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The influence of both the director anchoring energy at the surface
of a nematic liquid crystal (NLC) planar cell and the ratio r
between the Frank elastic constants on the threshold and the
period of the spatially periodic (SP) reorientation of the director
in an external dc electric field applied in parallel to the cell surface
has been considered. The threshold value of the electric field and
the spatial period of the director reorientation as functions of the
polar and azimuthal anchoring energies and r have been calculated
numerically. The range of r-values, where the SP reorientation
of the director is possible, has been shown to broaden if the
polar anchoring energy decreases and to narrow if the azimuthal
anchoring energy decreases.

1. Introduction

The reorientation phenomena of the NLC director under
the action of either an electric or magnetic field — in
particular, the threshold reorientation — are often used
in various electron-optical devices [1-3]. The attention
was mainly focused on the director’s reorientation which
was uniform in the cell plane. Nevertheless, it is known
[4] that an SP structure can also emerge in a flexoelectric
liquid crystal cell, provided a threshold reorientation
of the director from a planar into the homeotropic
state. Later, it was shown in work [5] that, if the ratio
r = K5/K; between the Frank elastic constants is less
than r. ~ 0.3, an SP structure can arise in a planarly
oriented NLC cell even if there is no flexopolarization.
Those works used the simplest model of absolutely rigid
director anchoring at the cell surface.

However, in spite of the fact that the threshold
reorientation of the director is a bulk effect, its
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basic characteristics, such as the amplitude of the
threshold field and the degree of director reorientation,
substantially depend on the interaction between the
liquid crystal and the cell surface [6, 7]. One of
the most important parameters of this interaction
is the director anchoring energy at the surface. A
substantial dependence of the character of the SP
director reorientation on the amplitude and the kind
of its anchoring at the cell surface was pointed
out in works [8-10]. In work [11], the dependence
of the threshold SP reorientation of the director
of a flexoelectric NLC on the anchoring energy in
a homeotropically oriented cell was examined. The
threshold SP reorientation of the director from a planar
state into the homeotropic one in a flexoelectric NLC
cell with arbitrary values of the anchoring energy was
studied in work! [12].

The authors of works [13-16] have analyzed the
influence of the elastic constant K54 on the appearance
of spontaneous periodic distortions of the director in the
cell of a planarly oriented NLC. In work [17], a relation
between the elastic constant K54 and the parameters of
a periodic structure that arises in a planarly oriented
nematic cell at the Friedericksz transition in an external
magnetic field has been considered.

In this work, a threshold SP reorientation of the
director from a planar state into another planar state
under the action of an electric field applied in parallel
to the cell surface is studied. The opportunity of such
a transition at K5/Kj > 2 has been indicated earlier in
work [8].
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2. Director Equation

Consider a plane-parallel cell confined by the planes
z = —L/2 and z = +L/2 and containing an NLC
possessing the initial planar orientation of its director
along the Oz axis. The cell is embedded into an external
constant uniform electric field with the strength vector
directed along the Oy axis: E= (0,E,0).

The free energy of the NLC cell can be written down
in the form

F=Fy+Fg+Fs,

where
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Here, 7 is the director, Fg) the elastic energy of the NLC,
Fg the anisotropic contribution of the external electric
field to the free energy, Fs the surface free energy of
the NLC, e, = ¢ — e, > 0 the anisotropy of the static
dielectric permittivity, Wy and W, are the polar and
the azimuthal energy of director anchoring at the cell
surface, respectively, and 6 and ¢ the director deviation
angles in the planes xz and xy, respectively. We notice
that the surface free energy F's for the nematic is written
in the Rapini approximation [18|, taking into account
that the variation of the surface energy can differ if the
director deviates from its easy axis in either an azimuthal
or polar direction [19].

In the geometry specified, the reorientation of the
director may result in the emergence of an SP structure
along the Oy axis. Therefore, the solution for the director
in the NLC bulk is searched in the form

i = icos 0(y, z) cos (y, 2)+

+7 cosB(y, z) sinp(y, z) + ksin6(y, 2) , (2)
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where i, f, and k are the orts of the Cartesian coordinate
System.

