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We present the results of studies of the energy spectrum of
polarons in quasi-two-dimensional heterosystems with a variable
parameter of the electron-phonon interaction (0 < α < 3)
depending on the wave vector. The calculations were performed
by using perturbation theory and the variational method of Lee-
Low-Pines (LLP). The specific calculations were carried out for
the heterostructures GaAs/AlAs, CdSe/glass, and CuCl/glass, for
which the weak and intermediate electron-phonon couplings are
realized: α = 0.071, α = 0.0461, and α = 2.091, respectively. In
the frames of the LLP method, the wave function of a polaron is
determined. We evaluated the mean number of virtual phonons
surrounding an electron, calculated the binding energy of a polaron
and its effective mass as a function of the wave vector, and
performed the comparative analysis of structures with different
electron-phonon couplings.

The investigation of semiconductor nanoheterostructures
is one of the perspective directions of the development
of solid state physics. This is related not only to the
interesting physical properties of spatially bounded
structures, but to their important applied potentialities
in the design of novel lasers and computers of the new
generation.

The physical properties of superthin films of
semiconductors which are in contact with two
media, double heterostructures of semiconductors, differ
from those of the corresponding single crystals by
changes of the energy spectra of charged particles
(electrons, holes) and the oscillation spectra of
atoms.

The investigations of the electron-phonon interaction
are carried out in a great number of experimental and
especially theoretical works [1—3]. To a great extent,
this concerns also the physics of nanoheterosystems [4—
13].

The most known are two methods of theoretical
studies: perturbation theory [2, 3] and the LLP method
which is grounded on certain unitary transformations.
The theory of polaron states is quite well developed for
massive three-dimensional crystals characterized by the
translational symmetry. In particular, it is known that

these methods allow one to get quite good results for
the polaron states with small wave vectors. Moreover,
the perturbation theory gives the proper value of the
binding energy of a polaron state and the effective
mass for small values of the constant of the electron-
phonon interaction (α ¿ 1), whereas the LLP method
can be used for α ≤ 6 [3]. As for the dispersion law
of a polaron for k > 0, the mentioned methods can
be applied with certain precautions [2], especially for
the values of k, at which the electron energy is close
to the phonon energy (k = kf =

(
2mω
~

)1/2). More
universal in this aspect is the method of Green functions
[4, 6, 14] which allows one, with regard for the main
diagrams, to calculate the polaron energy with high
accuracy for the whole spectrum. But, in so doing,
one frequently meets quite complicated mathematical
difficulties [2].

In studying the nanoheterosystems, for which the
translational symmetry is broken for three, two, or one
direction, the theory of polaron states becomes more
complicated. This is related to changes in the phonon
and electron energy spectra [4] and in the electron-
phonon interaction [8] in heterosystems. Thus, the
problems concerning the dependence of the dispersion
law for polarons on the main parameters of the system
remain to be insufficiently studied. It is also important
to investigate the influence of a choice of the method
of solution of the polaron problem on the derived
results.

This work is devoted to the study of the polaron
energy as a function of the wave vector for quasi-two-
dimensional heterosystems with different values of the
electron-phonon interaction (0 < α < 3). To this end,
we use perturbation theory and the variational LLP
method. For heterosystems of the type GaAs/AlAs,
CdSe/glass, and CuCl/glass with a quantum well,
we also calculated the binding energy of a polaron
and its effective mass as a function of the wave
vector.
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1. Statement of the Problem. General
Formulas

We consider a heterostructure with two plane
boundaries, in which longitudinal optical phonons
interact with a conduction band electron. The
Hamiltonian of such a system is as follows:

Ĥ = Ĥe + Ĥph + Ĥint. (1)

The energy operator of an electron located in the
potential well can be represented as

Ĥe =
p̂2
‖

2m‖
+

p̂2
z

2m⊥
+ V (z) , (2)

where ~̂p‖ and ~̂pz are, respectively, the operators of
momentum of an electron in the xy plane and in the
direction along the z axis of the Cartesian coordinate
system, m|| and m⊥ are the corresponding effective
masses of an electron, and V (z) is the potential energy
of an electron located in the rectangular potential well

V (z) =
{

0, 0 < z < L
V0, z ≤ 0, z ≥ L

. (3)

The operators describing the system of phonons Ĥph

and the electron-phonon interaction can be written in
the occupation number representation in terms of the
phonon-related variables as

Ĥph =
∑

~q

~ω
(

b+
~q b~q +

1
2

)
, (4)

Ĥint =
∑

~q

{
V~qb~q + V ∗

~q b+
~q

}
, (5)

where is the operator of annihilation of a phonon with
energy ~ω and wave vector ~q. For the heterosystem, the
function of the electron-phonon interaction V~q looks as

V~q = −~ω i

q

(
~

2meω

)1/4 (
4πα

SL

)1/2

ei~q‖~r‖ sin
(π

L
nz

)
,

(6)

where

me = √
m||m⊥, α =

e2

2~c

(
2mec

2

~ω

)1/2 (
1
n2
− 1

ε

)

is the constant of the electron-phonon interaction [1],
and S is the interface area of the media.

