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The influence of potential oscillation modes on the motion of
a point vortex near a solid wall is studied. The equations that
describe the motion of a point vortex in the given field of a
potential wave near the solid wall are derived. It is shown that
the character of the vortex motion changes dramatically under
the influence of a potential wave, and the possible modes of the
vortex motion are analyzed.

1. Introduction

In all fluid media, there are important objects of
the two types. These are waves and vortices. The
role of linear waves is significant and well studied.
From the physical point of view, those waves can
be considered as distinctive universal particles. The
approach based on the properties of these particles
and their interaction facilitates the understanding of
many linear and nonlinear phenomena. In a certain
sense, vortices can also be considered as quasi-particles.
These particles are also useful to understand many
phenomena in fluid media. The difficulty lies in the fact
that vortices are the solutions of nonlinear equations of
fluid dynamics. The linear approximation is of no use
for vortices. This explains the difficulties encountered
in studying vortices. The study of vortices is further
complicated by the fact that the reduction of the
problem to a one-dimensional one, which is a fruitful
approach for nonlinear waves, is not applicable to
vortices. Vortices are always multidimensional. Most
studied are the vortices in the two-dimensional ideal
fluid dynamics. These are the point vortices, which
resemble quasi-particles [1]. The equations of the vortex
motion in the Hamilton form have been derived by
Kirchhoff [2]. The evolution of interacting point vortices
is quite well understood. The motion of two vortices was
studied in early works [1] and [2] (see, for example, [3]).
The evolution of three vortices was analyzed in detail
in works [4, 5] (see also [6, 7]). In the case of arbitrary
positions and the appearance of a chaotic motion, the

problem of four and more vortices was proved in works
[8–11] to be non-integrable. The study of the influence of
a fluid boundary on the motion of vortices was started by
Helmholtz. He considered the motion of one point vortex
in the ideal fluid bounded by a plane. The modern theory
of the vortex motion in an arbitrary region was founded
in work [12] (see, for example, [13]). In other words,
the properties of waves and point vortices separately are
well studied at the present time. However, vortices and
waves in the fluid systems are observed simultaneously,
as a rule. Therefore, it is very important to study the
influence of these two hydrodynamical objects on each
other. The basis of the study of this influence was
founded by Lighthill [14, 15]. He studied the generation
of potential waves by the vortex motion. The study of
the inverse influence of potential waves on the vortex
evolution was started quite recently [16, 17]. It was found
that the character of the evolution of point vortices
changes dramatically under the influence of potential
waves. One of the examples is the collapse of vortices
(of the same sign of vorticity) under the influence of
potential oscillations with even a small amplitude [16,
17]. In the absence of potential oscillations, the collapse
of point vortices with vorticities of the same sign is
impossible.

In the present work, we consider the influence of
potential vibrational modes on the point vortex motion
near the solid wall. It is shown that the character of
vortex motion changes qualitatively. All possible modes
of the vortex motion under the action of a potential wave
are analyzed.

From the physical point of view, the simplest
influence on the vortex motion is realized by a potential
wave propagating along the wall. In this case, the wave
influence is reduced to the nonlinear oscillations of
the longitudinal component of the vortex velocity with
the frequency different from the wave frequency. The
distance of the vortex to the wall remains constant, as in
the absence of the potential wave. This is the case of an
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exactly integrable problem, and its explicit solutions are
presented in this paper. A more complicated influence
is rendered by the wave obliquely incident on the
wall. In this case, the vortex can approach the wall
and move away from the wall under the influence of
the incident and reflected waves. In the present work,
we analyze all the types of nonlinear different modes
as functions of the wave and vortex parameters. The
existence of a variety of modes creates the possibility
of a non-trivial control over the vortex by means of
potential waves. The obtained results can be used in
a number of physical applications. For example, using
the laws of vortex motion in the wave field, we can
reconstruct the total field of fluid velocity and study
a transfer of a passive admixture near the wall. This
transfer is important in a number of applications.
Another important example is the formation of vortex
structures during the line vortex motion near the
wall. It follows from the results obtained in this
work that, under the influence of localized potential
packets, a line vortex can develop local deformations
which will lead to the creation of localized vortex
structures. In particular, under small horseshoe-shaped
deformations of the vortex line, we can observe the
solitons propagating along the line vortex. The larger
the deformations, the more complicated are the vortex
structures. In this case, the dissipative processes will
lead to the transformation and formation of localized
vortex structures not related to the initial line vortex.
Here, we observe a specific mechanism of the vorticity
increasing near the wall. The obtained results explain
the mechanism and the initial stage of the formation of
vortex structures.

