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Models of a quantum oscillator on the base of the discrete series
representations of the Lie algebra su(1, 1) are constructed. The
position and momentum operators in these models coincide with
the operators J2 and J1 of these representations, respectively.
As for the standard quantum harmonic oscillator, the position
and momentum operators in the models have continuous simple
spectra, covering the real line. The eigenfunctions of these
operators are explicitly found. It is shown that the usual quantum
harmonic oscillator is a limit of the oscillators constructed in the
paper, that is, the last oscillators can be considered as deformations
of the quantum harmonic oscillator.

1. Introduction

The su(1, 1)-model of a quantum oscillator is a model
that obeys the dynamics of a harmonic oscillator, with
the position and momentum operators and Hamiltonian
being the functions of elements of the Lie algebra
su(1, 1). The aim of this paper is to develop the theory of
such oscillators using the discrete series representations
of the Lie algebra su(1, 1).

There exist many algebraic constructions which
can be used for building up different models of
quantum oscillators. For most of them, it is difficult
to construct the theory of such an oscillator: spectra
of observables, explicit form of eigenfunctions of
observables, description of time evolution, etc. Only for
some of such models, one can develop the corresponding
theory. In 1989, there was proposed (see [1] and [2]) the
so-called q-oscillator which is a q-deformed analog of the
usual quantum harmonic oscillator. The theory of this
oscillator was elaborated in detail. There exist physical
problems for which the q-oscillator is more useful than
the quantum harmonic oscillator (see, for example, [3]
and [4]). Unlike the quantum field theory constructed
on the base of standard quantum harmonic oscillators,
a quantum field theory constructed on the base of a q-
oscillator is free of some divergences. The q-oscillator has
many useful properties which are absent for the standard
quantum harmonic oscillator (see, for example, [5]
and [6]).

However, for the q-oscillator, the basic relations

[H, Q] = −iP, [H, P ] = iQ (1)

are violated. This is why the q-oscillator is not attractive
for many physicists.

For this reason, there were made much efforts to
construct useful models of quantum oscillators which
do not violate relations (1). There were formulated the
postulates which have to be satisfied on the construction
of models of quantum oscillators [7]. These postulates are

1. There exists an essentially self-adjoint (Hermitian)
position operator denoted as Q, whose spectrum Spec Q
is the set of positions of the system.

2. There exists a self-adjoint Hamiltonian operator,
H, which generates time evolution through the Newton—
Lie, or equivalent Hamilton—Lie, equations

[H, [H,Q]] = Q ⇐⇒
{

[H, Q] =: −iP,
[H, P ] = iQ,

(2)

where [ · , · ] is the commutator. The first Hamilton
equation in (2) defines the momentum operator P ,
while the second one contains the harmonic oscillator
dynamics. The set of momentum values of the system is
the spectrum Spec P of P .

3. The three operators, Q, P and H closed into an
associative algebra satisfy the Jacobi identity

[P, [H, Q]] + [Q, [P, H]] + [H, [Q, P ]] = 0. (3)

The second and third postulates determine that
[Q,P ] must commute with H, which implies that it
can only be of the form [Q, P ] = i f(H), where f
is some function of H (including constants) and the
i is placed to make f(H) self-adjoint, but do not
otherwise specify this basic commutator further. For a
constant f(H) = ~1̂, one recovers the standard oscillator
algebra H4 = span {H,Q, P, 1̂} which contains the basic
Heisenberg—Weyl subalgebra W1 = span {Q,P, 1̂} of
quantum mechanics. In paper [8], the authors examined
the cases which correspond, in the unitary irreducible
representations of spin j = 1

2N (N ∈ {0, 1, . . . } fixed),
to the linear function f(H) = H − (j + 1

2 )1̂ =:
J3, and so the operators close into the Lie algebra
so(3) ≡ su(2) = span {Q,P, J3}. In paper [9], the above
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postulates are used to construct the so-called finite
q-oscillator, for which (contrary to the Biedenharn—
Macfarlane q-oscillator mentioned above) the relations
[H, Q] = −iP and [H, P ] = iQ are fulfilled.

