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A general rheological equation of dilute solutions of deformable
chain macromolecules in low-molecular solvents is obtained. As
a hydrodynamic model of macromolecules, we used a necklace
of beads connected with Gaussian subchains. The constitutive
equations of stressed state in solutions were derived using the
structural-phenomenological approach. The obtained results are
verified with the help of the rheological simulation of a solution of
Zimm chain macromolecules with allowance for the elasticity
of molecular chains and the micro-Brownian motion of their
constituent atoms.

1. Introduction

In the present work, we have obtained the constitutive
equations of stressed state in the gradient flows
of deformable chain macromolecules in low-molecular
solvents. A keen interest in such solutions arose when
high-molecular compounds had been involved into the
research field of molecular physics. In the condensed
(block) state of polymers, the interaction between their
macromolecules intertwined into a continuous net is
so strong that structural features of macromolecules of
a polymer cannot be judged by its measured physical
properties. That’s why, one of the necessary conditions
for the investigation of the structure and properties
of polymer macromolecules is their remoteness from
one another by a distance sufficient for neglecting the
intermolecular interaction. As polymer macromolecules
cannot be converted to a gaseous phase without their
destruction, the only way allowing to remote them by a
sufficient distance from one another is the resolution of
a polymer in low-molecular solvents [1, 2].

One of the methods used for the investigation of
the structure and properties of macromolecules in dilute
solutions is the research of the gradient flows of the latter
[1, 2]. The essence of the method lies in the comparison
of the characteristic viscosity of the solution that can
be determined both theoretically and by means of
viscosimetric experiments. A popularity of this method

is explained by the easiness to derive very accurate
experimental viscosimetric data [1]. Essential difficulties
arise in the process of theoretical interpretation of the
obtained experimental data. First of all, this is caused
by a complicated structure of chain macromolecules
of polymers and the infinite manifold of their possible
conformations formed in the solution under the action
of hydrodynamic forces arising in gradient flows,
effective forces of Brownian diffusion, as well as intra-
molecular forces. Objectively, the latter are determined
by structural peculiarities of a molecular chain of
polymer macromolecules. In addition, they depend on
the subjective viewpoint of a researcher (the author
of the corresponding theory) on the dynamic model of
macromolecules.

A common feature for the majority of the theories
of the characteristic viscosity of dilute solutions of
deformable chain macromolecules [1,2] is the use of the
same hydrodynamic model of macromolecules, namely
a necklace whose beads are connected with Gaussian
subchains. Another common point is the assumption
that such a model of macromolecules interacts with
a low-molecular solvent only through the beads. In
the present paper, the use of the necklace-based
model of macromolecules under the stated assumptions
together with the structural-phenomenological approach
[3—6] as a research method allows us to develop a
general model of stressed state in the dilute solutions
of deformable chain macromolecules in low-molecular
solvents.

2. Structural Simulation of a Dilute Solution
of Deformable Chain Macromolecules in
Gradient Flows

In the present paper, we consider the dilute solutions
of deformable polymer macromolecules in low-molecular
solvents. The proposed theory restricts itself to
studying the solutions of chain macromolecules, i.e. of
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macromolecules, whose atoms are connected with one
another by simple individual bonds [1, 2].

2.1. Hydrodynamic model of deformable chain
macromolecules in solutions

The characteristic dimensions of polymer
macromolecules having a high molecular weight and
those of molecules of low-molecular solvents relate in
such a way that the interaction between the solvent
and macromolecules suspended in it can be considered
hydrodynamic [1, 2]. The deformability of polymer
macromolecules and a great number of constituent
elements of their molecular chains give enough freedom
for the formation of the infinite manifold of possible ball-
like conformations in the process of micro-Brownian
(thermal) motion of the constituent elements of such
macromolecules. The most perfect hydrodynamic model
of such macromolecules is the model of necklace which
was used by many authors [1, 2] when studying
the polymer solutions and, according to the results
of investigations, provides a good description of the
behavior of real chain macromolecules in the gradient
flows of solutions. Like [7], we suppose that the necklace
which simulates a macromolecule consists of n similar
free-bound segments connected sequentially, and each
of them represents a flexible subchain, the distance l
between its ends being distributed by the Gaussian
law.