2. Equations of Vortex Motion in a Potential
Wave Field near the Wall

First, consider the velocity field of a potential wave
in the compressible fluid in the presence of a solid
wall. The amplitudes of potential waves are assumed
to be small. In this case, we obtain a potential mode
in the compressible fluid in the form of sound waves
(see, for example, [18]). In the presence of a wall, we
observe two most interesting steady-state cases of the
potential wave propagation. These are the propagation
of a wave along the wall and the oblique incidence of
a wave onto the boundary. Let the fluid be located
in the half space y > 0, and let the impenetrable
boundary be placed at y = 0. Consider, without any loss
of generality, potential waves propagating in the (x, y)
plane.

In the first case, the velocity field potential of a sound
wave takes the form

ϕ1s = a0 cos (kxx− Ωt). (1)

Here, a0 is the initial value of the wave amplitude,
~k = (kx, 0) is the wave vector, and Ω = ckx is the
frequency (c is the sound velocity in the medium). In the
second case, the velocity field potential is determined by
both the incident wave and the wave reflected from the
solid boundary at y = 0:

ϕ2s = a0 cos (yky) cos (kxx− Ωt). (2)

In this case, the angle of incidence α of the wave on
the boundary is determined from the relation tan(α) =
ky/kx, and Ω = ck.

Now we consider the equations of motion of a point
vortex near the boundary under the influence of a given
potential wave. In the derivation of these equations,
we use the approach developed in works [16, 17]. It is
well known that the vortex is frozen into the fluid, and
hence the vortex velocity is the same as the fluid velocity
(Vx, Vy) at the point of the vortex location. This means
that

dx1

dt
= Vx|x=x1y=y1

,

dy1

dt
= Vy|x=x1y=y1

,

where (x1, y1) is the position of the vortex in the half-
plane y > 0. According to the Helmholtz theorem [19],
the velocity field can be decomposed into the sum of
the vortical and potential components, ~V = ~vv + ~vp .
The potential component is determined by the given
external flux and the waves induced by the vortex
motion. However, the contributions from the induced
potential waves are proportional to the square of the
Mach number (see [14]), and these can be neglected in
the main approximation [16, 17].

The vortical velocity field of a single vortex near the
solid wall is well known [13], ~vv = (Γ/4πy, 0), and the
potential components of the velocity are ~vp = ∇ϕ (the
potentials are given above). The equations of the vortex
motion in the field of the given incident and reflected
sound waves (2) can be written in the form

dX

dτ
=

δ

Y
− 1− ε cos Y sin X, (3)

dY

dτ
= ∆ sin Y cosX, (4)
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Fig. 1. Positions of the stationary points A and B on the x axis
for various values δ and a fixed ε = 0.5. The solid lines correspond
to stationary points of type A, and the dashed lines correspond
to stationary points of type B. One dashed line corresponds to
two points of type B, because they have the same y coordinates
but different x coordinates. It can be seen that the change in the
number of the stationary points with increase in δ is related to the
generation and annihilation of the stationary points

where we have introduced the dimensionless variables
τ = Ωt, Y = yky and have made a transition into the
moving coordinate system X = kxx − τ . Here, we
obtain the dimensionless parameters ε = a0k2

x

Ω , ∆ =
a0k2

y

Ω , and δ = Γkxky

4πck that characterize the amplitudes
of the velocity components and the vortex intensity,
respectively.

For a sound wave propagating along the boundary
(1), the equation of the vortex motion takes the form

dX

dτ
=

σ

Y
− ε sin X − 1, (5)

dY

dτ
= 0. (6)

Here, the parameter σ = Γkx

4πc characterizes the
vortex intensity. In the absence of potential vibrations,
these systems of equations are reduced to the known
equations of the vortex motion near a solid wall (see,
for example, [13]). In this case, the character of the
vortex motion is very simple. A vortex moves along
the wall keeping the same distance from the wall at
the constant velocity Vv = Γ/4πy0 that depends on
the vorticity Γ and the initial distance y0 from the
wall.

