a Coulomb system, the effective
interaction V 1D

int (xr) in (11) takes the form

V 1D
Coul(xr) =

lx
a∗

{
lx√
2l⊥

√
π×

× exp
(

x2
r

l2x
2l2⊥

)
erfc

(
|xr| lx√

2l⊥

)}
(12)

(erfc(z)=1− erf(z) is the probability integral) with the
following behavior at the zero (finiteness) and at large
distances:

V 1D
Coul(xr = 0) =

(lx/a∗)2

l⊥/a∗

√
π

2
,

V 1D
Coul(|xr| → ∞) =

lx/a∗

|xr| . (13)

In the system with the contact interaction,

V 1D
δ (xr) =

lx
aδ

δ(xr), (14)

where

aδ =
~2/m∗

W/2πl2⊥
(15)

is the length parameter interchangeable through inverse
proportionality with the effective 1D power W/2πl2⊥
of the contact potential. To a certain degree, this
parameter plays the role of the Bohr radius for a
Q1D system with δ-interaction. (In particular, in such
a system, but with an attractive interaction, the
parameter aδ characterizes the spatial scale of bound
states.) Through the above-mentioned limitation on the
parameter W from above, we get the corresponding
limitation on the admissible values of aδ from below in
the framework of the 1D description: aδÀ(l2⊥/lx)/

√
2π.

For Q1D clusters with lx > 3l⊥ and l⊥ ' 3 nm, it
is sufficient to assume that the inequality aδ

>∼ 4 nm
(aδ

>∼ 0.4a∗) is fulfilled. As will be shown below, the
electron correlation regime in the corresponding systems
is determined by the coefficients lx/a∗ and lx/aδ which
appear in the effective interactions (12) and (14).

3. Energy Spectra

The energies and electron density distributions in
Q1D cluster systems were found by means of the
numerical solution of the problem on eigenvalues and
eigenfunctions with Hamiltonian (11) and the effective
interactions (12) and (14). In Fig. 1, the energy spectrum
ENn = EN + En of a cluster (in units of ~ωx =
~2/m∗l2x) with the Coulomb interaction is shown versus
the parameter lx/a∗ which characterizes the Q1D cluster
length. The energies EN = N + 1/2 correspond to
the center-of-mass motion, and the energies En to
the relative motion (N, n = 0, 1, 2, ...). The energies
of levels in the system without interaction, where
ENn = N + n + 1 (Fig. 1,a, dashed curves) are also
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shown. In clusters with parabolic boundaries, only the
relative motion undergoes the influence of the pairwise
interaction. The region of values lx > 3l⊥ which
corresponds to Q1D clusters is located to the right
of a vertical dashed line. Formally, the solutions of
the Q1D model were found also for lx < 3l⊥ (to
the left of a vertical dashed line), where the cluster
cannot be supposed quasi-one-dimensional and is three-
dimensional in the general case. In the given region, the
solutions approximately reproduce only the individual
fragments of the energy spectrum of a 3D cluster, namely
those fragments, from which the Q1D spectrum of the
system originates as the cluster length increases to values
lx≈ 3l⊥ (in this case, the rest of the total 3D spectrum
will be located much higher than the depicted levels).
Fig. 1,a illustrates that the weak electron correlation
regime is realized exactly in a 3D cluster, when the
energies of systems with and without interaction differ
insignificantly.

In the Q1D region, the spectral picture of a system
with interaction as a whole shifts noticeably upward
relative to the levels of a system without interaction,
especially for the extended clusters at large lx. In
addition, a reorganization of the whole spectral structure
takes place. Here, the regimes of intermediate and strong
electron correlations occur. The reorganization of the
spectral structure with a change of the correlation regime
is shown in Fig. 1,b, where the fine structure of the
energy spectrum is shown, and the level indexation is
given. In this figure, the energies are reckoned from
the interaction-conditioned shifts of the level with n =
1 in the relative motion: ∆En=1 = En=1 − 1.5. On
the linear scale in the vertical direction, the intervals
between the levels ENn neighboring by the center-of-
mass index N are equidistant, and the levels EN,n=1

are depicted as the horizontal lines N + 2. Fig. 1,b
demonstrates the peculiarities of the energy structure
for all regimes of electron correlation and clarifies the
limits of a realization of individual regimes. In the weak
correlation regime (a 3D cluster, and small lx), the
levels related to the longitudinal motion are in fact
degenerated with the multiplicity N +n+1, as in the
case of the absence of interaction, what indicates the
domination of the factor of the longitudinal confinement
over the interaction factor. With increase in the cluster
length, this degeneration is removed, so that the levels
EN,2k and EN,2k+1 even and odd by internal motion
begin to approach one another. The approaching finishes
by the asymptotic degeneration of each pair of levels at
lx/a∗ >∼ 5. As a result, a new steady structure of twice
degenerated levels is created that indicates the