The chosen Hamiltonian of the electron-phonon
subsystem does not take into account the presence of
interface polarization phonons. Such an approximation
is valid only for a quantum well, whose size is greater
than the radius of a polaron.

Taking into account the fact that the heterosystem
under study is an intermediate system between a three-
dimensional (3D) massive crystal and a two-dimensional
(2D) system, we will compare the derived results for the
heterosystem with the relevant ones for 3D- and 2D-
systems. The function V~q for a 3D-system is well known:

V~q = −
√

4πα (~ωi)√
LSq2

(
~

2meω

)1/4

ei~q ~r; (7)

for a 2D-system, it reads

V~q = −
√

2πα (~ωi)√
Sq‖

(
~

2meω

)1/4

ei~q‖~r‖ . (8)

To evaluate the polaron energy, we used both
perturbation theory and the LLP method. By using
the latter, we took into account that the system under
consideration includes fast and slow subsystems. As the
former, we consider the movement of an electron in
the direction normal to the interface. Therefore, we use
the adiabatic approximation: the given Hamiltonian is
averaged on the wave functions of the ground stationary
state for the movement along the OZ axis:

Ĥeff = 〈ψ1 (z)|Ĥ|ψ1 (z)〉, (9)

Here, the function ψn (z) is a solution of the
Schrödinger equation
[
−~

2

2
d

dz

1
m⊥

d

dz
+ V (z)

]
ψn (z) = Enψn (z) ,

n = 1, 2, 3, . . . (10)

To Hamiltonian (9), we applied successively two
unitary transformations by using the operators

Ŝ = exp


 i

~


~P −

∑

~q||

b+
~q b~q~~q||


~r||


, (11)

Û = exp





∑

~q

(
b+
~q f (~q)− b~qf

∗ (~q)
)


. (11a)
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In view of the well-known relations for the unitary
transformations of the operators b~q and b+

~q , we averaged
over the vacuum phonon state |0〉 and got the energy
function for the electron-phonon system as

ε(f) = 〈0 |U−1HU |0〉 =

= E1 +
P 2

2me
+

∑

~q

{
V~qM11f(~q ) + V ∗

~q M∗
11f(~q )

}
+

+
~2

2me





∑

~q

|f(~q )|2~q




2

+

+
∑

~q

|f(~q)|2
{
~ω − ~q ~P

me
~+

q2

2me
~2

}
,

where M1n =
∞∫
−∞

ψ1 (z) eiqzzψn (z)dz, n = 1, 2, . . .

By minimizing ε(f) in f(~q) and f∗(~q) and by
considering that ~P = ~~k, we got the polaron energy in
the heterosystem. It is convenient to reckon the polaron
energy from the size-quantization level E1:

Epol(k) =
~2k2

2me
(1 + η2) +

∑

~q

−2 |V~q|2 |M11|2

~ω − ~~q ~P
me

(1− η) + ~2q2

2me

+

+
∑

~q

|V~q|2|M11|2
{
~ω − ~~q ~P

me
+ ~2q2

2me

}
{
~ω − ~~q ~P

me
(1− η) + ~2q2

2me

} , (12)

where

η ~P =
∑

~q

|fmin(~q)|2~~q‖,

fmin(~q) = − V ∗
~q M∗

11

~ω +
~2q2

‖
2me

− ~2
me

~k~q‖ (1− η)
.

Relation (12) differs from the corresponding formulas
for 3D- and 2D-systems by the presence of the function
M1n (~qz) which appears due to the breaking of the
translational symmetry in the heterosystem.

For the weak electron-phonon coupling, the polaron
energy can be determined with the use of perturbation
theory as

E
(~k )
pol =

~2k2

2me
+

∑

~q‖,n

|V~q|2|M1n|2

E1 − En − ~ω −
~2q2

‖
2me

+ ~2~q‖~k
me

. (13)

As distinct from the LLP method, the adiabatic
approximation was not applied upon the derivation of
(13). In this approximation, formula (13) is simplified:

E
(~k )
pol =

~2k2

2me
+

∑

~q‖

|V~q|2|M11|2

−~ω − ~2q2
‖

2me
+ ~2~q‖~k

me

. (13′)

Expressions (12) and (13) describe the dependence of
the polaron energy on the wave vector, i.e. the dispersion
law for a polaron.