The segments of real chain macromolecules have
such characteristic dimensions that, on the one hand,
their interaction with a solvent can be considered
hydrodynamic and, on the other hand, the dynamics
of segments depends on the thermal motion of atoms
forming a polymer chain. In the necklace that simulates
macromolecules in the present paper, the hydrodynamic
interaction with a solvent is realized by the beads which
are located at the ends of segments and are characterized
with a coefficient of translational friction ξ in a low-
molecular (Newton) solvent. The total number of beads
that form a model chain amounts to n + 1 and they are
numbered from 0 to n.

Studying the dynamics of a separate macromolecule,
we use a rectangular coordinate system whose origin
coincides with the center of masses of a macromolecule.
It is supposed that, within a macromolecule, the velocity
of the solvent can be presented in the form vi =
(dij +ωij)rj ; dij , ωij — const, where dij is the strain rate
tensor, dij = (1/2)(vi,j + vj,i); ωij is the velocity vortex
tensor, ωij = (1/2)(vi,j−vj,i); and rj is the radius-vector
of a point in space.

In the tensor notations used in the present paper, the
Latin letters i, j, k, ... denote lower indices that can take
values 1,2,3 which correspond to the coordinate axes
Ox1, Ox2, and Ox3. The Greek letters α, β, γ, ... denote
the numbers of the beads of a macromolecular chain.
They are upper indices and can take values from 0 to n.
The comma in lower indices signifies the differentiation
in the direction of a coordinate axis which is marked by
the index following the comma; over similar indices of
the given term, one carries out the summation within
the limits of variation of the repeating index.

2.2. Dynamics of deformable chain
macromolecules in the gradient flows
of the dilute solutions of polymers

The derivation of the dynamic equation for a necklace
that simulates a macromolecule in the gradient flows of a
solution is based on the assumption that the interaction
of the chosen hydrodynamic model of a macromolecule
with a solvent is realized only through the beads. In this
case, the bead α in the gradient flow of a solution is
exposed to the force of hydrodynamic friction

gα
i = ξ[(dij + ωij)rα

j − ṙα
i ] = ξ(dijr

α
j − r̂α

i ), (1)

where rα
i is the radius-vector that determines the

position of the bead; the point over rα
i signifies the

differentiation with respect to time t; r̂α
i is the Yaumann

derivative of the vector rα
i , r̂α

i = ṙα
i − ωikrα

k ; and
the expression (dij + ωij)rα

j determines the velocity the
solvent would have at the place of the bead with number
α in the absence of the latter.

The micro-Brownian motion of the atoms that
constitute a chain of real polymer macromolecules with
a large molecular weight manifests itself in their rotation
about the directions of valence bonds [1]. In the absence
of other forces, it results in the coagulation of the chain
into a ball. According to [7], the micro-Brownian motion
in the necklace that simulates such macromolecules
takes place under the action of the effective forces
of Brownian diffusion f̄α

i that are determined by the
relation

f̄α
i = −kT

F

∂F

∂rα
i

. (2)

In (2), k is the Boltzmann constant, T is the absolute
temperature, and F is the distribution function of the
beads over the volume that satisfies the continuity
equation

∂F

∂t
+

∂

∂rα
i

(ṙα
i F ) = 0 (3)
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in the phase space of the coordinates of all the beads of
a model macromolecule.

The chosen model of macromolecules also allows
one to take into account the intramolecular forces that
influence the dynamics of macromolecules as a whole. As
in [7], it is assumed here that every bead is exposed to
the forces acting from the side of neighboring segments —
the so-called internal elastic forces. According to [7], the
internal elastic force ¯̄fα

i is proportional to the difference
of the vectors that connect the beads α−1, α, and α+1.
In the accepted notations, we have

¯̄fα
i = 2kTæ[(rα+1

i − rα
i )− (rα

i − rα−1
i )] =

= 2kTæ(rα−1
i − 2rα

i + rα+1
i ). (4)

