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A general approach to the analysis of conditions of the noncritical
phase matchings (PMs) of various multiplicities in the process of
generation of a summary frequency is developed. As an example,
the analysis is applied to a KTP (potassium titanyl-phosphate)
biaxial crystal. The approach is based on both the consideration of
general properties of the PM surface constructed in the coordinates
of the frequencies and the propagation angles of interacting
waves and the analysis of their singular lines and the intersection
points of these lines. On the PM surface, we consider the lines of
noncriticality in the signal frequency or the propagation angles of
the pumping wave and the signal one. A classification of twice
noncritical PMs (in the frequency and one angle or in two angles)
is proposed. It is found that the region of double noncriticality in
the frequency and the IR signal divergence can be scanned over
the whole transparency region of the KTP crystal on the tuning
of the frequency of a long-wavelength laser pumping. A new type
of the multiple noncritical synchronism (conditional PM) that is
realized on the consistent change in the directions of the pumping
and signal waves in the region of the maximum angle between
the interacting waves is analyzed. Is is shown that the noncritical
matching can be realized in three independent parameters —
frequency and two angles. The use of the multiple noncritical PM
allows the visualization of wide-band IR spectra and IR images
and the frequency conversion of femto-second laser pulses.

1. Introduction

The concept of phase matching (PM) is important in the
physics of the non-linear wave interaction and in modern
optics. When the conditions for the PM are fulfilled, one
can observe the effective frequency conversion even at
small non-linearities in the crystal transparency bands.
The angular and frequency widths of the PM are
determined by linear terms in the expansion of the wave
mismatch ∆k in the frequency and angles. In the case
of such critical PM, the widths of the frequency (δ ν)

and angular (δϕ) distributions of the PM are quite small
(several cm −1 and tens of angular minutes). Due to
this fact, the resulting radiation contains the information
encoded in the frequency-angular distribution (and
hence in the spatial and temporal shapes) of the signal
radiation. This is used for the visualization of the IR
and UV signals and images, since the high-speed, wide-
band, and multichannel radiation detectors, including
highly sensitive CCD cameras, are available in the visible
and near IR ranges. Just the feasibilities of practical
applications of the signal conversion on the basis of the
generation of the summary and difference frequencies
ωR = ωP ± ωS (the subscripts P , S, and R refer to
the pumping, signal, and generated waves, respectively)
attract the long-lasting attention to the investigation of
these processes [1—18].

For the purposes of non-linear spectroscopy, it is
desirable to have the signal conversion in a range of
frequencies and angles to be as wide as possible [3,5].
The problem of the formation of wide PM bands is
important also in the frequency conversion of the pico-
and femto-second laser pulses by the methods of non-
linear optics and in the study of fast processes [10—
12]. For example, one needs a PM frequency bandwidth
δ ν ∼ 200 cm −1 in order to work with pulses of ∼ 50-
fs duration and the bandwidth of 1300 cm−1 [9] for the
shortest experimentally observed ∼ 8-fs pulses. Under
these requirements, we encounter a task of creating the
special (noncritical) conditions for the PM, at which
the linear terms of the expansion of the wave mismatch
∆k = kR − (kP ± kS) in a series in the frequencies
and angles vanish, and the quantities δν and δϕ are
determined by the quadratic terms of this expansion.
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In order to increase the angular aperture of a non-
linear frequency conversion in anisotropic crystals and in
isotropic liquid and gaseous media, the popular vector
scheme of the tangential synchronism (the Warner
scheme) [1, 2] or the collinear wave interaction scheme
at 90◦ PM is usually used. The wide-band frequency
conversion is realized with the use of the group
synchronism [1,4,7, 13—17,23,25], when, along the usual
conditions of the vector PM, the condition of matching
the group speeds of the signal and resulting radiations
is imposed. Under a monochromatic pumping, this can
provide the fulfillment of the ordinary conditions for
the PM in a wide frequency range. In particular, in the
collinear case, the condition of the equality of the group
velocities, ∂ω/∂kS = ∂ω/∂kR, for the central frequencies
of the signal and the generated radiations should be
fulfilled. For the vector group synchronism, the problem
is reduced to matching the anisotropy and the group
velocities of interacting waves, which is discussed later
in this paper.