The quantum oscillators constructed in [8] and [9]
are characterized by the property that the position and
momentum operators have finite spectra. This property
is useful for quantum optics. In the present paper, we use
the Lie algebra su(1, 1) in order to construct, by means
of the above postulates, models of the quantum oscillator
which would have continuous spectra of the position and
momentum operators.

For deriving properties of our oscillators, we use the
theory of special functions and orthogonal polynomials.
Namely, using the connection between self-adjoint
operators (in our case, they are the position and
momentum operators) and orthogonal polynomials (see
[6] for the description of this connection), we are able
to find spectra of the position and momentum operators
and to derive an explicit form of their eigenfunctions.
We also describe explicitly the evolution operator in the
coordinate space.

We will show at the end of the paper that our
oscillators parametrized by a positive number l give the
usual quantum harmonic oscillator in the limit l → ∞.
This means that our oscillators can be considered as a
deformation of the quantum harmonic oscillator. It may
occur that this deformation in some cases can be more
useful than the Biedenharn—Macfarlane q-oscillator.

We consider that our oscillators can be useful for
the application to quantum systems in a curved space-
time (related to the motion group SU(1,1)≡ SO0(2, 1))
and to quantum systems with the group SU(1,1)≡
SO0(2, 1) describing their dynamical symmetry. These
oscillators can be considered (along with the well-
known q-oscillator) as new deformations of the standard
quantum harmonic oscillator. We believe that there
exist the specific quantum mechanical systems described
by our oscillators. A work in this direction will be
continued.

2. Discrete Series Representations of su(1, 1)

The Lie algebra su(1, 1) has the generators J0, J1, J2

which satisfy the commutation relations

[J0, J1] = iJ2 , [J1, J2] = −iJ0 , [J2, J0] = iJ1. (4)

Instead of the generators J1, J2, sometimes the
generators J± = J1 ± iJ2 are used. They obey the

relations

[J0, J±] = ±J± , [J−, J+] = 2J0 (5)

which follows from (4).
The Lie algebra su1,1 ∼ so2,1 has several

series of unitary irreducible representations, that is,
representations which satisfy the relations J∗0 = J0 and
J∗+ = J− (see, for example, [10], Chapter 6). These
relations mean that the corresponding representations
of the Lie group SU(1,1)∼SO0(2, 1) are unitary. For
our construction, we need the so-called positive discrete
series of irreducible representations. They are given by
a positive number l and are denoted by Tl, respectively.
Below we will conduct our consideration only for integer
or half-integer l. In order to generalize this consideration,
we need only to replace factorials containing l by the
corresponding Γ-functions.

In order to realize the representations Tl, we consider
the space P of all polynomials in one variable y. Fixing
l, we introduce a scalar product in P, considering that
the monomials

el
n(y) = al

nyn , al
n =

(
(2l + n− 1)!

n!

)1/2

, (6)

n = 0, 1, 2, 3, · · · ,

are orthonormal, that is, 〈el
m, el

n〉 = δmn. Closing the
space P with respect to this scalar product, we obtain
a Hilbert space which will be denoted as Hl. Clearly, it
depends on a value of l. A detailed characterization of
this Hilbert space (as a space of analytic functions) and
the corresponding description of the scalar product can
be found in [10], Chapter 6.

