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Recently, the author has investigated the characteristics of a
Rosen-type piezotransformer with regard for the difference in
elastic compliances of input and output sections. A refined formula
has been derived for the transform ratio. It was established that the
transform ratio is inversely proportional to the square frequency.
This fact explains why the operation of planar transformers at
higher modes of vibrations is not effective. The longitudinal
mechanical stresses in the excited and generating sections of a
transformer are axisymmetric in respect to the separating line
that is in good matching with experimental data. In this paper,
the previous author’s results are used to analyze the modes of
vibrations, frequency behaviour of the transform ratio, and input
admittance of a transverse-longitudinal transformer. The spectrum
of vibrations of the piezotransformer is compared with that of a
rectangular piezoelectrtic plate. It is shown that a piezoplate
has more rigid spectrum than a piezotransformer. The couplings
between the lateral and longitudinal vibrations in a piezoplate
and a piezotransformer are similar.

1. Introduction

The idea of the double transformation of electric
energy into mechanical one and back by means
of a monolithic piezoceramic plate has been first
proposed almost fifty years ago by Rosen [12]. His
device was made from barium titanate piezoceramics
as a thin rectangular plate with two sections of
transversal and longitudinal polarization. In [9], a
method of electric equivalent circuits was used to
derive an approximate formula of the transform ratio
without regard for the difference between elastic
compliances in the sections which may get for 10–15 ps.
Extensive experimental data for Rosen-type transformer
structures of various piezoceramic compositions are
presented in [11], where the first resonance was mainly
considered.

A piezoelectric transformer for AC-DC converters
with a multilayered construction in the thickness
direction having low output impedance has been
presented in [13]. A strip electrode at the middle of
the output part of a piezotransformer minimizes heat
generation [1]. The main difference between traditional

electromagnetic and piezoceramic transformers is in
their small dimensions, weight, stray fields [9, 11, 12],
and their high efficiency [1—3, 5, 13].

In [6], the forced vibrations of a classical Rosen-type
transverse-longitudinal piezotransformer were analyzed,
and a more precise formula for the transform ratio
with regard for the difference of the elastic compliances
in the input and output sections was derived. It
is established that a transform ratio is inversely
proportional to the square frequency [7]. This fact
explains why the operation of planar transformers
at higher modes of vibrations is not effective. The
longitudinal mechanical stresses in the excited and
generating sections of a transformer were considered
in [8], and it was shown that the stresses in both
sections are axisymmetric in respect to the separating
line that is in good matching with experimental
data.

In the present paper, the results of my previous
articles [6—8] are used to analyze the modes of
vibrations, frequency behaviour of the transform ratio,
and input admittance of a transverse-longitudinal
transformer in respect to the dependence of the
transformer parameters on the difference of the
elastic compliances in sections. A satisfactory matching
of the calculated results and experimental data is
observed. Insofar as possible, the IRE standard
notation [4] will be used. The difference between
these analyses and my previous articles is as
follows. All calculations were made in complex form.
An approximate formula for resonant longitudinal
frequencies is derived. The spectrum of vibrations
of the piezotransformer is compared with that
of a rectangular piezoelectrtic plate. It is shown
that a piezoplate has more rigid spectrum than a
piezotransformer. The reason for such a phenomena
may be the difference between elastic properties in
sections. The couplings between lateral and longitudinal
vibrations in a piezoplate and a piezotransformer are
similar.
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2. Longitudinal Vibrations of a Planar
Piezotransformer

A classic Rosen-type planar monolithic piezotransformer
consists of an excited (input) section of length l1 with
transverse polarization and a generating (output) section
of length l2 with longitudinal polarization (Fig. 1). A
plate thickness is 2h, and a plate width is 2b. There
are the very thin silver electrodes at the upper and
lower surfaces of the input section and at the edge
of the output section and a preliminary polarization
throughout the thickness. The generating (output)
section has a single very thin silver electrode at the edge
and the almost uniform polarization along the length.
The one-dimensional approximation is used because the
width 2b is more less than the length l1+l2. The variables
in the first and second sections are marked as “1” and
“2”, respectively.