Using the obtained equations, we will analyze the
possible modes of the vortex motion under the action of
a potential wave near the solid wall.

3. Vortex Motion in the Field of the Incident
and Reflected Sound Waves

Here, we analyze qualitatively the system of equations
(3) and (4). The coordinates of the stationary points
are determined by zeros of the right-hand sides of these
equations. Namely,

δ

Y
− 1− ε cosY sin X = 0, (7)

∆sin Y cos X = 0. (8)

Equation (8) has two types of solutions, and hence
there appear two sets of stationary points. Denote the
coordinates of these points by subscripts A and B. The
stationary points create a periodic system of points along
the x axis with period 2π. This means that the phase
portraits of the system of equations (3), (4) are periodic
along the x axis with period 2π.

In case A, the x coordinates of stationary points obey
the equation

X∗
A =

π

2
± kπ, (9)

where k = 0, 1, 2, . . ..
From Eq. (8), we obtain the y coordinates of the

stationary points B as

Y ∗
B = ±nπ, (10)

where n = 1, 2, . . .. Naturally, only the stationary
points located in the region occupied by a fluid, with
y > 0, have a physical sense. Therefore in case B,
we consider only Y ∗

B = nπ. The positions of the
stationary points A on the y axis are determined by the
equation

δ

Y ∗
A

= 1− αkε cos(Y ∗
A), (11)

where αk = sin(π
2 ± kπ) = (−1)k. The number of

solutions of this equation and, hence, the number of
stationary points A in one period depend significantly on
the parameters ε and δ. Figure 1 shows how the number
of stationary points A changes with the change in the
parameter δ at the fixed parameter ε. Figure 1 can be
considered, in fact, as a bifurcation diagram with respect
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Fig. 2. Regions of the parameters (ε, δ) that determine the number and type of stationary points in the phase portraits. The left and
right graphs show, respectively, the regions of parameters for ∆ > 0 and ∆ < 0. The first digit in the region number denotes the number
of stationary points of type A of the hyperbolic type, the second digit corresponds to the number of elliptic stationary points of type A,
and the third digit means the number of hyperbolic stationary points of type B for the numbers starting from a and b or the number
of nodes for the numbers starting from c and d. The phase portraits with the same digits but different letters differ from one another
by the shift along the x axis by a half-period π. Thus, a ←→ b c ←→ d at the shift by π

to the parameter δ. The bifurcations related to a change
in the number of stationary points correspond to the
birth and annihilation of the pairs of stationary points
A and B. Analyzing Eq. (11), we can find the regions
with different numbers of stationary points of type A in
the plane of parameters.

Analogously, the equation that determines the
positions of stationary points B and their numbers takes
the form

sin(X∗
B) =

δ − πn

πnε
αn, (12)

where αn = cos(nπ). At a fixed n, this equation has
solutions if the inequality
∣∣∣∣1−

δ

nπ

∣∣∣∣ ≤ |ε|

is fulfilled. These conditions determine, at various values
of n, the regions in the parameter plane with different
numbers of stationary points B in one period of the
phase portrait. The positions of stationary points B on
the y axis at various values δ and a fixed ε are also shown
in Fig. 1.

Now we consider the types of stationary points. The
characteristic equation for stationary points (X∗

A, Y ∗
A)

takes the form

λ2
A = αk∆sin(Y ∗

A)
(

δ

Y ∗2
A

− αkε sin(Y ∗
A)

)
.

It can be easily seen that the stationary
points A can be only elliptic (if the condition
αk∆sin(Y ∗

A)
(

δ
Y ∗2A

− αkε sin(Y ∗
A)

)
< 0 is satisfied) or

hyperbolic (if αk∆sin(Y ∗
A)

(
δ

Y ∗2A
− αkε sin(Y ∗

A)
)

> 0 ).
The parameter ∆ enters these conditions in a trivial
manner, and hence their validity depends only on its
sign. When the sign of ∆ changes, the hyperbolic
stationary points change to elliptic, and the elliptic
points change to hyperbolic, without change in their
position in the phase space.

Analogously, the type of points B is determined by
the characteristic equation

λ2 − αnλ cos(X∗
B)(∆− ε)−∆ε cos2(X∗

B) = 0.