In (4), æ stands for the coefficient of internal
elasticity, being a phenomenological parameter
characterizing the simulated molecules. According to
(4), the larger the bend of the necklace in the bead α,
the higher the force ¯̄fα

i .
In the accepted model of macromolecules, the sum of

the nonhydrodynamic forces fα
i = f̄α

i + ¯̄fα
i influencing

the bead is obviously equal to the force −gα
i acting on

the surrounding solvent from the side of the bead, i.e.

fα
i = −gα

i . (5)

Substituting formula (1) for gα
i in (5), we obtain a

general dynamic equation for a separate bead of a model
macromolecule under the action of the above-mentioned
forces

ṙα
i = (dij + ωij)rα

j +
1
ξ
fα

i . (6)

The chosen model of necklace for polymer
macromolecules suspended in a low-molecular solvent
together with Eqs. (3) and (6) that determine its
dynamics and conformation allow one to take into
account also other forces (both intra-molecular and
external ones) that influence the dynamics of the beads
of the molecular chain and, therefore, its conformation.
For example, in addition to the internal elastic force
f̄α

i , one can consider the force of internal viscosity of
macromolecules [8].

Among the external forces acting on the beads, one
can take into account the forces arising from external
force fields such as electric or magnetic fields in cases
where macromolecules are sensitive to their influence.

2.3. Dissipation rate of the mechanical energy in
the unit volume of a dilute solution of deformable
chain macromolecules

The hydrodynamic simulation of macromolecules of a
polymer with the help of a necklace allows us to calculate
the dissipation rate of the mechanical energy in the
process of interaction of a suspended macromolecule
with a solvent in an arbitrary gradient flow of the
solution:

W1 =
〈
gα

i (dijr
α
j − r̂α

i )
〉

=

= ξ(dijdik

〈
rα
j rα

k

〉− 2dij

〈
r̂α
i rα

j

〉
+ 〈r̂α

i r̂α
i 〉). (7)

The angle parentheses 〈〉 in (7) signify the averaging in
the phase space of coordinates of the beads of a model
macromolecule with the help of the distribution function
F determined by Eq. (3).

The quite high dilution of the solution allows one
to neglect the interaction of suspended macromolecules
with one another and, taking into account (7), to
calculate the dissipation rate of the mechanical energy
per unit volume of a dilute solution of macromolecules
in its arbitrary gradient flow in the following form:

W = W0 + N0W1 = W0 + N0ξ(dijdik

〈
rα
j rα

k

〉−

−2dij

〈
r̂α
i rα

j

〉
+ 〈r̂α

i r̂α
i 〉). (8)

In (8), W0 stands for the dissipation rate of the
mechanical energy per unit volume of a solvent in the
absence of suspended macromolecules, and N0 is the
number of suspended macromolecules in the unit volume
of the solution.

3. Structural-phenomenological Simulation of
the Rheological Behavior of Dilute Solutions
of Deformable Chain Macromolecules

The simulation of the gradient flows of the dilute
solutions of the deformable chain macromolecules of
polymers which is carried out in the present paper is
two-scale. The study of the dynamics of a separate
macromolecule in the framework of the structural
theory, which allowed us to calculate the dissipation rate
of the mechanical energy in the process of its interaction
with the solvent in Section 2, is microscale, as it is
carried out on the scale of a suspended macromolecule.
In contrast, the simulation of the rheological behavior of
the solution of macromolecules described in this section
is macroscale, as it is performed on the scale of the
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characteristic dimension of a macroflow of the solution
which is assumed here to be much larger than that of
the molecular balls of a dilute polymer.

The simulation of polymer solutions by the classical
continuum and the derivation of their rheological
equations with the use of the methods of continuum
mechanics don’t allow one to take into account the
influence of a separate macromolecule on the rheological
behavior of the solution. This fact represents an essential
drawback of this — phenomenological — method of
studying the rheological behavior of macromolecule
solutions, because it is just the peculiarities of suspended
macromolecules that influence the rheological properties
of the solution on the whole.