The physical processes running in the plate of a
planar piezotransformer are as follows. The applied
voltage V1 (from an external generator) draws a current
I1 in the exciting section and excites electromechanical
vibrations in the device due to the inverse piezoelectric
effect. In order to excite the intensive electroelastic
vibrations in a plate, the frequency of an electric voltage
V1is selected to be equal to the resonant one. The
mechanical deformations of the output section due to the
direct piezoelectric effect induce a piezoelectric charge
Q2, an electric voltage V2, and an electric current I2 at
its electrode.

The derivation of basic relations for the forced
electroelastic vibrations of a transverse-longitudinal
piezotransformer was made in [6]. The variables with
index “1” have transverse orientation, and the variables
with index “2” have longitudinal orientation.

The components of the mechanical displacements U1,
U2 and stresses σ1, σ2 in a plate are complex functions
of a complex variable x and may be written on base of
relations (1.11)—(1.15) in [6] as

U1 =
d31E1l1

x

[∆∗ sin(Lx) + tA∗ cos(x + Lx)]
∆∗ cos(x)

, (1)

σ1 =
d31E1

sE
11

∆∗[cos(Lx)− cos(x)]− tA∗ sin(x + Lx)
∆∗ cos(x)

, (2)

U2 =
d31E1l1

x

[q∆∗ sin(Ltx) + t2A∗ cos(tx + Ltx)]
t∆∗ cos(tx)

, (3)

Fig. 1

σ2 =

=
d31E1

sE
11

q∆∗[cos(Ltx)− cos(tx)]− t2A∗ sin(tx + Ltx)
t2∆∗ cos(tx)

,

(4)

where

x = x1 − jx2 = x1(1− j

2Qm
) (5)

is the complex dimensionless frequency, k2
1 = ρω2sE

11,
k2
2 = ρω2sD

33, k1l1 = x, ρ is the density, ω is the
angular frequency, d31, g33 are piezoelectric constants
[4], sE

11, s
D
33 are the elastic compliance constants at

a constant electric field E and a constant electric
displacement D, respectively, E1 and D2 are the electric
field intensity and the electric displacement (induction)
in the sections, y is the longitudinal coordinate, k2l2=tx,
y/l1 = L, k1y=Lx, k2y=Lδtx, δ=l1/l2,

d1 = 1− cos(x), d2 = 1− cos(tx), (6)

∆∗ = cos(x) sin(tx) + tδ sin(x) cos(tx), (7)

A∗ = d1 cos(tx)− q

t2
d2 cos(x), (8)

and

q =
g

33
D2

d31E1
(9)

is the unknown factor which characterizes an influence
of the electric displacement D2 on the input section. The
functions d1, d2, A∗, and ∆∗ are complex-valued too, and

∆∗ = ∆1 + j∆2, (10)

∆1 = cos(x1) sin(tx1) + tδ sin(x1) cos(tx1), (11)

∆2 = (1 + t2δ)x2 sin(x1) sin(tx1)−
−(1 + δ)tx2 cos(x1) cos(tx1). (12)
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In deriving (11), (12), the hyperbolic expressions
of the trigonometric functions of imaginary argument
were used, and it was assumed that sinh(x2) ∼= x2,

cosh(x2) ∼= 1. The terms proportional to (x2)
2 as well

as the products of small quantities were omitted. After
these reformations, ∆1 ≡ 0 but ∆2 6= 0 at the resonant
frequencies, and all mechanical components are finite.

The electric current in the input section of a
piezotransformer is determined as the first derivative of
the total piezocharge Q1 with respect to time, which
may be written under a harmonic law of variation in the
variables as [6]

I1 = jωQ1 = jω

∫

s1

D1ds =

= 2jωbεT
33

0∫

−l1

(
E1 +

d31σ1

εT
33

)
dy =

= −jωCs
01V1 − jωCT

01V1
k2
31 tan(x)

x
+

+jω
CT

01V1k
2
31s

D
33d

2
1 cos(tx)

l1∆ cos(x)
− jω

2bd31d33D2d1d2

εT
33∆

. (13)

Here, εT
33 is the permittivity when the stress is

constant or zero [4], and

CT
01 =

2bl1ε
T
33

2h
,CS

01 = (1− k2
31)C

T
01,

k2
31 =

d2
31

sE
11ε

T
33

, V1 = −2Ex1h, g33 =
d33

εT
33

, (14)