While determining the reorientation threshold, one
may consider only small distortions of the director
(l¢], 16| < 1). Then, minimizing the free energy (1) over
the angles 6 and ¢, we obtain the stationary linearized
equations

0%0  0%0 0%
1— =
T8y2+8z2+( T)ﬁyaz 0,
0% 0% 0%0
67y2+rw+(l—r)ayaz+eE2g0:0 (3)

and the corresponding boundary conditions

W9 00 8(,0)]
— 0+ — + (1 —koq) — =0,
[Kl (32 ( ) T P

W, dp 00
— o+t r=——(r—ko) — =0 4
[K1 @ (7“ P (r — koa) ) ir)s ; (4)
where the following notations are used: ¢ = Eia,
47TK1
K
T = Fi, and ]C24 = 7214

Taking the symmetry of the system of equations (3)
into account, its solution is tried in the form
0(y,z) = cos(qy)-01(2),  @(y,2) =sin(qy) ¢1(2),(5)

where the functions 61 (z) and ¢1(2) satisfy the equations

d? 9 d
— - 1—7r)g— 0
dz2 rd ( r>qdz 1(2)
=0.
T pye %)
—(1—r)q£ ros 4 +e 1
(6)
Putting

(& )==(en) o

in Eq. (6), we obtain a homogeneous system of
two algebraic equations to determine the unknown
coefficients 619 and ¢19. The condition that this system
of equations possesses a nontrivial solution brings about
the equation for A:

T(AQ—q2)2+6E2(A2—q2)—eEQqQ(r—l):O,
r#0. (8)
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The solutions of Eq. (8) are A = +ip; and +py, where
p1 and po are the real quantities

1
p1 = \/27“ {EEQ 4+ (eE2)2 + dr(r — 1)q26E2} -q?,

Py = \/q2 — % {GEQ — \/(€E2)2 +4r(r— l)qzeEQ} .(9)

From Egs. (6), we also find that

b0 _ (r—1)gA

o0 A2—rg®

The general solution of the system of equations (6)
looks like

01(z) = B1(—ay sinpyz + ag cos p12)+
+02(b1 shpaz 4 by chpaz),
p1(z) = ay cosp1z + ag sin pyz + by ch paz + by shpaz,(10)

where

(r—1)gm

(r—1)gps
¢ + pt '

r¢* — p3

Br=— , Pe=— (11)
Here, a; and b; (¢ = 1,2) are arbitrary constants, the
values of which are to be determined from the boundary

conditions (4).

3. Influence of the Polar Anchoring Energy

Let us assume that the azimuthal anchoring energy W,
of the director at the cell surface is infinitely large
(W, — o00), and the polar one Wy can acquire an
arbitrary value. In this case, the boundary conditions
(4) look like

|:W9 db,

P 4+ 2

=0,
Ky dz :|z—iL/2

@1]o=xr/2 = 0. (12)
Substituting solution (10) into the boundary conditions
(12), we obtain a homogeneous system of four algebraic
equations to determine the unknown coefficients a; and
b; (i = 1,2). The condition for this system to possess a
nontrivial solution gives the following equation:

piL (W

1 p2L
tg — | — th —
ﬁ20g2 (K1+p2c 2>+

(13)

poL Wy piL
th — [ — tge—— | =0.
+061 ¢ 5 (K1+p10g 5 )
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The solution of this equation, taking into account
relations (9) and (11), gives the electric field E as a
function of the wave number q. The threshold FE. for
the instability to emerge is determined by the minimum
in the curve F(q). In order to find the threshold value
FE. of the electric field and the corresponding value g,
of the wave number, it is necessary to solve Eq. (13)
numerically.

We note that the condition for the threshold SP
structure of the director field to appear is equivalent
to the inequality

dE

q=0

(14)

In this case, differentiating Eq. (13) with respect to ¢ at
the point ¢ = 0 and carrying out the necessary algebraic
transformations, Eq. (14) leads to the inequality

(15)

which couples the ratio r between the Frank elastic
constants and the value of the polar anchoring energy
g9 = (WpL)/K; and defines the range of the SP director
reorientation.

Fig. 1 exposes the calculated dependences of the
dimensionless threshold field E. = /eE.L and the
corresponding value of the dimensionless wave number
Q. = qg.L on the amplitude of the polar anchoring
energy €¢ of the director at the cell surface for various
values of the ratio r between the Frank elastic constants.
The threshold value E. of the electric field expectedly
increases with the polar anchoring energy £¢. In this case,
the period A, = 27/q. of the arising spatial structure
of the director is a nonmonotonous function of the
anchoring energy €9 at » > r9g = 1 + \/7:57_8 ~ 3.3
(Fig. 1,b). If 2 < r < rg, the period A. of the director’s
spatial structure increases monotonously with eg.