An explicit realization of the representation
operators Ji, i = 0, 1, 2, of the representation Tl in
terms of the first-order differential operators is given as

J0 = y
d

dy
+ l , J1 =

1
2
(1 + y2)

d

dy
+ ly ,

J2 =
i
2
(1− y2)

d

dy
− ily (7)

(see [10], Chapter 6). Acting by these operators upon the
basis elements el

n ≡ el
n(y), n = 0, 1, 2 · · · , we find that

J0 el
n = (l + n) el

n, J+ el
n =

√
(2l + n)(n + 1) el

n+1,
(8)

J− el
n =

√
(2l + n− 1)n el

n−1 . (9)

It is easy to check that these operators satisfy the
unitarity conditions J∗0 = J0, J∗+ = J−.
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3. Description of the su(1, 1)-models

In order to describe the models of the quantum oscillator
based on irreducible representations of the Lie algebra
su(1, 1), we fix a non-negative integer or half-integer l
and consider the discrete series representation Tl from
the previous section. If J0, J1, J2 are operators of this
representation, we define the Hamiltonian H and the
position and momentum operators Q and P as

H = J0 − l + 1/2, Q = J2, P = J1. (10)

Then, due to (4), Q,P , and H satisfy the commutation
relations

[H, Q] = −iP, [H, P ] = iQ, [Q,P ] = i(H + l − 1/2).
(11)

Clearly, these operators satisfy postulates 1—3 of
Introduction. The evolution of our system over time is
the harmonic motion with

eiτH

(
Q
P

)
e−iτH=

(
Q(τ)
P (τ)

)
=

=
(

cos τ sin τ
− sin τ cos τ

) (
Q
P

)
.

This is a group U(1) of inner automirphisms of the
Lie algebra su(1, 1) and of rotations of the phase-space
surface. We have

exp iτH=exp iτ(J0 − l + 1/2)=e−i(l−1/2)τ exp iτJ0.
(12)

The explicit form of the time evolution in the coordinate
space will be derived below.

Remark that the basis el
n, n = 0, 1, 2, · · · , of the

Hilbert space Hl introduced in the previous section
consists of eigenfunctions of the Hamiltonian H:

Hel
n = (n + 1/2)el

n, n = 0, 1, 2, · · · ,

that is, the spectrum of H coincides with the spectrum
of the Hamiltonian of the standard quantum harmonic
oscillator.

Thus, to each number l (l = 0, 1
2 , 1, 3

2 , 2, · · · ), there
corresponds a model of the quantum oscillator. To
different values of l, there correspond non-equivalent
models.

4. Spectrum and Eigenfunctions of the
Momentum Operator

Since P = J1, the momentum operator P in the basis of
the Hamiltonian eigenfunctions el

n, n = 0, 1, 2, · · · , has
the form

Pel
n =

1
2

[√
(2l+n)(n+1) el

n+1 +
√

(2l+n−1)nel
n−1

]
.

We wish to find the spectrum and eigenfunctions of
this operator. Let ψp(y) be an eigenfunction of P
corresponding to the eigenvalue p, Pψp(y) = pψp(y).
Then

ψp(y) =
∞∑

n=0

hn(p)el
n(y), (13)

where hn(p) are coefficients depending on eigenvalues p.
In order to find an explicit form of eigenfunctions

ψp(y), we substitute the expression (13) for ψp(y) into
the equation Pψp(y) = pψp(y):

1
2

∞∑
n=0

hn(p)
[√

(2l + n)(n + 1) el
n+1+

+
√

(2l + n− 1)n el
n−1

]
= p

∞∑
n=0

hn(p)el
n.

Equating the coefficients of a fixed basis element el
n

on both sides of this equality, we obtain a recurrence
relation for the coefficients hn(p):

2phn(p) =
√

(2l + n)(n + 1) hn+1(p)+

+
√

(2l + n− 1)nhn−1(p). (14)

It is clear from (13) that the coefficients hn(p) are
uniquely determined up to a common constant. We have
h−1(p) = 0. Setting h0(p) = 1, we see that hn(p),
n = 1, 2, · · · , are calculated uniquely. Moreover, relation
(14) shows that hn(p) are polynomials in p.

In order to solve the recurrence relation (14), we
make the substitution

hn(p) = (n!(2l + n− 1)!−1)1/2h′n(p).