The voltage V2 induced at the output of the
generating sections is equal to [6]

V2 = −
l2∫

0

E2dy = −βT
33D2l2

(
1 + k2

D − k2
D tan(tx)

tx

)
+

+
g2
33s

E
11D2d

2
2 cos(x)

sD
33∆ cos(tx)

+
g33d31V1d1d2

2h∆
, (15)

where [8]

k2
33 =

d2
33

sE
33ε

T
33

, k2
D =

g2
33

sD
33β

T
33

, βT
33 =

1
εT
33

. (16)

The input admittance of a piezotransformer is
determined as the ratio of an input current I1 to an
input voltage V1:

Y1 =
I1

V1
= −jωCT

01

[
1− k2

31 + k2
31

tan(x)
x

]
+

+jωCT
01

k2
31s

D
33d

2
1 cos(tx)

l1∆cos(x)
+ jω

2bd31d33D2d1d2

∆εT
33V1

. (17)

The ratio of an output voltage V2 to an input voltage
V1 is the transform ratio of a piezotransformer and may
be found from Eq. (15) as

K21 =
V2

V1
=

βT
33D2l2
V1

[
1 + k2

D − k2
D

tan(tx)
(tx)

]
+

+
g2
33s

E
11D2d

2
2 cos(x)

V1sD
33∆cos(tx)

+
g33d31d1d2

2h∆
. (18)

Relations (13), (15), (17), and (18) are very common
and may be used to analyze the interaction between the
input and output sections.

Under no-load case, which characterizes the
possibilities of a piezotransformer, it is customary to
consider that the electrostatic induction at the output
section is equal to zero D2 =0. Hence, the influence
factor q must be equal to zero as well. At the resonant
frequencies, ∆1 ≡ 0 and ∆∗ = j∆2. Therefore,

K21res = −jl1
2h

d33d31

sE
11ε

T
33

2Qm

(δx1)(tx1)
d10d20

∆20
, (19)

where

d10 = 1− cos(x1), d20 = 1− cos(tx1),∆20 =

= (1+t2δ) sin(x1) sin(tx1)−(1+δ)t cos(x1) cos(tx1).(20)

Formula (19) shows that the resonant transform
ratio is directly proportional to the product d10d20 and
inversely proportional to the squared frequency (x1)2.
The absolute value of the resonant transform ratio (19)
can be written as

|K21|res =
l1
2h

d33|d31|
sE
11ε

T
33

2Qm

δt(x1)2
|d10d20|
|∆20| . (21)

This formula explains why the calculated data for
the first and second modes are approximately equal.
The fact is that the product (d10d20) for TsTStBS-2
ceramics is equal to 0.92 at the first resonance and 3.85
at the second one, while (x1)2/(x1)1 = 2. Hence, the
relation d10d20/(x1)2 approximately remains for the first
two modes. For the third mode, the product (d10d20)
decreases to 0.93, while (x1)3/(x1)1 = 3, and the
calculated transform ratio decreases more than 9 times.
The relation d10d20/(x1)24 tends to zero for the fourth
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mode. The transform ratio for higher overtones of
longitudinal vibrations became less than 1/9 of that for
the first mode, and the device operation is not good
enough.

Relations (11) and (12) can be simplified in the
following way. The resonant frequencies are the roots
of the equation ∆1 = 0 which can be replaced by the
next approximate formula

∆1
∼= cos(x1) sin(tx) + sin(x1) cos(tx1) =

= sin((1 + t)x1) = 0, (22)

and

x1res
∼= nπ

(1 + t)
(n = 1, 2, 3, ...). (23)

Relation (20) can be also simplified:

∆20 = (1 + t2δ)[sin(x1) sin(tx1)− µ cos(x1) cos(tx1)] ∼=
∼= 2t cos[(1 + t)x1], (24)

µ =
(1 + δ)t
(1 + t2δ)

∼= 2t

(1 + t2)
∼= 1. (25)

The real piezotransformers have such dimensions
that the lengths of their sections are equal, l1 ∼= l2, δ ∼= 1,
and, for 1 ≥ t ≥ 0.7, the ratio µ differs from 1 by at
most 6%. Figure 2 illustrates the frequency dependences
of the functions z1 = ∆1, b1 = 2t cos[(1 + t)x1], b2 =
sin[(1+t)x1] for t = 0.8, which corresponds to TsTStBS-
2 ceramics [10]. It is easy to see the zeros of functions z1
and b2 almost coincide. On the other hand, functions b1
and b2 have a phase shift of about π/4, so that the zeros
of one function coincide with the extremes of the second
function.