Fig. 1. a — energy spectrum ENn of a model two-electron Q1D
cluster system with the Coulomb interaction (see the text) as
a function of the cluster length. The lowest levels ENn with
0 ≤ N + n ≤ 4 are presented. The mutual position of the
spectra in systems with interaction (solid curves) and without
interaction (dashed horizontal curves). b — the transformation of
a spectral cluster structure with the variation of both its length
and the electron correlation regime changing from a weak (small
lx/a∗) to strong one (large lx/a∗)

attainment of the strong correlation regime, where the
factors of interaction and confinement act in balance.

For 0.2 <∼ lx/a∗ <∼ 5, the regime of intermediate
electron correlation takes place both in 3D and Q1D
clusters. In this regime, the energy structure is not
strictly determined or regular and strongly depends on
lx. If a somewhat smaller value of the parameter l⊥
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(l⊥ < 0.3a∗) is taken in calculations, then, according
to (12), the influence of the interaction factor will
increase, and the transition to the strong correlation
regime will happen at smaller values of lx. On the
contrary, for l⊥ > 0.3a∗, the transition occurs at larger
lx. Thus, at the chosen value of l⊥≈ 3 nm, the regimes of
intermediate and strong electron correlations will exist in
a Q1D cluster, and the regimes of weak and intermediate
correlations are characteristic of a 3D cluster.

Let us clarify a structure of the spectrum ENn in
the strong correlation regime. In the asymptotics in lx,
the total potential of interaction and confinement of the
relative motion in (11), VCc(xr) = VCoul(xr)+Vconf(xr),
becomes a two-well one with a wide Coulomb barrier
(quasi-classical two-well potential [19]). At all xr, except
for a small region near xr = 0, the effective interaction
(12) can be approximated by a 1D Coulomb potential
according to (13). The total potential is as follows:

VCc(xr) =
lx/a∗

|xr| +
x2

r

4
. (16)

Near the bottoms of wells, whose location we denote as
±xr0, this potential is well approximated by a parabolic
function

VCc(|xr| ' xr0) ≈ 3
4
x2

r0 +
3
4
(|xr| − xr0)2;

xr0 =
(

2
lx
a∗

)1/3

. (17)

The xr0 (presented here in units of lx) will be further
identified as the corrected cluster length at large values
of lx. The first term in (17) sets the scale of a shift
Eshift = (3/4)x2

r0 of the whole spectrum in the strong
correlation regime (in comparison with the scale equal to
1 for a system without interaction or ~ωx in dimensional
units, as seen from Fig. 1,a). The second parabolic term
contains the frequency

√
3 (or

√
3ωx in dimensional

units) which characterizes the excitation scale for the
relative motion, i.e. the frequency interval between
two neighboring pairs of asymptotically degenerated
levels EN,2k, EN,2k+1 and EN,2k+2, EN,2k+3. From the
classical point of view, the frequency

√
3 is related

to oscillations of the interparticle distance xr = x1−
x2 around xr0, i.e. it is a frequency of “respiratory”
oscillations in the strong correlation regime. It can
be analytically proved that the same frequency of
“respiratory” oscillations is intrinsic to symmetric cluster
systems with a parabolic confinement of any dimension
and with any amount of electrons which interact by
the Coulomb law of the corresponding dimension, in

particular to two-dimensional clusters [20]. Thus, the
quasiclassical energy of a cluster in the strong correlation
regime has a form ENn = (N + 1/2) + Eshift +√

3([n/2] + 1/2) with the dominant contribution from
the shift Eshift which, in turn, consists of two thirds
of the interaction contribution and of one thirds of the
confinement contribution.