Then relation (14) turns into

2ph′n(p) = (n + 1) h′n+1(p) + (2l + n− 1)h′n−1(p). (15)

Comparing this relation with the recurrence relation

(n + 1)P (λ)
n+1(z; φ)− 2[z sinφ + (n + λ) cos φ]P (λ)

n (z; φ)+
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+(n + 2λ− 1)P (λ)
n−1(z;φ) = 0

(see formula (1.7.3) in [11]) for the Meixner—Pollaczek
polynomials

P (λ)
n (z; φ) =

(2λ)n

n!
einφ

2F1(−n, λ + iz; 2λ; 1−e−2iφ)

at φ = π/2, we find that

h′n(p) = P (l)
n (p;π/2) =

(2l)n

n!
in2F1(−n, l + ip; 2l; 2),

where 2F1 is the Gauss hypergeometric function of a
polynomial type. For the coefficients in (13), we get

hn(p) = (n!(2l + n− 1)!−1)1/2P (l)
n (p;π/2). (16)

Thus, we can state that eigenfunctions of the
momentum operator P are of the form

ψp(y) =
∞∑

n=0

(
n!

(2l + n− 1)!

)1/2

P (l)
n (p; π/2)el

n(y) =

=
∞∑

n=0

P (l)
n (p; π/2)yn (17)

with the Meixner—Pollaczek polynomials P
(l)
n (p, π/2),

where we have taken into account expression (6) for the
basis elements.

We can sum up expression (17) for the eigenfunctions
ψp(y). Namely, taking into account formula (1.7.11) in
[11], we finally find that the eigenfunctions are of the
form

ψp(y) = (1 + iy)−l−ip(1− iy)−l+ip. (18)

We use formula (17) in order to find the spectrum
of the momentum operator P . To this end, we take
into account the following. It is well known that the
operator P coinciding with the operator J1 of the
discrete series representation Tl is self-adjoint. Moreover,
P is representable in the basis {el

n} by a Jacobi matrix,
that is, by a matrix of the form

M =




b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
· · · · · · · · · · · · · · · · · ·




, ai 6= 0.

There exists a theory which allows to find the spectra
of operators of such a type ([12], Chapter VII; a

short description of this theory see in [6]). To apply
this theory, we note that the eigenfunctions ψp(y) are
expressed in terms of the basis elements el

n by formula
(13) with coefficients (16) which are polynomials.
According to the results of Chapter VII in [12],
these polynomials are orthogonal with respect to some
measure dµ(p). (This measure is unique, up to a
constant, since the operator P is self-adjoint; see [6].)
The set (a subset of R), on which the polynomials are
orthogonal, coincides with the spectrum of the operator
P , and dµ(p) determines the spectral measure of this
operator. Moreover, the spectrum of P is simple.

Thus, to find the spectrum of the momentum
operator P , we note that the Meixner—Pollaczek
polynomials P

(l)
n (p; π/2) are orthogonal and the

orthogonality relation is of the form

1
2π

∞∫

−∞
|Γ(l + ip)|2P (l)

m (p;π/2)P (l)
n (p; π/2)dp =

= Γ(n + 2l)(22ln!)−1δmn (19)

(see formula (1.7.2) in [11]). This means that the
spectrum of P coincides with the whole real line:

Spec P = R.

Thus, the spectrum is continuous and simple.
The continuity of the spectrum means that the
eigenfunctions ψp(y) are not elements of the Hilbert
space Hl. They form a continuous basis of Hl (similar
to the basis {eipx} of the Hilbert space L2(R)).

Eigenfunctions of P are determined up to constants.
In order to normalize the eigenfunctions ψp(y),
we take into account the orthogonality relation
(19) for Meixner—Pollaczek polynomials. Since these
polynomials correspond to the determinate moment
problem (see, for example, [6] for the description of this
correspondence), the set P

(l)
n (p, π/2), n = 0, 1, 2, · · · ,

is complete in the Hilbert space L2(R, dµ(p)) with
respect to the orthogonality measure dµ(p) for these
polynomials. This means that

∞∑
n=0

22ln!
2πΓ(n + 2l)

|Γ(l + ip)|2P (l)
n (p, π/2)P (l)

n (p′, π/2) =

= δ(p− p′).
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Then, by (17),

〈ψp(y), ψp′(y)〉 =
∞∑

n=0

n!
(2l + n− 1)!