3. The Lateral Vibrations of a Planar
Piezotransformer

The spectrum of a Rosen-type piezotransformer has
longitudinal and lateral modes of vibrations. This device
was designed for the operation on the fundamental
extensional mode, but it can operate effectively on the
second extensional mode as well. As a rectangular plate,
it can be excited at many strong and weak resonances.

In [2], the interesting construction of a ceramic
piezotransformer was described. It differs from that of
usually used devices. A thin piezoceramic rectangular
plate was separated into two sections of equal areas, but
the separating line was oriented along the length of a
plate. The input electrodes were fabricated on both the

Fig. 2

top and bottom surfaces, and the poling of the input part
was in the direction of depth. The output electrode was
fabricated on the narrow side surface, and the output
part was polarized in the direction of width. The authors
of [2] regard that the vibration mode adopted there was
the fundamental length extensional mode.

It was established in my experiments with models
of a Rosen-type piesotransformer, that the lateral
vibrations are more intense than the longitudinal
vibrations, but their output voltages are small. I think
that the construction of [2] can operate very effectively
at such intense lateral mode. Relations (1)—(25) can
be used for the approximate description of the lateral
vibrations of such devices. But this manner is not
applicable for a usual Rosen-type device, because the
lateral vibrations of the input and output sections
correspond to various elastic properties. The elastic
compliances of the input and output sections are
averaged upon the plate area.

4. Numerical Results

In this paper, all the calculations were made in complex
form, and the parameters d31 = −160×10−12C/N; d33 =
330× 10−12C/N; sE

11 = 12.5× 10−12m2/N; εT
33 = 2100ε0

of TsTStBS-2 ceramics were used for a plate of 80×18×2
mm in size, i.e. l1/2h = 20, (l1 + l2)/2b =4.44. After
substituting these parameters in Eq. (1), the results
were plotted in Fig. 3 for t = 0.8, V1 = 10V, Qm=100,
as the distributions of the absolute values of elastic
displacements for the first three longitudinal modes of
the input section.

The notations U11, U21, and U31 are the
displacements in the first section at the first, second, and
third longitudinal modes, respectively, V1 is the input
voltage, and E1 = V1/2h. The displacement amplitudes
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Fig. 3

Fig.4

are very small and decrease as the frequency increases.
The displacement distributions in the output section are
same, but they have opposite sign.

The numerical results for elastic stresses are
demonstrated in Fig. 4. The notations T1 and T2
are the stresses in the first section of the plate at
the first and second longitudinal modes of vibrations,
respectively. The amplitude of mechanical stresses at
the third longitudinal mode is very small and cannot
be plotted on the same figure.

Figure 5 illustrates the dependence of the transform
ratio modulus (curves 1, 2) and the frequency equation
(curves 3, 4) on the frequency for t=1 and t=0.8,
respectively. I used such small value of Qm in my
calculations for simplicity, because graphs 1 and 2 in
Fig. 5 are very narrow for the real piezotransformer
mechanical quality. It is easy to see that the

Fig.5

transformation ratios are almost equal for the first and
second longitudinal modes for both hypothetic types
of ceramics. The third and sixth modes have equal
transform ratios as well. The fourth and eighth modes
are absent.

5. Comparison with Experimental Data

The experimental investigations were carried out on
several models of piezotransformers. Copper silvered
wires with a diameter of 0.1 mm were soldered to
the surface plate electrodes and used to connect to
the circuit. Vibrations were excited by a variable
voltage from a generator in the range from 20 to
200 kHz. The output section of a piezotransformer
was connected to an electronic digital voltmeter and
an electronic digital frequency meter controlling the
operation frequency. Table represents the characteristic
frequencies fm and fn in kHz and the corresponding
maximum and minimum admittances Y in mSm for
the first eight registered modes of vibrations of a
planar piezotransformer with dimensions 80 × 18 × 2
mm made of PKD ceramics. The following values for
maxima of the output potential were obtained (the
frequency in kHz and the transformation ratio are given
in the numerator and the denominator, respectively):
21.23/256, 42.01/342, 61.81/118, 86.35/14.9, 93.05/18,
96.78/15.1, 99.33/18, and 136.51/113. The measured
value of Qm at the first and second modes was 170.
After substituting Qm and the ceramics data in (21),
we obtain |K21|1 = 345 and |K21|2 = 352.

