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Within the effective mass approximation, the energy spectrum of
an electron in a spherical quantum dot (QD) with the smooth
behavior of the potential energy and the effective mass of a
quasi-particle at the boundary between semiconductor media is
calculated. It is shown that relative corrections to the electron
energy caused by a spread boundary between two media are non-
monotonic functions of the QD radius. These corrections increase
rapidly with the QD radius, reach a maximum, and then slowly
decay when the radius becomes large. The calculations reveal that
the relative corrections for different energy levels of the electron
in the spherical QD become closer to each other with increasing
the QD radius.

1. Introduction

The calculation of the energy spectrum of quasi-particles
in spherical QDs frequently uses a step-like rectangular
potential or a parabolic potential, for which the exact
analytical solutions of the Schrédinger equation are
known. Despite the convenience of these solutions, the
use of these potentials has some drawbacks.

The main drawbacks of the parabolic potential are
the neglecting of a difference between the effective
masses of quasi-particles inside the quantum dot
and in the surrounding medium, the impossibility to
obtain a continuous energy spectrum for quasi-particles
with high energies, and the unboundedness of this
potential at infinity. In work [1], the authors take
into account the above-mentioned drawbacks of the
parabolic potential and use a model potential that is
parabolic within the quantum dot and constant in the
surrounding medium . The energy spectrum calculation
for this model is much more complicated and the
calculation was performed by approximate methods.
In works [2—5], the potential of the image forces and
corrections to the bounding energies of an electron,
caused by smooth functions of dielectric permittivity,
were calculated.

The aim of this work is to calculate the energy
corrections for spherically symmetric electron steady
states that are caused by spreading the potential energy
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function and the effective mass at the interface between
two media for HgS/CdS QDs.

2. Choice of a Smooth Bounding Potential

In work [2], the smooth function of dielectric permittivity
at the plane boundary between two media was modelled
by the equation

e(z) = 2L ;52 {1 + 27 tanh (z)] . (1)
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This shape of the diffuse spreading at the interface
of the two media is confirmed by experimental data [2].
In [3—5], the following smooth functions are used at the
boundary between a quantum dot and the environment

- R
f(r) = tanh (r 0> , (2)
L
2 T — RO
f(r) Warcan( T ) (3)
They also use a linear approximating function
-1, r< Ry — L/2,
fr)y=3 =fo, Ry—L/2<r<Ro+L/2 (4)
1, r>Ro+L/2,

where L is the parameter that characterizes the spread
width of the interface between media.

In works [4,5], it is shown that the results of the
energy spectrum calculations are less sensitive to the
choice of the approximating function than to the width
of the transition layer L.

In this work, in order to take into account the
spread of the boundary of a HgS/CdS quantum dot, the
functional dependence of the electron potential energy
and its effective mass on the distance from the dot center
was chosen as

U(r) = % {1 + tanh (T LROH : (5)
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Fig. 1. Dependence U(r) for the electron in a HgS/CdS QD. The
solid line shows the smooth potential, and the dashed line shows

the staircase-like potential

L L. (’" _LRO)] . (6)
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m(r) =

where m1 = 0.036mg and ms = 0.2mg are the effective
masses of the electron in the QD and in the surrounding
medium, respectively, mg is the mass of a free electron,
V = 1.35 eV is a relative affinity of HgS and CdS
semiconductors. The energy spectrum of the quasi-
particle with the effective mass (6) in the potential
well (5) can be found as a solution of the Schrédinger
equation

o 1 - .
(-5 97 +U0) ) = Bu@, )

It is clear that one cannot find the exact solution of Eq.
(7) and it is needed to apply approximate methods. For
example, the variational approach would be appropriate
for the calculation of the lowest energy level, but the
problem becomes too complicated for the calculation of
excited levels.

In this work, we propose to solve Eq. (7) using the
approximation of the smooth functions (5) and (6) by
staircase-like functions which are shown in Fig. 1. The
use of these functions allows us to find the exact solution
of the corresponding Schrédinger equation.