P (l)
n (p, π/2)×

×P (l)
n (p′, π/2) =

2πδ(p− p′)
22l|Γ(l + ip)|2 .

Therefore, the functions

ψ̃p(y) = (2π)−1/22l|Γ(l + ip)|ψp(y), p ∈ R,

are normalized, that is, 〈ψ̃p(y), ψ̃p′(y)〉 = δ(p− p′).

5. Spectrum and Eigenfunctions of the
Position Operator

The position operator Q in the basis el
n, n = 0, 1, 2, · · ·

has the form

Qel
n=

1
2i

[√
(2l+n)(n+1) el

n+1 −
√

(2l+n−1)n el
n−1

]
.

By changing the basis {el
n} by the basis {êl

n}, where
êl
n = i−nel

n, we see that the position operator Q is given
in the last basis by the same formula as the momentum
operator is given in the basis {el

n}. This means that the
spectrum of the operator Q coincides with the spectrum
of P , that is,

Spec Q = R.

We have to find eigenfunctions of the position operator.
They can be found (by using the basis {êl

n}) in the same
way as in the case of the momentum operator. For this
reason, we expose only the results.

Let φx(y) be an eigenfunction of Q corresponding to
the eigenvalue x, Qφx(y) = xφp(y). Then

φx(y) =
∞∑

n=0

h̃n(x)el
n, (20)

where, as before, el
n(y) = al

nyn and h̃n(x) are coefficients
depending of eigenvalues x.

Repeating the reasoning of the previous section, we
derive a three-term linear recurrence relation for the
polynomials h̃n(x) and find that

h̃n(x) = i−nhn(x) =

= i−n

(
n!

(2l + n− 1)!

)1/2

P (l)
n (x;π/2), (21)

where P
(l)
n (x; π/2) is the Meixner—Pollaczek polynomial

from Section 4. Thus,

φx(y) =
∞∑

n=0

i−n

(
n!

(2l + n− 1)!

)1/2

P (l)
n (x; π/2)el

n(y) =

=
∞∑

n=0

i−nP (l)
n (x; π/2)yn. (22)

Taking into account formula (1.7.11) in [11], we find that
eigenfunctions of the position operator Q are of the form

φx(y) = (1 + y)−l−ix(1− y)−l+ix. (23)

The functions

φ̃x(y) =
2l|Γ(l + ix)|√

2π
φx(y) (24)

are normalized, that is, they satisfy the normalization
condition 〈φ̃x(y), φ̃x′(y)〉Hl

= δ(x− x′).

6. Coordinate Realization of an Oscillator

In Section 3, we have constructed a realization of our
oscillator (depending on a value of l) on the space of
functions in the supplementary variable y. It is natural
to have its realization on the space of functions in
the coordinate x and on the space of functions in the
momentum p.

Let L2(R;µ) be the space of squared integrable
functions f(x) (where x is the coordinate of the
oscillator) with respect to the measure µ from formula
(19), that is, the scalar product in L2(R;µ) is given by

〈f(x), g(x)〉 =
22l

2π

∞∫

−∞
f(x)g(x)|Γ(l + ix)|2dx. (25)

It follows from (19) that polynomials (21) constitute the
orthonormal basis of L2(R; µ).

We construct a one-to-one linear isometry Ω from
the Hilbert space Hl, considered in Section 2, onto the
Hilbert space L2(R; µ) given by the formula

Ω : Hl3g(y) → f(x)=〈g(y), φx(y)〉Hl
∈L2(R; µ), (26)

where φx(y) are eigenfunctions (23) of Q. It follows from
(20) that

Hl 3 el
n(y) → 〈el

n(y), φx(y)〉Hl
= h̃n(x),
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that is, Ω maps the orthonormal basis {el
n(y)} ofHl onto

the orthonormal basis {h̃n(x)} of L2(R; µ). This means
that Ω is, indeed, a one-to-one isometry.