Figure 1,b demonstrates that, according to inequality
(15), there exists a finite critical value of the polar
anchoring energy for every value of r within the interval
2<r<rg

coum(r) = 27127 (r — 2)
othiT) = 8(r—1)2 —w2r(r—2)
at which Q. = 0. If g9 < egn, the Friedericksz

transition accompanied by the formation of an SP
structure takes place, while, at €9 > eg¢pn, only the
Friedericksz transition with a uniform (along the Oy
axis) distribution of the director is possible. In the case
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Fig. 1. Dependences of the threshold field E/ (a) and the threshold wave number Q. (b) on the amplitude of the polar anchoring energy
eg for various values of the ratio r = 2.5 (1), 2.7 (2), 2.9 (3), 3.0 (4), 3.1 (5), 3.3 (6), and 3.5 (7)
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Fig. 2. Dependences of the threshold field E/ (a) and the threshold wave number Q. (b) on the parameter r for various g9 = oo (1),

50 (2), 10 (3), 5 (4), 2 (5), 1 (6), and 0.1 (7)

where r > rg, the critical value of the polar anchoring
energy is infinitely large (egen, — 00). For the ratio’s
values r < 2, only the uniform Friedericksz transition
occurs, which is in agreement with the result of
work [8].

The dependences of the threshold field E. and the
corresponding wave number ¢g. on the magnitude of
the ratio r for various polar anchoring energies ¢ are
depicted in Fig. 2. As the parameter r grows, the
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amplitude of the threshold electric field E. increases,
while the corresponding period A. of the arising spatial
structure of the director falls down monotonously. From
Fig. 2,b, one can see that for every value of the polar
anchoring energy g, there exists a critical value of the
ratio between the Frank elastic constants

mTVEy + 2

Tth(€g) = 1+ .
(ee) V(72 = 8)eg + 22

369



M.F. LEDNEY, I.P. PINKEVICH

1
EC
6,54 6
5
4
6,0 3
2
1
5,5
5,0
4,5 T T T T T 1
20 25 30 35 40 45 50
E
4

a

Q
c
6
2,5
5
2,01 4
3
1,54 2
1,0 1
0,54
0,0 T T T T T 1
20 25 30 35 40 45 50
E
4

b

Fig. 3. Dependences of the threshold field E/ (a) and the threshold wave number Q. (b) on the amplitude of the azimuthal anchoring
energy ¢, for various values of the ratio r = 4.5 (1), 5.0 (2), 5.5 (3), 6.0 (4), 7.0 (5), and 8.0 (6)

at which Q. = 0. If » < r¢s, a uniform Friedericksz
transition takes place only, while, if r > ry,, the
Friedericksz transition with the formation of an SP
director structure does. The critical value 7y, of the
ratio between the Frank elastic constants increases
monotonously as the polar anchoring energy ey grows,
in particular, from ry, = 2 at eg = 0 to ry, = 7, in the
case of absolutely rigid anchoring (curve 1).

From Figs. 1 and 2, one can see that the range of the
parameter r, where the SP structure of the director field
exists, extends if the value of the polar anchoring energy
cg of the director at the cell surface diminishes.

4. Influence of the Azimuthal Anchoring
Energy

Now, let us assume that the polar anchoring energy
of the director at the cell surface is infinitely large
(Ws — 00), and the azimuthal one W,, can acquire an
arbitrary value. In this case, the boundary conditions (4)
look like

01|.=+/2 =0,

dpy

=0.
dz :|z_:i:L/2

W,

+r 16
[ K, e (16)
Note that, as follows from the boundary conditions (12)
and (16), the elastic factor Koy gives no contribution to
the SP reorientation of the director in the framework
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of the model considered, where either the polar or
azimuthal anchoring energy of the director at the surface
is assumed infinitely large.

Analogously to what was done in the case of
an arbitrary polar anchoring energy, we substitute
solution (10) into the boundary conditions — in this
case, Eq. (16) — and again obtain the corresponding
homogeneous algebraic system of equations to determine
the coefficients a; and b; (¢ = 1,2). The requirement of
its nontrivial solution gives the equation

1L
ﬁ2( - th—Tp1)+

+51 ( cthZE +rp2> =0 (17)
to determine the dispersion dependence E(q). After
the numerical minimization of the latter, we obtain
the threshold value of the electric field and the
corresponding wave number.