This equation has solutions of the form

λ±B =
cos(X∗

B)
2

[αn(∆− ε)± (∆ + ε)].
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This implies that, at ∆ > 0, ε > 0 or ∆ < 0, ε < 0, the
points are of hyperbolic type, and, at ∆ < 0, ε > 0 or
∆ > 0, ε < 0, the stationary points are stable or unstable
nodes. In this case, the influence of the parameter ∆ is
more essential. Summarizing the data on the number of
stationary points in one period and on their types, we
can construct the regions of parameters for all possible
types of the phase portraits realized in a given mode
(Fig. 2). The total region of parameters is divided into
the infinite number of regions with various types of phase
portraits. Some of these regions with relatively simple
phase portraits are shown in Fig. 2. The choice of regions
is dictated by physical restrictions such as |ε| ≤ 1 and
by the condition that δ is not very big (for example,
|1 − δ/4π| ≤ ε). The construction of the rest regions
and their geometrical positions can be easily extended on
the whole plane of parameters. The numbering scheme
is chosen in accordance with the number and type of
stationary points on the phase portrait at the given
values of parameters.

Now we consider the motion modes of vortices in the
moving coordinate frame. It is clear that the complexity
of the phase portraits and the modes of vortex motions
increases with the number of stationary points in one
period. The general feature is the division of the phase
space into separate cells by separatrices. The number of
these cells increases with the number of stationary points
in one period. In each cell, only three types of behavior
can be realized. These are the nonlinear oscillations of
captured vortices with zero average velocity along the
x axis, the nonlinear oscillations of flying vortices with
non-zero average velocity along the x axis, and, finally,
the oscillations with the non-linear relaxation into a
stable node inside the cell. This last type of behavior
is unusual. During the relaxation, the memory about
the initial state of the vortex is completely lost. Such a
behavior is typical of dissipative systems. Figure 3 shows
the simple examples of the phase portraits characteristic
of various regions of parameters.

The phase portraits on the left part of Fig. 3 are
plotted for ∆ > 0, ε > 0 and ∆ < 0, ε < 0, and
those on the right part are constructed for ∆ < 0,
ε > 0 and ∆ > 0, ε < 0. These portraits exhibit a
certain symmetry. It is easy to see that these portraits
transit into one another at the permutation of elliptic
stationary points with hyperbolic points and vice versa.
Let us start with the analysis of the phase portraits
shown in Fig. 3 on the left. It can be seen that the
phase portraits are periodic along the x axis with period
2π. These portraits consist of the cells bounded by the
separatrices of hyperbolic stationary points. Inside these

cells, there are elliptic stationary points. A vortex, whose
initial coordinates fall in such a cell, becomes captured
and begins to nonlinearly oscillate in the longitudinal
and transverse directions near the elliptic point. If the
initial position of the vortex is below or above the cell,
the vortex moves along the boundary by oscillating
nonlinearly in the transverse direction.

The phase portraits shown on the right in Fig. 3
also consist of cells. Two upper phase portraits on
the right have the cells similar to those in the phase
portraits on the left. Hence, there is a similarity in
the modes of the vortex motion. In two bottom phase
portraits on the right, there appear the cells of a different
type. The vertices of these cells are occupied by the
hyperbolic stationary points, and there are one stable
and one unstable nodes on the two separatrices joining
the vertices. These regions are clearly visible in the
bottom right phase portrait. The appearance of nodes
means that the vortex with initial conditions belonging
to the corresponding cell will be inevitably attracted to
a stable node. Thus, we observe one more mode of the
vortex motion, when it is captured by a stable node.
Then the vortex velocity becomes equal to zero (in the
moving coordinate system).

In the conclusion of this section, we discuss the region
of parameters, in which the integrability of the equations
of the vortex motion can be easily proved. The system of
equations (3), (4) can be reduced to the quasi-Hamilton
form

∆
dX

dt
=

∂H

∂Y
, (13)

ε
dY

dt
= −∂H

∂X
. (14)

The role of the Hamiltonian H is played by the function

H = ∆δ ln Y −∆Y − ε∆ sinY sin X.