The operator Q acts on L2(R;µ) as the multiplication
operator,

Qf(x) = xf(x).

Indeed, according to (26) if Ωg(y) = f(x) =
〈g(y), φx(y)〉Hl

, we have

Qg(y) → Qf(x) = 〈Qg(y), φx(y)〉Hl
=

= 〈g(y), Qφx(y)〉Hl
= 〈g(y), xφx(y)〉Hl

= xf(x).

Unfortunately, we could not find an acceptable
differential form for the operator P .

We can find how Q acts upon the basis elements
h̃n(x), n = 0, 1, 2, · · · , of the Hilbert space L2(R;µ).
According to the recurrence relation for polynomials
(21) (which follows from the recurrence relation for the
polynomials P

(l)
n (z, π/2)), we have

Qh̃n(x) = xh̃n(x) =
i
2

[√
(2l + n)(n + 1)h̃n+1(x)−

−
√

(2l + n− 1)n h̃n−1(x)
]
.

Clearly,

H h̃n(x) = (n + 1/2) h̃n(x).

7. Evolution Operator in the Coordinate Space

According to (12), the evolution operator exp iτH acts
upon the basis elements el

n, n = 0, 1, 2, · · · , of the Hilbert
space Hl as

(exp iτH)el
n = e−i(l−1/2)τei(l+n)τel

n = ei(n+1/2)τ el
n.

We wish to find how this operator acts on the coordinate
space, that is, on the Hilbert space L2(R;µ). If the
isometry Ω from (26) maps a function g(y) ∈ Hl

onto a function f(x) ∈ L2(R;µ), then, to the function
(exp iτH)g(y) ∈ Hl, there corresponds the function

(exp iτH)f(x) = 〈(exp iτH)g(y), φx(y)〉Hl
=

= 〈g(y), exp(−iτH)φx(y)〉Hl
=

=
∞∑

n=0

〈g(y), el
n〉Hl

〈el
n, exp(−iτH)φx(y)〉Hl

=

=
∞∑

n=0

〈g(y), el
n〉Hl

〈exp(iτH)el
n, φx(y)〉Hl

=

=
∞∑

n=0

∞∫

−∞
〈g(y), φ̃x′(y)〉Hl

〈φ̃x′(y), el
n〉Hl

dx′×

× exp(iτ(n + 1/2))〈el
n, φx(y)〉Hl

=

=
22l

2π

∞∫

−∞
f(x′)Kτ (x, x′)|Γ(l + ix′)|2dx′,

where the kernel Kτ (x, x′) coincides with

Kτ (x, x′) =

=
∞∑

n=0

〈φx′(y), el
n〉Hl

〈el
n, φx(y)〉Hl

exp(iτ(n + 1/2)).

Taking into account the expression for 〈el
n, φx(y)〉Hl

, we
find that

Kτ (x, x′) =
∞∑

n=0

exp(iτ(n + 1/2))h̃n(x)h̃n(x′) =

= eiτ/2
∞∑

n=0

einτ (2l + n− 1)!
n!(2l − 1)!2 2F1(−n, l + ix; 2l; 2)×

×2F1(−n, l − ix′; 2l; 2),

where we have taken into account that h̃n(x) =
(2l+n−1)!1/2

n!1/2(2l−1)! 2F1(−n, l+ix; 2l; 2). Due to formula (12) of
Section 2.5.2 in [13], we finally obtain

Kτ (x, x′) = c′eiτ/2(1+2eiτ )−2l−i(x−x′)(1−eiτ )i(x−x′)×

×2F1

(
l+ix, l−ix′; 2l;

4eiτ

(1+2eiτ )2

)
, (27)

where c′ = (2l − 1)!−2. Thus, the evolution operator
exp iτH is given by the formula

(exp iτH)f(x) =
22l

2π

∞∫

−∞
Kτ (x, x′)f(x′)|Γ(l + ix′)|2dx′,
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where the kernel Kτ (x, x′) is given by (27). Since
eiτHeiτ ′H = ei(τ+τ ′)H , this kernel satisfies the relation

22l

2π

∞∫

−∞
Kτ (x, x′)Kτ (x′, x′′) |Γ(l + ix′)|2dx′ =

= Kτ+τ ′(x, x′′),

which gives the corresponding relation for the
hypergeometric function 2F1 in (27).