2. Numerical Calculations. Analysis of the
Results

In the majority of works (see, e.g., [1, 2, 7]), the region
of small values of the wave vector (k ≈ 0) is usually
considered. Therefore, the quantities η (k) and Epol (k)
are determined upon the expansion of the relevant
expressions in series, by taking only their first terms.
Here, we consider the region of wave vectors where the
electron does not create a real phonon:

0 ≤ k < kf , kf =

√
2meω

~
.

This value of the wave vector is significantly lesser
than its boundary value in the Brillouin zone: kf ¿
¿ k0 =π

a .
The specific calculations were carried out for the

heterostructure GaAs/AlAs and model heterostructures
CdSe/glass and CuCl/glass, for which the weak and
intermediate electron-phonon couplings are realized: α =
0.071, α = 0.0461, and α = 2.091, respectively. Two
last heterostructures were first experimentally derived
and investigated in the case of quasi-zero-dimensional
systems [16—18].

Upon the study of the problem concerning polarons
in nanoheterosystems, the adiabatic approximation is
frequently in use [10, 11]. With the purpose to determine
the region of thicknesses L, for which the adiabatic
approximation can be used, we calculated the polaron
energy at k = 0 for various values of L for the
heterosystem GaAs/AlAs according to formulas (13) and
(13′). The results of calculations are given in Fig. 1. It is
seen for the given heterosystem that the error is at most
13% for L < 100 Å and is 2% at L = 20 Å. Therefore,
the calculations were performed for 20 Å ≤ L ≤ 100 Å.
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Fig. 1. Energy Ep (0) versus L for the heterosystem GaAs/AlAs
according to perturbation theory (the dotted line — the adiabatic
approximation)

In the frames of the LLP method, we define the wave
function of a polaron as

ψpol (r) = exp



i


~k −

∑

~q

b+
~q b~q~q


~r



×

× exp





∑

~q

b+
~q fmin (~q)− b~qf

∗
min (~q)



|0〉. (14)

As seen from formula (12), function (14) is defined
by an auxiliary function η which depends on the wave
vector ~k. The executed calculations of the function
η = η (k) for a massive crystal, 2D-system, and
heterosystems with different crystals and different
widths of a quantum well showed that it is constant
only in the region of very small k [1] and monotonously
grows with k. Moreover, for a given k, the values of the
function η = η (k) increase with decrease in the width of
a quantum well. This dependence is presented in Fig. 2
for a CuCl crystal.

If the function η = η (k) is known, we can define the
mean number of virtual phonons surrounding an electron
as

n = n (k) = 〈ψ∗ |
∑

~q

b+
~q b~q|ψ〉 =

∑

~q

|fmin (~q)|2. (15)

In Fig. 3, we present the functions n = n (k)
for a massive 2D crystal CuCl and the heterosystem
CuCl/glass.

Fig. 2. Functions η = η (k): 1 — 2D-structure, 3 — 3D-structure,
2 — heterostructure CuCl/glass with L = 25 Å

Fig. 3. Mean number of virtual phonons: 1 — 2D-structure, 3 —
3D-structure, 2 — heterostructure CuCl/glass with L = 25 Å

The function n = n (k) increases monotonously with
k. Moreover, we observe the parabolic behavior in the
region of small k. The increase in k is accompanied by
a deviation of the function n = n (k) from the parabolic
behavior.

In order to determine the dispersion law of a polaron,
Epol = Epol (k), it is necessary to pass from the
summation to the integration in the relevant formulas
(12) and (13) and to perform the specific calculations
with the use of a computer. For a 3D-system in the
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Fig. 4. Polaron energies for a crystal CdSe and the heterostructure
CdSe/glass. 1 – the electron energy, 2, 3 — 2D- and 3D-systems of
a crystal CdSe, 4, 5, 6 — heterosystems CdSe/glass with quantum
wells with widths of 25, 50, and 100 Å, respectively

frames of perturbation theory, the dispersion law can be
derived in the analytic form:

E3D
pol (k) = −α

~2

2me
k2

f

arcsin k
kf

k
kf

. (16)

In the region of small wave vectors, formula (16)
yields the well-known result

E3D
pol (0) = −α ~ω (17)

which coincides with that derived by the LLP method.
For a 2D-system, formula (8) allows us to deduce the
dispersion law for polarons. It can be also written in the
analytic form as

E2D
pol (k) = −α

4
~ω0F

(
2π,

k

kf

)
, (18)

where F
(
2π, k

kf

)
is the elliptic integral of the first kind

[18].
Let k ≈ 0. After simple transformations, the polaron

energy is reduced to the form

E2D
pol (0) = −πα

2
~ω0. (19)

In Fig. 4, we give the function Ep = Ep (k) for
a crystal CdSe. Besides the polaron energy (curves 2-
6), we present the dependence for a “bare” electron
(curve 1).