Carrying out the simulation of the rheological
behavior of the dilute solutions of deformable
chain macromolecules, we avoid such a drawback
deriving the constitutive rheological equations
with the help of the structural-phenomenological
method [3—6] that combines the advantages of the
structural and phenomenological methods of studying
such solutions. According to this technique, the
macromolecule solutions are simulated by a structural
continuum (instead of a classical one) with internal
microparameters that must describe the spatial
conformation and the kinematics of microstructural
elements of the solution —- suspended macromolecules
—- in the laboratory system of coordinates. The results
of the microscale simulation of the dilute solutions of
deformable chain macromolecules give a possibility to
choose these microparameters as the vectors rα

i and r̂α
i

that characterize the conformation and the kinematics
of model chain macromolecules in the gradient flows of
the solution.

According to the technique of the structural-
phenomenological investigation of polymer solutions [3—
6], the constitutive equation for the stress tensor Tij in
the gradient flows of dilute solutions of deformable chain
macromolecules should be searched in the following form

Tij = tij + Not̄ij . (9)

In (9), tij stands for the stress in a Newton solvent in
the absence of suspended macromolecules in it, tij =
−p0δij + 2µdij , where p0 is the pressure in the solvent
in the absence of suspended macromolecules, µ is the
dynamic viscosity of the solvent, δij is the Kronecker
symbol; and N0t̄ij is the stress arising due to the
presence of N0 macromolecules in the unit volume of the
solution. Such a choice of the expression for the stress Tij

in the solution is indicated by the structure of expression
(8) for the dissipation rate of the mechanical energy in

the unit volume of the solution that was obtained in the
process of structural simulation of the solution.

If the stress tensor Tij is known, the dissipation
rate of the mechanical energy per unit volume of the
macromolecule solution is determined by the relation

W = tijdij + N0t̄ijdij −N0〈r̂α
i gα

i 〉. (10)

The comparison of expression (8) obtained within the
framework of the structural theory with expression (10)
allows us to conclude that the tensor t̄ij must be a
polynomial function of the variables dij , r

α
i , and r̂α

i

which is linear in dij and r̂α
i . According to [3—6], the

most general form of this function can be accepted as

t̄ij = (a0 + a1dkm〈rα
k rα

m〉+ a2〈r̂α
k rα

k 〉)δij + a3

〈
rα
i rα

j

〉
+

+a4dkm

n∑
α=0

〈
rα
k rα

mrα
i rα

j

〉
+ a5

n∑
α=0

〈
r̂α
k rα

k rα
i rα

j

〉
+ a6dij+

+a7dik

〈
rα
k rα

j

〉
+ a8djk〈rα

k rα
i 〉+ a9

〈
rα
i r̂α

j

〉
+ a10

〈
r̂α
i rα

j

〉
,

(11)

where ai(i = 0, 10) are phenomenological rheological
constants.

The peculiarity of the structural-phenomenological
method of derivation of the rheological constitutive
equation of a dilute solution lies in the possibility of the
theoretical determination of the rheological constants
ai(i = 0, 10) in the constitutive equation for the stress
Tij arising in the dilute solution of deformable chain
macromolecules with the help of the results of its
microscale study.

For this purpose, we compare termwise expressions
(8) and (10) for the dissipation rate of the
mechanical energy per unit volume of such a solution
obtained on different scales using the structural and
phenomenological approaches, respectively. In this case,
the account of the relation W0 = tijdij in (8) and
expressions (1) and (11) for gα

i and t̄ij in (10), as well as
the use of the relation t̄ij − t̄ji =

〈
rα
j gα

i

〉− 〈
rα
i gα

j

〉
, that

results from the skew-symmetry of the stress tensor Tij

in the simulated solution, allows us to get the following
values for the rheological constants ai(i = 3, 10):

a3 = a4 = a5 = a6 = a8 = a9 = 0; a7 = ξ, a10 = −ξ.
(12)

The rheological constants a0, a1, and a2 that enter
into expression (11) and therefore into the constitutive
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equation (9) for the stress Tij in the solution cannot
be obtained from such a comparison. But this cannot
be considered as a drawback of the discussed method,
because the first term in expression (11) for the tensor
t̄ij , that contains these indefinite rheological constants,
together with p0 enter into the expression for the
isotropic pressure p in the solution of macromolecules:

p = p0 + N0(a0 + a1dkm〈rα
k rα

m〉+ a2〈r̂α
k rα

k 〉). (13)