8. Momentum Realization of the Oscillator

In Section 6, we have constructed a realization of our
oscillator on the space of functions in the coordinate x.
In this section, we realize the oscillator on the space of
functions in the momentum p.

Let L̃2(R; µ) be the space of square integrable
functions f(p) (where p is the momentum of the
oscillator) with respect to the measure µ from formula
(19), that is, the scalar product in L̃2(R; µ) is given by

〈f(p), g(p)〉 =
22l

2π

∞∫

−∞
f(p)g(p)|Γ(l + ip)|2dp.

Polynomials (16) constitute an orthonormal basis of the
Hilbert space L̃2(R;µ).

We construct a one-to-one isometry Ω̃ from the
Hilbert space Hl considered in Section 2 onto the Hilbert
space L̃2(R;µ) given by the formula

Ω̃ : Hl3g(y) → f̃(p) := 〈g(y), ψp(y)〉Hl
∈L̃2(R;µ),

(28)

where ψp(y) are eigenfunctions (18) of the momentum
operator P . It follows from (13) that

Hl 3 el
n(y) → 〈el

n(y), ψp(y)〉Hl
= hn(p),

that is, Ω̃ maps the orthonormal basis {el
n(y)} ofHl onto

the orthonormal basis {hn(p)} of L̃2(R; µ).
As in the case of the position operator Q, we get that

the operator P acts on L̃2(R; µ) as the multiplication
operator,

Pf(p) = pf(p).

We can find how P acts upon the basis elements
hn(p), n = 0, 1, 2, · · · , of the Hilbert space L̃2(R;µ).
According to the recurrence relation for polynomials

(16) (which follows from the recurrence relation for the
polynomials P

(l)
n (z, π/2)), we have

Phn(p) = phn(p) =
1
2

[√
(2l + n)(n + 1)hn+1(p) +

+
√

(2l + n− 1)nhn−1(p)
]
.

We also have H hn(p) = (n + 1/2)hn(p).

9. An Analog of the Fourier Transformation

Let us first consider what we have in the case of the
standard quantum harmonic oscillator. This oscillator is
determined by the relation

aa+ − a+a = 1.

For the position and momentum operators QA and PA,
we have

Q =
1√
2
(a+ + a), P =

i√
2
(a+ − a).

The Hilbert space of states H is spanned by
the orthonormal vectors |n〉, n = 0, 1, 2, · · · . For
eigenvectors of Q and P, we have

Q|x〉 = x|x〉, P|p〉 = p|p〉
and Spec Q = R, Spec P = R.

For h ∈ H, we have

〈h, x〉H = h(x), 〈h, p〉H = h̃(p). (29)

In this way, we obtain a realization of H as a space of
functions in the coordinate or as a space of functions in
the momentum. Then the functions h(x) and h̃(p) from
(29) are related with each other by the usual Fourier
transformation:

h(x) =
1√
2π

∞∫

−∞
h̃(p)eipxdp.

Our aim in this section is to find what is an analog of
the Fourier transformation for our oscillators. Let g(y)
be a function of the Hilbert space Hl of Section 2. Then

Ω : g(y) → f(x)∈L2(R, µ), Ω̃ : g(y) → f̃(p)∈L̃2(R, µ).