Let us present some estimations of the parameters in
Fig. 1 for GaAs-based clusters. Values lx/a∗ = 0.1÷100
correspond to lx ' 1÷1000 nm, i.e. the whole nanorange
of lengths lx is covered. In the strong correlation regime,
the corrected cluster length xr0 equals 1000 nm even at
lx ' 265 nm (xr0 ∼ l

4/3
x in dimensional units). At

lx/a∗ = 1, the reference scale is ~ωx = E∗ ' 12 meV.
The increase of lx by one order lowers this scale by two
orders. This yields that a spectral structure in the strong
correlation regime at lx/a∗=10 (~ωx ' 0.12 meV ' 1.5
K) can be resolved at sufficiently low temperatures. It is
known that, in clusters with the parabolic confinement
and the pairwise interaction, only spectral branches
related to excitations in the center-of-mass subsystem
[21] are verified by dipole spectroscopy. It can be
assumed that the optical methods are valid also for the
identification of characteristic resonance excitations of
the internal subsystem in the strong correlation regime,
but the spectroscopy must be quadrupole, because,
under the pairwise degeneration of levels, the closest
levels will differ by the index of internal motion n at
least by ∆n=2.

In Fig. 2, the energy spectrum of a cluster with the
contact interaction versus the parameter lx/aδ which
characterizes the cluster length and the relative power
of the effective 1D δ−interaction (14) is shown. With
regard for the limitation from below on aδ, we set, for
definitness, aδ = a∗. In this case, the separating line
between the 3D and Q1D regions of the spectrum will
take the same place as in Fig. 1, which is convenient
for the comparison of both spectral pictures. Here, the
regimes of weak and intermediate electron correlations
are also realized in the region lx ∼ l⊥ (3D cluster) as
in Coulomb clusters. But, at lx > 3l⊥ (Q1D cluster),
the regimes of intermediate and strong correlation are
observed. However, the change of regimes happens
slower than in Coulomb clusters. With increase in lx, the
even and odd levels of relative motion will approach to
one another pairwise up to the asymptotic degeneration
in the strong correlation regime which is reached at lx'
1000 nm, which is much larger than the corresponding
values in Coulomb clusters. In contrast to the Coulomb
case, the shift of the whole energy structure doesn’t occur
here. This is explained by the fact that the contact
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potential does not influence the odd levels of relative
motion, because it acts at a point of the location of
the central nodes of the corresponding wave functions.
However, each even level undergoes the action of the
contact potential and shifts to the closest odd level as
the cluster length increases (the strengthening of the
correlation regime). Thus, the whole collection of odd
levels of relative motion remains beyond the scope of
the influence of the contact interaction, “attracting”
the collection of even levels in sufficiently extended
clusters to itself. This leads to the formation of a general
structure of asymptotically degenerated pairs of the
levels (as in Coulomb clusters) resulting, in essence,
to the appearance of the strong regime of electron
correlation. The energies in this regime are given by
expressions ENn =EN+En, EN =N+1/2, En =2[n/2]+
3/2 and are equally distributed between the kinetic and
potential energies. The asymptotic contribution of the
interaction to the energies En in the case of even values
n=2k, <2k|V 1D

δ |2k>=(lx/aδ)ψ2
2k(0) ∼ (lx/aδ)−1 → 0,

is negligibly small. The given estimate is conditioned by
the behavior of a pairwise wave function of the internal
motion at zero: ψ2

2k(0)≈
√

8/π[(2k+1)!!/(2k)!!]/(lx/aδ)2

at lx/aδ À 1. In this case, the total potential of the
internal motion can be imagined as two semioscillatory
confinement potentials x2

r/4 sewed along the vertical at
the point xr =0.

The asymptotic degeneration in the strong
correlation regime, strictly speaking, is higher than
the twofold one. Since the frequencies of the closest
excitations in the relative motion exactly two times
higher than the similar frequencies in the center-of-mass
subsystem, the degeneration multiplicities g(ENn) =
2, 2, 4, 4, 6, 6, ... of the asymptotic level structure will
increase with the level energies (ENn =2, 3, 4, 5, 6, 7, ...).
At any small expansion of the δ-interaction, the
mentioned frequency balance will be broken. As a
consequence, the enhanced degeneration will be taken
off.

Independently of the interaction nature, the
degeneration multiplicity of levels in the strong
correlation regime doubles, if we account the total spins
of the states with energies ENn: S = 0 for even n, and
S =1 for odd n.