Fig. 5. Polaron energy (for the heterostructure CdSe/glass); curves
1, 2 — the polaron energy of 2D- and 3D-structures, respectively,
calculated according to perturbation theory, curves 3, 4 — the
polaron energy in 2D- and 3D-structures, respectively, calculated
by the LLP method

The given plots indicate that the dispersion law has
parabolic character in the region of small wave vectors
for a massive crystal and for a quasi-two-dimensional
system (a heterosystem) or a 2D-crystal. The increase
in the wave vector changes the dependence Ep = Ep (k).
Each dispersion curve is characterized by the point of
inflection (kp) and by the point of maximum (km). A
decrease in the dimensionality of the system leads to a
decrease in numerical values of kp and km.

The analogous calculations for Ep = Ep (k) were
performed by the LLP method. For small wave vectors
(k ≈ 0), we get practically the same dependence as
by perturbation theory. The increase in the value of
the wave vector is accompanied by the growth of the
deviation between the results of both methods. In Fig. 5,
we give only the dispersive curves for 3D- 2D-systems for
the sake of clearness. In the region under consideration
(k ≤ kf ) for a fixed k, the decrease in the dimensionality
of a crystalline system increases the difference between
the values of the polaron energy derived with the use of
perturbation theory and the LLP method.

The calculation performed for the heterosystem
CuCl/glass and a crystal CuCl, which is characterized by
a greater electron-phonon interaction, indicates that the
dispersion laws are qualitatively analogous to that for a
crystal CdSe. But the difference between the results of
two methods of calculations for the CuCl-heterosystems
is greater than that for the CdSe-based ones.
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a b

Fig. 6. Dependences mp = mp (k) according to perturbation theory (curves a) and the LLP method (curves b): 1 — 3D-crystal GaAs;
2 — 2D-crystal GaAs; 3 — heterosystem GaAs/AlAs with L = 25 Å

More obvious is the difference between the results
of calculations according to perturbation theory and the
LLP method for the parameter called by the effective
polaron mass which is defined by the second derivative
of the function Epol = Epol (k):

m−1
p =

1
~2

∂2E

∂k2
.

In Fig. 6, we present the dependences mp = mp (k)
for the heterosystem GaAs/AlAs. In the region of small
k, both methods give the same results. But the increase
in k leads to the growth of the difference of the
functions mp = mp (k) derived by different methods.
In particular, mp = mp (k) tends to infinity according
to perturbation theory (Fig. 6,a) as k → kp, which
is understandable, since kp is the point of inflection
in the relevant plots Epol = Epol (k) (Fig. 4). The
function mp = mp (k) derived by the LLP method is
smoother and reaches the maximum value in the region
k ≈ kp.

Thus, we have studied the energy spectrum of a
polaron in certain quasi-two-dimensional heterosystems
with the variable parameter of the electron-phonon
interaction (0 < α < 3) depending on the wave
vector. The calculations were performed by using
perturbation theory and the variational method of
Lee—Low—Pines. The specific calculations were carried
out for the heterostructures GaAs/AlAs, CdSe/glass,
and CuCl/glass, for which the weak and intermediate
electron-phonon couplings are realized: α = 0.071, α =

0.0461, and α = 2.091, respectively. In the frames of
the LLP method, we have determined the wave function
of a polaron, calculated the mean number of virtual
phonons surrounding an electron, evaluated the binding
energy of a polaron and its effective mass as a function
of the wave vector, and carried out the comparative
analysis of the structures with different electron-phonon
couplings.
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ВПЛИВ ПАРАМЕТРА ЕЛЕКТРОН-ФОНОННОЇ
ВЗАЄМОДIЇ НА ЕНЕРГЕТИЧНИЙ СПЕКТР
ПОЛЯРОНIВ КВАЗIДВОВИМIРНИХ СТРУКТУР

В.I. Бойчук, В.А. Борусевич

Р е з ю м е

Наведено результати дослiдження енергетичного спектра по-
лярона квазiдвовимiрних гетеросистем з рiзною величиною па-
раметра електрон-фононної взаємодiї (0 < α < 3) в залежно-
стi вiд хвильового вектора. Обчислення проведено за допомо-
гою двох методiв: теорiї збурень та варiацiйного методу Лi—
Лоу—Пайнса (ЛЛП). Конкретнi обчислення проведено для ге-
тероструктур GaAs/AlAs, CdSe/скло i CuCl/скло, для яких ре-
алiзовується слабкий i промiжний електрон-фононний зв’язок:
α = 0, 071, α = 0, 0461 i α = 2, 091 вiдповiдно. У рамках методу
ЛЛП визначено хвильову функцiю полярона. Визначено також
середнє число вiртуальних фононiв, що охоплюють електрон.
Обчислено енергiю зв’язку полярона та його ефективну масу
як функцiї хвильового вектора. Зроблено порiвняльний аналiз
структур з рiзним електрон-фононним зв’язком.
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