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Within the effective mass approximation, the energy spectrum of
an electron in a spherical quantum dot (QD) with the smooth
behavior of the potential energy and the effective mass of a
quasi-particle at the boundary between semiconductor media is
calculated. It is shown that relative corrections to the electron
energy caused by a spread boundary between two media are non-
monotonic functions of the QD radius. These corrections increase
rapidly with the QD radius, reach a maximum, and then slowly
decay when the radius becomes large. The calculations reveal that
the relative corrections for different energy levels of the electron
in the spherical QD become closer to each other with increasing
the QD radius.

1. Introduction

The calculation of the energy spectrum of quasi-particles
in spherical QDs frequently uses a step-like rectangular
potential or a parabolic potential, for which the exact
analytical solutions of the Schrödinger equation are
known. Despite the convenience of these solutions, the
use of these potentials has some drawbacks.

The main drawbacks of the parabolic potential are
the neglecting of a difference between the effective
masses of quasi-particles inside the quantum dot
and in the surrounding medium, the impossibility to
obtain a continuous energy spectrum for quasi-particles
with high energies, and the unboundedness of this
potential at infinity. In work [1], the authors take
into account the above-mentioned drawbacks of the
parabolic potential and use a model potential that is
parabolic within the quantum dot and constant in the
surrounding medium . The energy spectrum calculation
for this model is much more complicated and the
calculation was performed by approximate methods.
In works [2—5], the potential of the image forces and
corrections to the bounding energies of an electron,
caused by smooth functions of dielectric permittivity,
were calculated.

The aim of this work is to calculate the energy
corrections for spherically symmetric electron steady
states that are caused by spreading the potential energy

function and the effective mass at the interface between
two media for HgS/CdS QDs.

2. Choice of a Smooth Bounding Potential

In work [2], the smooth function of dielectric permittivity
at the plane boundary between two media was modelled
by the equation

ε(z) =
ε1 + ε2

2

[
1 +

ε2 − ε1

ε1 + ε2
tanh

( z

L

)]
. (1)

This shape of the diffuse spreading at the interface
of the two media is confirmed by experimental data [2].
In [3—5], the following smooth functions are used at the
boundary between a quantum dot and the environment

f(r) = tanh
(

r −R0

L

)
, (2)
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2
π
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(
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)
. (3)

They also use a linear approximating function

f(r) =




−1, r < R0 − L/2,
r−R0

L , R0 − L/2 < r < R0 + L/2,
1, r > R0 + L/2,

(4)

where L is the parameter that characterizes the spread
width of the interface between media.

In works [4,5], it is shown that the results of the
energy spectrum calculations are less sensitive to the
choice of the approximating function than to the width
of the transition layer L.

In this work, in order to take into account the
spread of the boundary of a HgS/CdS quantum dot, the
functional dependence of the electron potential energy
and its effective mass on the distance from the dot center
was chosen as

U(r) =
V

2

[
1 + tanh

(
r −R0

L

)]
, (5)
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Fig. 1. Dependence U(r) for the electron in a HgS/CdS QD. The
solid line shows the smooth potential, and the dashed line shows
the staircase-like potential

m(r) =
m1 + m2

2
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m2 −m1

m1 + m2
tanh

(
r −R0

L

)]
, (6)

where m1 = 0.036m0 and m2 = 0.2m0 are the effective
masses of the electron in the QD and in the surrounding
medium, respectively, m0 is the mass of a free electron,
V = 1.35 eV is a relative affinity of HgS and CdS
semiconductors. The energy spectrum of the quasi-
particle with the effective mass (6) in the potential
well (5) can be found as a solution of the Schrödinger
equation

(
−~

2

2
~∇ 1

m(r)
~∇+ U(r)

)
ψ(~r) = Eψ(~r). (7)

It is clear that one cannot find the exact solution of Eq.
(7) and it is needed to apply approximate methods. For
example, the variational approach would be appropriate
for the calculation of the lowest energy level, but the
problem becomes too complicated for the calculation of
excited levels.