The dependences of threshold field E. and the
corresponding wave number ¢. on the magnitude of
the azimuthal anchoring energy e, = (W,L)/K; are
exhibited in Fig. 3 for several values of the ratio r
between the Frank elastic constants. Analogously to
the case of arbitrary values of the polar anchoring
energy, the amplitude of the threshold field E. increases
monotonously with the azimuthal anchoring energy ¢,
and the ratio r between the elastic constants. The period
of the director orientation A, =2w/q. falls down
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Fig. 4. Dependence of the critical value r¢y of the parameter r on

the amplitude of the azimuthal anchoring energy ¢,

monotonously with the growth of both the azimuthal
anchoring energy €, and the parameter r. In this case,
for every given value of the parameter r > rg, there
exists such a critical value of the azimuthal anchoring
energy eu,tn(r), which corresponds to Q. = 0, that,
if e, < €,tm, @ homogeneous Friedericksz transition
takes place; otherwise, a Friedericksz transition with the
formation of the SP structure of the director occurs. The
critical value of the azimuthal anchoring energy for the
ratio r, provided r < 7, is infinitely large, i.e. only an
ordinary Friedericksz transition is possible in this case.

We did not succeed in obtaining criterion (14) for
the emergence of the threshold SP structure of the
director in an analytic form for arbitrary values of the
azimuthal anchoring energy €,. The results of numerical
calculations of the critical value of r as a function of
the azimuthal anchoring energy ¢, are shown in Fig. 4.
Here, the range r > 7, is the region where the SP
structure of the director exists. From Fig. 4, one can see
that, provided the azimuthal anchoring energy increases,
the critical value of the ratio between the Frank elastic
constants decreases and approaches the value of r,, in the
limit of absolutely rigid anchoring (e, — 00). Hence,
a reduction of the azimuthal anchoring energy of the
director at the cell surface makes the r-range, where the
SP structure of the director exists, narrower.

Thus, the wvalues of the polar and azimuthal
anchoring energies of the director at the cell surface
substantially affect not only the threshold magnitude
of the electric field and the period of the arising
spatial structure of the director, but also the range of
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admissible values of the ratio between the Frank elastic
constants. In this case, a reduction of the polar anchoring
energy expands the interval of admissible values of
the parameter r, while a reduction of the azimuthal
anchoring energy narrows it.

To summarize, we notice that the values of the
ratio Ko/K; between the nematic elastic constants,
which are quoted in the available scientific literature, are
smaller than unity. At the same time, it is known that,
while the temperature approaches the nematic—smectic
phase transition point, this ratio grows abnormally [1,3].
This is why the phenomenon of the planar periodic
reorientation of the director, which has been considered
here, is expected to occur just in this temperature range.
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ITOPOT'OBA ITPOCTOPOBO-IIEPIOTYHA
[IEPEOPIEHTALIIA AUPEKTOPA B IIJIAHAPHI
KOMIPHI HEMATMYHOT'O PIAKOI'O KPUCTAJIA

M. D. Jledwet, I.11. ITinkesuy
Pesmowme

PosrsinyTo BuiuB eHepril 34uensieHHsI OUPEKTOpPa 3 IIOBEPXHEIO
naHapHOl KoMipku HemaruvHoro piaxoro kpucraaa (HPK) i se-
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JIMYHHYU BiIHOIIEHHS 1 Npy»KHUX cTanaux Ppanka Ha nopir i nepioz
IIPOCTOPOBO-IIEPIOIMYHOI IIePEOopieHTAIli] JUPEKTOPA Y 30BHIIIHBO-
My HOCTiffHOMY €JI€KTPUYHOMY IO/, HAIIPABICHOMY IapajIeIbHO
noBepxHi KoMipku. [IpoBesieHo yncesbHi po3paxyHKH IOPOrOBOIO
€JIEKTPUYHOrO IIOJISl Ta IIPOCTOPOBOrO IEpiofly AUPEKTOpa B 3a-
JIE’KHOCTI BiJi 3Ha4YeHb IOJISIPHOI 1 a3MMyTaJIbHOI €Hepril 3dernseH-
Ha Ta r. BcranosiseHo, 1mo o6JacTb 3HAYEHDb T, JJIS SKHX MOXK-
JIMBa IIPOCTOPOBO-IIEPIONYHA IIEPEOPIEHTAIIA TUPEKTOPA, PO3IIN-
PIOETBCS IPHU 3MEHIIIEHH] IOJISPHOI €Hepril 34UeNyIeHHs i 3By >Ky€eThb-
Cs IIPU 3MEHIIIEHH] a3UMyTaJIbHOI €Hepril 34elsIeHHH.
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