Relation (9) together with the definitions of tij and
t̄ij , values (12) for ai(i = 3, 10), and relation (13)
yield the final form of the stress tensor in an arbitrary
gradient flow of the dilute solution of deformable chain
macromolecules as

Tij = −pδij + 2µdij + N0ξ(dik

〈
rα
k rα

j

〉− 〈
r̂α
i rα

j

〉
). (14)

The rheological equation (14) together with Eqs. (3)
and (6), that specify the conformation and the dynamics
of suspended macromolecules in gradient flows of a
dilute solution, constitute the variational mathematical
model of a stressed state in the dilute solutions of
deformable chain macromolecules with low-molecular
solvents. It can be used for various versions of the
determination of both intramolecular and external forces
fα

i that influence the conformation and the dynamics of
suspended macromolecules and, as a result, the stressed
state in the solution.

4. Stressed State in a Dilute Solution of Zimm
Chain Macromolecules

Let’s apply the obtained equations (6) and (14) to
searching for the stress tensor in a dilute solution of
Zimm elastic chain macromolecules [7].

In the dynamic equation of molecular beads (6), we
account the explicit form of the forces of Brownian
diffusion (2) as well as intramolecular elastic forces
(4). According to the assumption made by Zimm [7],
the latter together with hydrodynamic forces influence
the conformation and the dynamics of suspended
macromolecules and form a stressed state in the solution
in this way.

For this purpose, the elastic forces ¯̄fα
i must be

preliminarily presented as ¯̄fα
i = −2kTæAαβrβ

i , where
Aαβ is the matrix of the following form:

Aαβ =




1 −1 0 0 ... 0
−1 2 −1 0 ... 0

0 −1 2 −1 ... 0
0 0 −1 2 ... 0

..........................................
0 0 0 0 ... 1




.

In this case, Eq. (6) describing the dynamics of the
molecular necklace takes the form

ṙα
i = (dij + ωij)rα

j −
2kT

ξ
æAαβrβ

i −
kT

ξF

∂F

∂rα
i

. (15)

Relations (14) and (15) yield the explicit form of the
stress tensor in arbitrary gradient flows of a dilute
solution of Zimm elastic chain macromolecules:

Tij = −pδij + 2µdij + N0kT (2æAαβ

〈
rα
i rβ

j

〉
− nδij).

(16)

In (16)), the averaging is performed with the help of the
distribution function which represents, according to (3)
and (15), the solution of the equation

∂F

∂t
−

{
kT

ξ

∂2F

∂rα
l ∂rα

l

−
[
(dlk + ωlk)rα

k−

−2kT

ξ
æAαβrβ

l

]
∂F

∂rα
l

+
12kTn

ξ
æF

}
= 0. (17)

Let’s make sure that the obtained equation (16) for
the stress in the dilute solution of Zimm elastic chain
macromolecules coincides with the rheological equation
obtained for the same solution in [9] in another way with
the use of the structural approach.

The matrix Aαβ is symmetric. That’s why, there
exists an orthogonal transformation of the coordinates
rα
i into ηα

i that reduces the matrix to the diagonal form
with principal values λα. In this case, λ0 = 0, because

the determinant of the matrix Aαβ equals zero;
n∑

α=1
λα =

2n as a linear invariant of the matrix Aαβ ; and rα
i rα

j =
ηα

i ηα
j due to the orthogonality of the transformation

of coordinates. After this orthogonal transformation of
coordinates, the rheological equation (16) takes the form

Tij = −pδij + 2µdij + N0kT (2æ
n∑

α=0

λα

〈
ηα

i ηα
j

〉− nδij).