In this work, we propose to solve Eq. (7) using the
approximation of the smooth functions (5) and (6) by
staircase-like functions which are shown in Fig. 1. The
use of these functions allows us to find the exact solution
of the corresponding Schrödinger equation.

The more steps the closer the approximate functions
to functions (5) and (6), and the more accurate becomes
the solution of Eq. (7).

3. Solution of the Schrödinger Equation

Taking into account a spherical symmetry of the
problem and the staircase form of the functions m(r)
and U(r),

U(r) =
N+1∑

i=0

Viσi(r), m(r) =
N+1∑

i=0

miσi(r),

σi(r) =
{

1, ri−1 < r < ri, (r−1 ≡ 0);
0, elsewhere, (8)

the radial part of the wave function can be written in
the form

R(r) =
N+1∑

i=0

Riσi(r). (9)

The Schrödinger equation (7) is split into the system of
N + 1 equations for radial wave functions Ri(r)

− ~2

2mi

1
r2

∂

∂r

(
r2 ∂Ri(r)

∂r

)
+ (Vi − E)Ri(r) = 0,

i = 1, ..., N + 1, (10)

each of which corresponds to a constant potential energy
Vi and a constant effective mass mi. The solution of Eq.
(10) is a linear superposition of the Bessel and Neumann
functions:

Ri(r) = Aij0(kir)+Bin0(kir), i = 0, 1, ..., N+1,(11)

where ki = ~−1
√

2mi(E − Vi). In the case E < Vi

the Bessel and Neumann functions are transformed to
the modified spherical Bessel function I0(|ki|r) and the
Macdonald function K0(|ki|r).

The continuity conditions for the wave function and
the density flux at all points ri lead to the system of
2(N + 1) equations

Ri(r)|r=ri
= Ri+1(r)|r=ri

1
mi

dRi(r)
dr

∣∣∣
r=ri

= 1
mi

dRi+1(r)
dr
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r=ri



 i = 0, 1, ..., N.

(12)

Using Eq. (11) and calculating the derivatives, relations
(12) yield the system of linear homogeneous equations
for coefficients Ai, Bi

j0(kiri)Ai + n0(kiri)Bi − j0(ki+1ri)Ai+1−
−n0(ki+1ri)Bi+1 = 0,

1
mi

[j′0(kiri)Ai + n′0(kiri)Bi]− 1
mi+1

[
j′0(ki+1ri)Ai+1−
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Fig. 2. Dependences of the absolute corrections to the energy levels
E10, E20, E30 in a HgS/CdS QD of radius r0 = 15aHgS on N

−n′0(ki+1ri)Bi+1

]
= 0, i = 0, 1, ..., N. (13)

where

j′0(kiri) =
dj0(kir)

dr

∣∣∣∣
r=ri

= −kiji(kiri), (14)

n′0(kiri) =
dn0(kir)

dr

∣∣∣∣
r=ri

= −kini(kiri). (15)

Two coefficients are determined from the finiteness of
the wave functions at r → 0 and r →∞:

B0 = 0, BN+1 = 0. (16)

The other 2(N +1) unknown coefficients are determined
by system (17) and the normalization condition
∞∫

0

|R(r)|2 r2dr = 1. (17)

The system of linear homogeneous equations for
coefficients Ai and Bi has non-trivial solutions if the
determinant built from the Bessel functions of the first
and second kinds, and their derivatives are equal to zero.
From this condition, we obtain a dispersion equation
for the electron energy spectrum in a quantum dot with
smooth boundary.

4. Results of Numerical Calculations

In order to obtain the optimal number of steps N in the
approximate functions V (r) and m(r), we performed the
calculations of the electron energies in spherically

Fig. 3. Dependences of the electron energy spectrum on the
HgS/CdS QD radius for various parameters of the boundary
spreading

symmetric states for various values of N . Fig. 2 shows
the results of calculations of corrections to the electron
energies in spherically symmetric states

∆n0 = EN
n0 − E1

n0, (18)

where EN
n0 are the steady-state energies of the electron

in the model potential with N steps, and E1
n0 are the

steady-state energies of the electron in a rectangular
potential (1 step).