If we set ∆ = ε, the system of equations (13),(14)
becomes a Hamilton system with the time-independent
Hamiltonian. Thus, according to the Liouville theorem
on the integrability of Hamilton systems, this system
is integrable in quadratures [21]. We note that if the
condition ε = ∆ is set in the parameter plane (ε, δ), the
integrable systems belong to the regions (ε > 0, δ > 0,
∆ > 0) and (ε < 0, δ > 0, ∆ < 0). In the general
case, the initial system of equations cannot be reduced
to the Hamilton system. This can be understood taking
into account the existence of the modes with node-type
stationary points, which cannot appear in the Hamilton
systems.
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Fig. 3. On the left (from top to bottom) the typical phase portraits are shown for the parameters belonging to the regions: a110 (δ = 1,
ε = 0.4, ∆ = 0.5), a220 (δ = 1.5, ε = 0.5, ∆ = 0.5), a132 (δ = 1.2, ε = 0.7, ∆ = 0.5), a022 (δ = 3, ε = 0.4, ∆ = 0.5). On the right: c110

(δ = 3, ε = 0.4, ∆ = −0.5), c220 (δ = 4, ε = 0.5, ∆ = −0.5), c312 (δ = 1.2, ε = 0.7, ∆ = −0.5), c202 (δ = 3, ε = 0.4, ∆ = −0.5)

4. Vortex Evolution under the Influence of a
Sound Wave Propagating along the Fluid
Boundary

Consider now the vortex behavior under the influence
of a sound wave. From the system of equations (5), (6),
we obtain the conservation of the distance between the

vortex and the wall, y(τ) = y0. This means, in fact, that
the vortex motion is one-dimensional. In other words,
the phase space (x, y) is stratified in one-dimensional
layers parallel to the wall. The dynamics of the vortex
in each layer is determined by the presence or absence
of the stationary points in this layer. This is an exactly
integrable problem. The form of the solution depends on
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Fig. 4. Various dashed patterns show the regions in the (σ, ε) plane,
in which the phase portraits differ qualitatively in the physically
allowed region y > 0

the relation between the parameters of the system and
the distance of the layer from the wall. For example, at
( σ

y0
− 1)2 > ε2, the solution looks as

x(τ) =
1
2

arctan


tan




τ
√

( σ
y0
− 1)2 − ε2

2
+

+arctan


 ( σ

y0
− 1) tan(x0

2 )− ε√
( σ

y0
− 1)2 − ε2





×

×

√
( σ

y0
− 1)2 − ε2 + ε

( σ
y0
− 1)


 . (15)

At ( σ
y0
− 1)2 < ε2, we get

x(τ) =
1
2

arctan




ε +
√

ε2 − ( σ
y0
− 1)2

1− eτ
√

ε2−( σ
y0
−1)2g

+

+

[
−ε +

√
ε2 − ( σ

y0
− 1)2

]
eτ
√

ε2−( σ
y0
−1)2g

1− eτ
√

ε2−( σ
y0
−1)2g


 , (16)

where

g ≡
∣∣∣∣∣∣
( σ

y0
− 1) tan (x0

2 )− ε−
√

ε2 − ( σ
y0
− 1)2

( σ
y0
− 1) tan (x0

2 )− ε +
√

ε2 − ( σ
y0
− 1)2

∣∣∣∣∣∣
.

The analysis of these solutions is quite complicated. It
is simpler to analyze the phase portraits and thus to
establish all possible qualitative modes of the vortex
motion.

Positions of the stationary points x∗ in the one-
dimensional layer parametrized by the initial value y0

are determined by the equation

σ

y0
− ε sin x∗ − 1 = 0. (17)

This equation has solutions if the inequality
∣∣∣∣
σ

y0
− 1

∣∣∣∣ ≤ |ε|

is satisfied and if the stationary points lie periodically in
the layers y = y0. This means that they are present
in the modes, for which the exact solution takes the
form (16). The type of a stationary point in the layer
is determined by the characteristic equation

λ = −ε cos x∗.

If λ < 0, the stationary point is a stable node. But if
λ > 0, the stationary point is an unstable node.

Thus, the phase plane is stratified into one-
dimensional layers y = y0, in which the stationary points
are located. Stationary points that belong to different
layers lie in the phase space on the curves determined
by the function

y =
σ

1 + ε sin (x∗)
.