The more steps the closer the approximate functions
to functions (5) and (6), and the more accurate becomes
the solution of Eq. (7).
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3. Solution of the Schrédinger Equation

Taking into account a spherical symmetry of the
problem and the staircase form of the functions m(r)
and U(r),

N+1 N+1

Ur) = Z Vioi(r), mr) = Z mioi(r),
=0 i=0

oi(r) = { (1)

the radial part of the wave function can be written in
the form
N+1

R(r) =Y _ Rioi(r). (9)
1=0

Ti—1 <1 <71y,
elsewhere,

(r_1 =0); (8)

The Schrodinger equation (7) is split into the system of
N + 1 equations for radial wave functions R;(r)

52 10 (261?4(7")

g (M7 - PR =0

i=1,..,N+1, (10)

each of which corresponds to a constant potential energy
V; and a constant effective mass m;. The solution of Eq.
(10) is a linear superposition of the Bessel and Neumann
functions:

Ri(r) = Aijo(kir)+Bino(kir), i=0,1,.., N+1,(11)
where k; = h~'\/2m;(E —V;). In the case E < V;

the Bessel and Neumann functions are transformed to
the modified spherical Bessel function Iy(|k;|r) and the
Macdonald function Ko(|k;|r).

The continuity conditions for the wave function and
the density flux at all points r; lead to the system of
2(N + 1) equations

Ri(r)l,—,, = Risxa(r)],—,,

1 dR; (’I“) _ L dRi+1(’l‘)
m; dr T my dr o
r=r; r=r;

i=0,1,..,N.

(12)

Using Eq. (11) and calculating the derivatives, relations
(12) yield the system of linear homogeneous equations
for coefficients A;, B;

Jo(kirs) Ai +no(kirs) B — jo(kig1ms) Aig1—
—no(kiy173)Biy1 =0,
1 1

— i (kr)A: "(k:r)B:] —
™ [Jo(kiri) Ai + ng(kiri) Bi ——

[jé(ki+17"i)Ai+1_
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Fig. 2. Dependences of the absolute corrections to the energy levels
Er0, E20, E30 in a HgS/CdS QD of radius 7o = 15ags on N

—ng(klei)BHl} =0, i=0,1,..,N. (13)

where

. djo(kir .

Jo(kiri) = % = —kiji(kiri), (14)
dng(k;

Two coefficients are determined from the finiteness of
the wave functions at » — 0 and r — oo:

By=0, By =0. (16)

The other 2(N +1) unknown coefficients are determined
by system (17) and the normalization condition

/|R(r)|2r2dr =1. (17)
0

The system of linear homogeneous equations for
coefficients A; and B; has non-trivial solutions if the
determinant built from the Bessel functions of the first
and second kinds, and their derivatives are equal to zero.
From this condition, we obtain a dispersion equation
for the electron energy spectrum in a quantum dot with
smooth boundary.

4. Results of Numerical Calculations

In order to obtain the optimal number of steps IV in the
approximate functions V' (r) and m(r), we performed the
calculations of the electron energies in spherically
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Fig. 3. Dependences of the electron energy spectrum on the
HgS/CdS QD radius for various parameters of the boundary

spreading

symmetric states for various values of N. Fig. 2 shows
the results of calculations of corrections to the electron
energies in spherically symmetric states

AnO = E'r]zVO - E71LO7 (18)
where EJ are the steady-state energies of the electron
in the model potential with N steps, and E!, are the
steady-state energies of the electron in a rectangular
potential (1 step).

Fig. 2 shows that the absolute values of corrections
reach saturation with increase in N. For higher excited
states, the saturation is observed at a higher number
of steps. Taking into account that the increase in N
complicates the numerical calculations significantly, we
choose N ensuring that the errors of the absolute values
of corrections will not exceed 5% even for excited states.

For L = langs (where apgg is the lattice period of
HgS), this condition is fulfilled for N = 7. With increase
in L, the absolute corrections increase, which also helps
to satisfy the imposed conditions. Thus all following
calculations were carried out for the model functions of
the potential and the effective mass for N = 7.