Fig. 2 shows that the absolute values of corrections
reach saturation with increase in N . For higher excited
states, the saturation is observed at a higher number
of steps. Taking into account that the increase in N
complicates the numerical calculations significantly, we
choose N ensuring that the errors of the absolute values
of corrections will not exceed 5% even for excited states.

For L = 1aHgS (where aHgS is the lattice period of
HgS), this condition is fulfilled for N = 7. With increase
in L, the absolute corrections increase, which also helps
to satisfy the imposed conditions. Thus all following
calculations were carried out for the model functions of
the potential and the effective mass for N = 7.

Fig. 3 shows the electron spectrum dependence on the
quantum dot size for various parameters of the boundary
spreading. It can be seen that the spread of the boundary
does not change qualitatively the dependence of the
energy spectrum on the QD size. In order to present the
quantitative influence of the smooth boundary on
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Fig. 4. Dependences of the relative corrections to energy levels
for n = 1, 2, 3 on the size of a HgS/CdS QD for various spread
parameters L

three lowest energy levels, we show the results of
calculations of the relative corrections to the spherically
symmetric states for various parameters L in Fig. 4.

δn0 =
∆n0

E1
n0

=
EN

n0 − E1
n0

E1
n0

, (19)

Figs. 3 and 4 show that although the absolute values
of corrections to the basic energy level are the smallest,
the relative correction is the biggest. With increase in
the spreading parameter twice as much, the relative
correction also increases twice as much. The interesting
and unexpected feature is that, with increase in the
size of a quantum dot, the relative corrections for all
energy levels first increase and then decrease and become
closer to each other. This behavior of corrections is quite
understandable. As the size of a quantum dot increases,
the energy levels gradually draw into it. The every new
level that appears in the dot is placed near the top
of the spread potential well, where the well is wider
than the rectangular well. In this case, a correction
may be even negative, because the energy level in the
spread potential well may be located lower than that
in the corresponding rectangular well. This can be seen
in Fig. 2 for every energy level. The increase in the
quantum dot size leads to a decrease in the energy of
steady states. The absolute corrections also decrease. As
a result, the relative corrections for large quantum dots

become hardly sensitive to the change in the quantum
dot radius. Fig. 4 shows that the decrease in the potential
barrier height leads to a decrease of relative corrections,
a decrease in the speed of their approaching to each
other, and a decrease of their sensitivity to the quantum
dot size.

5. Conclusions

The spread of the boundary between the spherical
quantum dot and the surrounding medium leads to the
shift of the energy levels to higher energies. Only the
levels that are located near the top of the potential
well can be pulled down more to the well. For the big
enough quantum dots, the values of relative corrections
for different energy levels are the same.
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ЕНЕРГЕТИЧНИЙ СПЕКТР ЕЛЕКТРОНА У СФЕРИЧНIЙ
КВАНТОВIЙ ТОЧЦI HgS/CdS З ПЛАВНИМ
ОБМЕЖУЮЧИМ ПОТЕНЦIАЛОМ

В.А. Головацький

Р е з ю м е

У рамках наближення ефективних мас розраховано енергетич-
ний спектр електрона у сферичнiй квантовiй точцi (КТ) з плав-
ними залежностями потенцiальної енергiї та ефективної маси
квазiчастинки на межi подiлу напiвпровiдникових середовищ.
Показано, що вiдноснi поправки до енергiй електрона, зумов-
ленi розмитою межею подiлу середовищ, є немонотоннi функцiї
радiуса КТ, зi збiльшенням якого поправки швидко зростають,
досягають максимуму i повiльно спадають для КТ великих
розмiрiв. У результатi розрахункiв виявилось, що вiдноснi по-
правки для рiзних енергетичних рiвнiв електрона у сферичнiй
КТ з ростом її радiуса зближаються мiж собою.
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