In the framework of the 1D description, the
reproduction of various electron correlation regimes is
also related to the manner of accounting the effective
interaction. In the general case, the effective 1D
interaction can keep the main physical features of the
3D interaction, from which it is originated. For example,
the power of the effective 1D Coulomb interaction must

Fig. 2. Energy spectrum ENn ( 0 ≤ N + n ≤ 4) of a model
two-electron Q1D cluster system in the case of the contact
δ-interaction of carriers depending on the cluster length. The
interaction intensity W and the transversal size of a cluster l⊥
are accounted by the parameter aδ according to Eq. (15). The
horizontal dashed curve is the ground state energy in a system
without interaction. The vertical dashed curve which separates
the regions of 3D and Q1D spectra corresponds to lx = 3l⊥ (the
case where aδ =a∗)

be finite in any finite interval, as it is natural to the
3D Coulomb interaction (and also to the model 2D
one) in any finite region of the 3D (2D) space, in
spite of the presence of a singular point. Therefore,
the effective 1D interaction cannot have nonintegrable
singularities in finite intervals, in particular, cannot be
simulated by exclusively the 1D Coulomb one. This
allows one to avoid the problems of twofold degeneration
of levels and the separation of the ground state at
the 1D description of Q1D systems [22,23] (otherwise,
all possible correlation regimes, except the strong one,
will remain beyond the consideration). The effective 1D
interactions (12) and (14) are physically acceptable by
the mentioned feature, i.e. they satisfy the requirement
of integrability in any finite intervals and therefore
foresee the realization of different regimes of electron
correlation.

4. Electron Density

We restrict ourselves by consideration of the electron
density distributions in clusters which are in the lowest
energy center-of-mass state (N =0) and in any state of
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S.Ya. GOROSHCHENKO

Fig. 3. Electronic density distribution ρ(x) in the ground state
(N = n = 0) in Q1D clusters of various length in the case of
the (a) Coulomb and (b) contact interaction of the carriers (solid
curves). At lx/a∗=100 the distributions in n=0 and n=1 states
in a Coulomb cluster are graphically indistinguishable. The dashed
curves correspond to the density distributions in systems without
interaction with arbitrary values of lx and (a) N = n = 0, (b)
N =0, n=0; 1

relative motion n. The corresponding density is given by
the expression (in units of l−1

x )

ρ(x; N = 0, n) =

√
8
π

exp(−2x2)×

×
∫

dyψ2
n(y) exp(−y2/2)ch(2xy), (18)

where ψn(y) is the wave function of the relative motion.
In the absence of interaction,

ρ(x; N = 0, n) =
2√
π

exp(−x2)(−1)nL−1/2−n
n (x2), (19)

where Lα
n(s) is the Laguerre polynomial.

The density distributions in Q1D Coulomb clusters
of various lengths are presented in Fig. 3,а. In the
applied reference scheme, each distribution in a system
with interaction (the solid line with a specific value of
the parameter lx/a∗) can be directly compared with
a distribution with the corresponding value lx for a
system without interaction (the dashed line, whose form
is not related to lx according to (19)). The idea of
the mutual form of two distributions with different
parameters (lx/a∗)i ≡ pi on the same scale can be
obtained by means of the simultaneous stretching along
the horizontal and the squeezing along the vertical by
p2/p1 times of the distribution with p2 > p1 relative to
the distribution with p1.

In the intermediate correlation regime (lx/a∗ =
1; 3), the density distributions in the ground state
differ sufficiently from similar ones for systems without
interaction and cover the whole cluster with a smaller or
larger dip at the cluster center depending on its length.
In the strong correlation regime, in the presence of a
wide barrier in the relative motion, the wave functions of
the relative motion can be written in the quasi-classical
form ψn(xr) = {ϕ[n/2](xr)+(−1)nϕ[n/2](−xr)}/

√
2 [19],

where ϕk(± xr) are the functions of states in each of
two wells of the quasi-classical potential (16) which are
approximated with the accuracy of O(1/xr0) by the
oscillator functions for the individual potential wells
(17). The oscillator functions take into the account
the length parameter related to the frequency

√
3 and

the reduced mass 1/2. In the given approximation, the
density distribution along the cluster axis x in the states
with n = 0 and 1 looks as