Fig. 3 shows the electron spectrum dependence on the
quantum dot size for various parameters of the boundary
spreading. It can be seen that the spread of the boundary
does not change qualitatively the dependence of the
energy spectrum on the QD size. In order to present the
quantitative influence of the smooth boundary on
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Fig. 4. Dependences of the relative corrections to energy levels
for n = 1,2,3 on the size of a HgS/CdS QD for various spread

parameters L

three lowest energy levels, we show the results of
calculations of the relative corrections to the spherically
symmetric states for various parameters L in Fig. 4.

AnO o Ejz\{) - E'rlz(J

577,0 = =
1 1 ’
En() EnO

(19)

Figs. 3 and 4 show that although the absolute values
of corrections to the basic energy level are the smallest,
the relative correction is the biggest. With increase in
the spreading parameter twice as much, the relative
correction also increases twice as much. The interesting
and unexpected feature is that, with increase in the
size of a quantum dot, the relative corrections for all
energy levels first increase and then decrease and become
closer to each other. This behavior of corrections is quite
understandable. As the size of a quantum dot increases,
the energy levels gradually draw into it. The every new
level that appears in the dot is placed near the top
of the spread potential well, where the well is wider
than the rectangular well. In this case, a correction
may be even negative, because the energy level in the
spread potential well may be located lower than that
in the corresponding rectangular well. This can be seen
in Fig. 2 for every energy level. The increase in the
quantum dot size leads to a decrease in the energy of
steady states. The absolute corrections also decrease. As
a result, the relative corrections for large quantum dots
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become hardly sensitive to the change in the quantum
dot radius. Fig. 4 shows that the decrease in the potential
barrier height leads to a decrease of relative corrections,
a decrease in the speed of their approaching to each
other, and a decrease of their sensitivity to the quantum
dot size.

5. Conclusions

The spread of the boundary between the spherical
quantum dot and the surrounding medium leads to the
shift of the energy levels to higher energies. Only the
levels that are located near the top of the potential
well can be pulled down more to the well. For the big
enough quantum dots, the values of relative corrections
for different energy levels are the same.
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EHEPTETUYHUN CIEKTP EJEKTPOHA YV COEPUYHIN
KBAHTOBII TOYIII HgS/CdS 3 TIJIABHUM
OBMEZKYIOUYNM IIOTEHIIIAJIOM

B.A. TI'osaosauyvruti
PeszowMme

YV pamkax Hab/KeHHsT ePEeKTUBHUX MAC PO3PAaXOBAHO €HEPreTUY-
HUil CIEKTD esieKTpoHa y cdepuuniii kBanTosiit rouni (KT) 3 nuias-
HUMH 3aJI€2KHOCTSIME IIOTEHIaabHOI eHepril Ta edeKTUBHOI Macu
KBa3i9aCTHHKY Ha MEXKi IOy HAIiBIPOBIIHUKOBUX CEPEJIOBUIIL.
ITokazano, 110 BiZTHOCHI IOIIPABKMU 10 €HEPriil eJIEKTPOHA, 3yMOB-
JIEHI PO3MUTOIO MEXKEIO MOy CEPEeIOBUIIL, € HEMOHOTOHHI (DYHKIIT
pazaiyca KT, 31 30iyibIIIeHHSAM SKOI'O IIOIIPABKHU IIIBUIKO 3POCTAIOTh,
JOCSATal0OTh MaKCHUMyMy 1 moBinbHO cnazaioTh qiusa KT Bemmknx
po3MipiB. ¥ pe3ysbTaTi po3paxyHKiB BUSIBUJIOCH, 11O BiJTHOCHI I1O-
NpaBKHU JJIsI PI3HUX €HEPIeTUTHUX PIBHIB eJIeKTpoHA y chepudHiit
KT 3 pocrom 11 paziyca 36/MKa0OThCA MiXK CODOIO.
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