It can be seen that there are eight types of the phase
portraits depending on the parameters σ, ε. In the (σ, ε)
parameter plane, these regions are determined by the
inequalities 1 — (σ > 0, 0 < ε < 1), 2 — (σ > 0,−1 <
ε < 0), 3 — (σ > 0, 1 < ε), 4 — (σ > 0, ε < −1), 5
— (σ < 0, 0 < ε < 1), 6 — (σ < 0,−1 < ε < 0), 7 —
(σ < 0, 1 < ε), 8 — (σ < 0, ε < −1) (see Fig. 4).

The typical phase portraits for each region are shown
in Fig. 5. The phase portraits for the parameter regions
5, 6 are not shown, as they do not contain layers with
stationary points.

The dynamics of a vortex in the layers containing the
stationary points is reduced to the vortex relaxation to
the stable node and hence to the zero vortex velocity
in the moving coordinate frame. It should be pointed
out that there occurs a partial loss of the memory of
the initial vortex position in the corresponding layer. In
layers without the stationary points, the vortex velocity
is determined by solution (15) and has a periodic
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Fig. 5. Typical phase portraits for various parameter regions. The number of the corresponding parameter region (see Fig. 4) is shown
in the right bottom corner of each phase portrait. The bold line shows the positions of unstable nodes, and the thin line shows the
positions of stable nodes

longitudinal component −ε sin x(τ) against the
background of the constant component σ

y0
− 1. The

oscillating velocity component has discontinuities
(see Fig. 6), and its oscillation period T =
π/(2

√
( σ

y0
− 1)2 − ε2) depends on the parameters σ, ε

and the distance from the wall. In the parameter regions
1 and 2, these modes are realized near the wall and
far away from the wall (y0 < yc1 = σ/(1−|ε|) and

y0 > yc2 = σ/(1 + |ε|)). In the parameter regions 3,4,7,
and 8, such modes are possible only near the wall. In
the regions 5 and 6, only such modes are realized.

5. Conclusion

In conclusion, we discuss the main qualitative changes
in the vortex evolution under the influence of a potential

ISSN 0503-1265. Ukr. J. Phys. 2006. V. 51, N 10 1017



K.M. KULIK, A.V. TUR, V.V. YANOVSKY

Fig. 6. Typical shape of the oscillating component of the velocity
versus time

wave. First, we note that the state of uniform motion
with a constant distance to the wall is easily destroyed
under the influence of a potential wave. As a result,
the distance to the wall changes, and the longitudinal
and transverse components of the vortex velocity also
change. In the moving coordinate frame, even of the
vortex motion direction can change to the opposite one.
Taking into account that a point vortex in the real
fluid corresponds to the extensive linear vortex, we can
expect the creation of the horseshoe-shaped and more
complicated structures as a result of the interaction of
a linear vortex with the inhomogeneous wave packets of
sound waves.

Let us discuss how the small corrections arisen due to
the vortex-induced potential waves influence the vortex
motion. Based on the general properties of dynamical
systems, we can expect that these corrections should lead
to the destruction of separatrices and to the creation
of narrow stochastic layers in their neighborhood. This
means, in turn, the possibility of the vortex walk in the
overlapping stochastic layers. In the rest of the phase
space, the qualitative pattern of the vortex behavior
should not dramatically change.

It should be noted that the modes causing the loss
of the memory of the initial vortex position lead to
a change in the energy of the vortical component. In
an indirect way, this means that, in the wave—vortex
system, we can observe the phenomenon similar to the
collisionless decay of waves in plasma. In other words,
the interaction of a potential wave with point vortices
in the ideal fluid can lead to the change in the wave
amplitude. However, the analysis of such phenomena
requires a self consistent description of the interaction
of waves and vortices within a quasilinear theory, and
this analysis lies beyond the scope of the present paper.
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ЕВОЛЮЦIЯ ВИХОРУ ПОБЛИЗУ ТВЕРДОЇ СТIНКИ
ПIД ВПЛИВОМ ПОТЕНЦIАЛЬНОЇ ХВИЛI

К.М. Кулик, А.В. Тур, В.В. Яновський

Р е з ю м е

Вивчено дiю потенцiальних мод коливань на рух точкового ви-
хору поблизу твердої стiнки. Отримано рiвняння, якi описують
рух точкового вихору у заданому полi потенцiальної хвилi за
наявностi твердої стiнки. Показано, що характер руху вихору
пiд дiєю потенцiальної хвилi змiнюється. Проаналiзовано всi
можливi режими руху вихору пiд дiєю потенцiальної хвилi.
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