ρ(x;N = 0; n = 0, 1) '
√

s

π

{
exp

(
−

(
x− xr0

2

)2

s

)
+

+exp
(
−

(
x +

xr0

2

)2

s

)}
, (20)

s = 2
√

3/(1+
√

3) ≈ 1.27. The distribution (20), being
asymptotic in lx, consists of two identical components
centered on the cluster axis at the points ± xr0/2. The
width of each component is proportional by the order of
magnitude to 1 (or lx in the dimensional units). At xr0À
1, the intersection of components is practically absent.
This means that, in the strong correlation regime, the
electron density is localized at the distances xr0/2 from
the cluster center, and the parameter xr0 determines, as
mentioned above, the effective cluster length.
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In clusters with the δ−interaction, all the electron
density distributions in the ground state (n = 0) are
located, according to the energy structure, between two
distributions which correspond to the states without
interaction with n = 0 and n = 1, by approaching the
latter as the cluster length increases (Fig. 3,b). In the
strong correlation regime, the asymptotic representation
of density distributions will be given by formula (19),
which does not account the interaction, with the
replacement n → 2[n/2]+1 on the right-hand side. The
given distributions, whose density is spread within the
whole cluster in the limits of its potential boundaries, are
exclusively quantum also in the large-length clusters, in
contrast to the quasi-classical localized distributions in
the Coulomb clusters. This fact demonstrates the basic
difference of the electron structures of nanoclusters with
the Coulomb and contact interactions.

5. Conclusions

The main result of the carried investigation is the
demonstration of the fact that the strong correlation
regime in Q1D electron nanoclusters with parabolic
boundaries can be realized in a system with the long-
range (Coulomb) interaction, as well as in a system
with the short-range (contact) interaction. The sign
of this regime is the specific and fixed (with the
cluster length changing in the proper range) general
spatial and spin structure of energy spectra which
is invariant relative to the interaction nature. The
types of interaction in this structure are distinguished
by the single parameter, the excitation energy in
subsystems with internal motion:

√
3~ωx and 2~ωx (see

Section 2). However, for commensurable values of the
parameters a∗ and aδ related to the interactions of
different nature, the strong correlation regime in the
case of a short-range interaction is reached at much
larger cluster lengths. Moreover, absolutely different
are those physical mechanisms that are responsible for
the formation of an electron structure in the strong
correlation regime. This circumstance is revealed in
a radical distinction of electron density distributions:
the localization on the cluster edges in the Coulomb
nanoclusters, i.e. we observe the Wigner quasi-classical
structure, and the full occupation of the “cluster space”
in systems with the contact interaction which have a
spin-nonpolarized structure of the quantum-liquid type
(Section 3). Thus, the strong electron correlation regime
in Q1D nanoclusters is unambiguously verified only by
the features of the energy structure.

The work is performed with the support of
the Russian-Ukrainian project on nanophysics
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S.Ya. GOROSHCHENKO

ТЕОРIЯ КОРЕЛЯЦIЙНИХ ЕФЕКТIВ
У ДВОХЕЛЕКТРОННИХ КВАЗIОДНОВИМIРНИХ
НАНОКЛАСТЕРАХ З ПАРАБОЛIЧНИМИ МЕЖАМИ

С.Я. Горощенко

Р е з ю м е

Дослiджено енергетичнi спектри та розподiли електрон-
ної густини в модельних квазiодновимiрних нанокластер-
них системах iз двох електронiв, що взаємодiють за за-
коном Кулона (далекодiя) або контактним чином (близь-

кодiя), за рiзних режимiв електронної кореляцiї (у класте-
рах рiзної протяжностi). Показано, що в режимi сильної
кореляцiї загальна структура енергетичних спектрiв вияв-
ляється iнварiантною щодо характеру взаємодiї, при цьо-
му система з кулонiвською взаємодiєю стає квазiкласичною
з електронною густиною, локалiзованою на кiнцях класте-
ра, а система з контактною взаємодiєю залишається кван-
товою, в якiй густина розподiлена по всiй довжинi класте-
ра. Передбачається, що верифiкацiя енергетичної структу-
ри в режимi сильної кореляцiї може бути виконана iз за-
стосуванням методiв дипольної та квадрупольної спектроско-
пiї.
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