We have to find how the functions f(x) and f̃(p) are
connected with each other. By (26) and (28), one has

f̃(p) = 〈g(y), ψp(y)〉Hl
=
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=

∞∫

−∞
〈g(y), φ̃x(y)〉Hl

〈φ̃x(y), ψp(y)〉Hl
dx =

=
22l

2π

∞∫

−∞
|Γ(l + ix)|2f(x)〈φx(y), ψp(y)〉Hl

dx =

=
22l

2π

∞∫

−∞
f(x)F (x, p)|Γ(l + ix)|2dx,

where the kernel F (x, p) coincides with

F (x, p) = 〈φx(y), ψp(y)〉Hl
=

=
∞∑

n=0

n!i−n

(2l + n− 1)!
P (l)

n (x, π/2)P (l)
n (p, π/2) =

=
∞∑

n=0

i−n(2l + n− 1)!
(2l − 1)!2n! 2F1(−n, l + ix; 2l; 2)×

×2F1(−n, l − ip; 2l; 2).

Taking into account formula (12) of Section 2.5.2 in [13],
we finally obtain

F (x, p) =
(1 + 2i)−2l

(2l − 1)!2
(1 + 2i)i(p−x)(1− i)i(x−p)×

×2F1

(
l + ix, l − ip; 2l;

4i
(1 + 2i)2

)
. (30)

Thus, an analog F : f(x) → f̃(p) of the Fourier
transformation for our oscillator is given by the formula

Ff(x) = f̃(p) =
22l

2π

∞∫

−∞
f(x)F (x, p)|Γ(l + ix)|2dx,

where the kernel F (x, p) is given by formula (30). The
transformation F is linear and isometric, that is, it
conserves the scalar product. Therefore, the inverse
transformation F−1 is given by

F−1f̃(p) = f(x) =
22l

2π

∞∫

−∞
f̃(p)F (x, p)|Γ(l + ip)|2dp,

where F (x, p) means a complex conjugate of F (x, p). The
Plancherel formula
∞∫

−∞
|f(x)|2|Γ(l + ix)|2dx =

∞∫

−∞
|f̃(p)|2|Γ(l + ip)|2dp

holds.

10. A Limit to the Quantum Harmonic
Oscillator

We have constructed an infinite number of models of
the quantum oscillator. These models are characterized
by the number l. The model corresponding to l will be
denoted by oscl. We state that

lim
l→∞

l−1/2 oscl = osc, (31)

where osc denotes the standard quantum harmonic
oscillator. Formula (31) means that

lim
l→∞

l−1/2 Ql = Q, lim
l→∞

l−1/2 Pl = P, (32)

where Q ≡ Ql, P ≡ Pl are the position and momentum
operators for oscl, and Q, P are the position and
momentum operators for osc. A validity of relations (32)
follows from the fact that, under this limit, relations (11)
turn into

[H,Q] = −iP, [H,P] = iQ, [Q,P] = i.

It follows from the formula for the action of the operators
Ql and Pl upon the basis el

n, n = 0, 1, 2, · · · , that, in the
limit l →∞, one gets the formulas

P ẽn =
i√
2
(
√

n + 1 ẽn+1 −
√

n ẽn−1),

Qẽn =
1√
2
(
√

n + 1 ẽn+1 +
√

n ẽn−1),

where ẽn = i−1el
n. They are the standard formulas for

Q and P.
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su(1, 1)-МОДЕЛI КВАНТОВОГО ОСЦИЛЯТОРА

А.У. Клiмик

Р е з ю м е

На базi представлень дискретної серiї алгебри Лi su(1, 1) побу-
довано моделi квантового осцилятора. Оператори положення
та iмпульсу в цих моделях збiгаються вiдповiдно з оператора-
ми J2 i J1 цих представлень. Як i в стандартному квантовому
гармонiчному осциляторi, оператори положення та iмпульсу в
цих моделях мають неперервнi простi спектри, що покривають
всю дiйсну вiсь. Власнi функцiї цих операторiв знайдено в яв-
ному виглядi. Показано, що звичайний квантовий гармонiчний
осцилятор є границею осциляторiв, побудованих у цiй роботi,
тобто останнi можуть розглядатися як деформацiї квантового
гармонiчного осцилятора.
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