(18)

For the further transformation of (18), we use
Eq. (17) for the distribution function F of the beads
that, in the new coordinates ηα

i , has the form

∂F

∂t
−

n∑
α=0

{
kT

ξ

∂2F

∂ηα
l ∂ηα

l

−
[
(dlk + ωlk)ηα

k−
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−2kT

ξ
æλαηα

l

]
∂F

∂ηα
l

+
6kT

ξ
λαæF

}
= 0. (19)

Let’s multiply Eq.(19) by ηα
i ηα

j , integrate it over the
whole phase space of the arguments of the distribution
function and, without summing over the index α, we
obtain

d
〈
ηα

i ηα
j

〉

dt
= 2

kT

ξ
δij + (dik + ωik)

〈
ηα

k ηα
j

〉
+ (djk+

+ωjk)〈ηα
k ηα

i 〉 −
4kT

ξ
æλα

〈
ηα

i ηα
j

〉
. (20)

Carrying out the summation over α in (20), we obtain,
in the stationary case,

2kTæ
n∑

α=0

λα

〈
ηα

i ηα
j

〉− kTnδij =

=
ξ

2
(dik + ωik)

n∑
α=0

〈
ηα

k ηα
j

〉
+

ξ

2
(djk + ωjk)

n∑
α=0

〈ηα
k ηα

i 〉.

(21)

The use of (21) in (18) gives the expression

Tij = −pδij + 2µdij +
1
2
N0ξ×

×[
(dik + ωik)

〈
ηα

k ηα
j

〉
+ (djk + ωjk) 〈ηα

k ηα
i 〉] . (22)

Returning to the old variables rα
i in (22), we finally

derive

Tij = −pδij + 2µdij +
1
2
N0ξ×

×[
(dik + ωik)

〈
rα
k rα

j

〉
+ (djk + ωjk) 〈rα

k rα
i 〉] . (23)

Taking into account that
〈
rα
i rα

j

〉
represents the inertia

tensor of a model macromolecule normalized to unit
mass, one can see that expression (23) obtained for the
stress tensor in a dilute solution of Zimmmacromolecules
coincides with the expression obtained for such a tensor
in [9] using another technique to within notations.
Such a coincidence testifies to the correctness of
the rheological equation (16) and, consequently, the
constitutive equations (6) and (14) obtained in the
present work.

5. Conclusions

The use of the structural-phenomenological method
allowed us to obtain a general maximally variative
model of the stressed state in a dilute solution of
the deformable chain macromolecules of polymers in
low-molecular solvents. In the obtained constitutive
equations for the stress in the solution (3), (6), and (14),
only the hydrodynamic forces acting on the molecular
beads of a necklace are considered explicitly. The rest of
the forces both internal and external, that also deform
the molecular chain, determine its dynamics in gradient
flows of the solution and, consequently, also influence the
stressed state in it, is allowed for in total with the help of
the resulting vectors. Therefore, Eqs. (3), (6), and (14)
are the general constitutive equations for stresses in the
dilute solutions of the deformable chain macromolecules
of polymers and are able to describe a stressed state
in gradient flows of these solutions in various cases of
the determination and the allowance for external and
intramolecular forces. For example, considering both
the effective forces of Brownian diffusion (2), the forces
related to the internal elasticity (4), and Eqs. (3), (6),
(14), we have deduced the constitutive equation (16)
for a dilute solution of Zimm macromolecules [7] which
coincides with that obtained in another way in [9] to
within notations.
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СТРУКТУРНО-ФЕНОМЕНОЛОГIЧНА ТЕОРIЯ
НАПРУЖЕНОГО СТАНУ У ГРАДIЄНТНИХ
ТЕЧIЯХ РОЗВЕДЕНИХ РОЗЧИНIВ ПОЛIМЕРIВ
З ДЕФОРМIВНИМИ ЛАНЦЮГОВИМИ
МАКРОМОЛЕКУЛАМИ

Ю.В. Придатченко, Є.Ю. Таран, Р.Я. Кондрат

Р е з ю м е

Одержано загальне реологiчне рiвняння розведених роз-
чинiв деформiвних ланцюгових макромолекул у низькомо-

лекулярних розчинниках. Як гiдродинамiчна модель макро-
молекул використовується намисто, бусинки якого з’єднанi
гауссовими субланцюгами. Для виведення визначальних рiв-
нянь напруженого стану у розчинах використано структурно-
феноменологiчний пiдхiд. Перевiрку одержаних результатiв
здiйснено шляхом реологiчного моделювання розчину ланцю-
гових макромолекул Зiмма з врахуванням пружностi молеку-
лярних ланцюгiв i мiкроброунiвського руху атомiв, з яких вони
складаються.
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