fm, kHz 21.31 42.29 61.90 81.66 92.38 96.04 99.37 136.3
fn, kHz 21.69 42.88 62.07 81.85 93.19 98.19 100.2 137.2

Ym, mSm 19 20.8 7.41 14.5 41.1 95.8 28.4 34.1
Yn, mSm 0.095 0.24 1.76 3.23 3.53 1.18 0.56 1.02
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Fig.6

The first two modes are similar in the maximum
admittance and transformation ratio, the third and
fourth modes are much weaker, and the 96.04-kHz mode
is of the greatest intensity and its admittance exceeds
that of the first mode by five times. On the other hand,
the intense 93.05-, 96.78-, and 99.33-kHz modes induce
a much smaller voltage at the output electrodes than
the first two modes do. The 81.66-kHz resonance is
not detected from the output voltage, but a new 86.35-
kHz mode, which is absent in Table and nothing can
be said about its deformation, is observed. The graph
of Fig. 6 was obtained, when the input section of a
piezotransformer was connected with a sweep generator
IChX-300 between its input and output sockets as
a rejecting circuit. A sweep generator IChX-300 had
the input and output impedances equal to 135 Ohm.
The greater the input admittance of a piezoelectric
plate, the deeper the rejecting downfall in a graph.
Labels L1—L6 on a graph correspond to the longitudinal
modes, T1—T3 denote the intense lateral modes, and
E1 is an edge mode. The length-width ratio for the
testing transformer is 80:18=4.44. Many years ago, I
investigated the planar vibrations of a thin rectangular
piezoceramic plate with various length-width ratios in
the interval 1 ≤ a/b ≤ 8. Now I have a grate pleasure to
compare the characteristics of a piezotransformer with
those for a rectangular plate. Figure 7 demonstrates the
amplitude-frequency dependence for such a plate with
a/b=4.5. Both the amplitude and frequency in Figs. 6, 7
are presented in relative units.

It is easy to see that the amplitude-frequency
characteristics are similar for a rectangular piezoceramic
plate and a plate piezoceramic transformer. Their main
difference is as follows. The piezoplate spectrum is more
rigid than that of a piezotransformer with the same
geometric dimensions. The even numbers of longitudinal

Fig. 7

modes are under a ban for rectangular plates, so that
modes L2, L4, and L6 are absent. A number of registered
resonances for a piezoplate is six in a frequency range,
where a piezotransformer has eight modes. I think that
the reason lies in different properties of the sections.
These different elastic properties are the reason for the
splintering of a lateral mode T2 on two modes T2 and
T3 too. On the other hand, the strong lateral mode T2
can increase its weak neighbours.

6. Conclusions

A refined formula of the transform ratio for a planar
piezotransformer of the transverse-longitudinal type is
reformed and discussed. It is shown that the transform
ratio near resonant frequencies is directly proportional to
the piezoelectric modulus and inversely proportional to
the squared frequency. The transform ratios at the first
and second modes of vibrations for all piezoceramics are
almost the same.

The operation of a planar piezotransformer at high
frequencies is not good enough.

The one-dimensional rod model describes well the
first six longitudinal modes of a piezotransformer.
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ПОЗДОВЖНI ТА ПОПЕРЕЧНI КОЛИВАННЯ
ПЛАСТИНЧАТОГО П’ЄЗОКЕРАМIЧНОГО
ТРАНСФОРМАТОРА

В.Л. Карлаш

Р е з ю м е

Аналiзується уточнена формула коефiцiєнта трансформацiї
плоского п’єзотрансформатора поперечно-поздовжнього типу.
Показано, що поблизу резонансних частот коефiцiєнт транс-
формацiї прямо пропорцiйний п’єзоелектричному модулю та
обернено пропорцiйний квадрату частоти. Одновимiрна стерж-
нева модель добре описує першi шiсть поздовжнiх мод.
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