Particular cases of the nonlinear wave interaction,
being noncritical in frequencies and angles, were
implemented in works [1, 3, 4, 7,23—25]. The frequency
range of the group synchronism can be tuned by
changing the pumping wavelength or by the use of
various non-linear crystals and vector wave interactions
[4, 7]. Especially we should notice the simultaneous
implementation of the group and tangential PM, i.e. the
double noncritical PM in the frequency and angle [1,
5]. In this case, for the pumping at λP = 1.064 µm,
the values δν = 260 cm−1 and δϕ = 35 mrad were
obtained in a LiNbО3 crystal near λS = 3.5 µm. The
combination of the two adjacent group PMs in the
range 9–14 µm with the use of two non-linear crystals
AgGaS2 and HgGa2S4 and one pumping wavelength was
considered in [13], but the problem of vector group and
multiple noncritical PMs (in two or three parameters)
remained for a long time insufficiently studied in the
general aspect.

We have proposed a general concept of the
realization and classification of the multiple (double
and triple) noncritical PMs in frequencies and angles
[14—16]. This approach is based on the analysis of the
general properties of a PM surface constructed in the
coordinates of frequencies and angles and on the analysis
of its singular lines and points. For the first time, the
feasibility of scanning the double noncriticality region (in
frequencies and angles simultaneously) is demonstrated
for the frequency conversion in the whole transparency
band of non-linear crystals. We have discovered an
interesting physical phenomenon of the triple noncritical

PM (in the frequency and two angles of the propagation
of the pumping and signal waves). The region of the
triple noncritical PM corresponds to the end point of
the line of double noncriticality. The neighborhood of
this point resembles the critical point in a liquid-gas
diagram. This is why the considered problems are of
interest not only in the fields of quantum electronics and
non-linear optics, but can be used to describe the critical
states of matter from the qualitatively new viewpoint.
The phenomena related to noncritical PM are important
in the energy relaxation in condensed matter and in the
analysis of the spectra of the second and higher orders in
vibrational spectroscopy. In our previous works [14,15],
a more attention was paid to the demonstration of the
potentialities of noncritical PMs in uniaxial crystals. The
goal of this work is the investigation of the new types of
multiple noncritical PMs, the frequency scanning of the
region of double noncriticality, and the determination
of the frequencies of triple noncritical PMs in various
crystallographic planes of a biaxial KTP crystal.

2. Analytical Consideration of PMs
Noncritical in the Frequency or Angles

In a non-linear crystal, the parametric interaction of
waves is most efficient under the PM conditions

ωR = ωP ± ωS ,

∆k = kP (ωP , θP , ΦP )± kS (ωS , θS , ΦS)−

−kR (ωR, θR, ΦR) = 0, (1)

where the angles θj , Φj (j = P, S, R) determine the
wave propagation directions relative to the principal
optical X, Y, Z axes of the crystal (Fig. 1). The KTP
crystal belongs to the orthorhombic symmetry class
mm2. Its optical axes lie in the ZX plane, with the Z-
axis being a bisector of the angle between the optical
axes. The main refractive indices NX,Y,Z satisfy the
inequality NZ > NY > NX . Equations (1), which take
into account the dispersion law kj = kj(ωj , θj , Φj),
describe the PM surface in coordinates ωj , θj , and Φj .
The topology of this surface determines the angular
and frequency structure of a generated radiation [14—
16]. The shape of the PM surface corresponding to
the propagation of three waves in an arbitrary plane
of the biaxial crystal is quite complicated. However,
the general characteristics, which are important for
applications, of the frequency-angle structure change on
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the parametric frequency conversion can be understood
from the consideration of the characteristic features of
the PM surfaces for vector wave interactions in the main
crystal planes XZ, Y Z, and XY , as is considered below.

Consider the monochromatic pumping (∆ωP = 0),
which unambiguously determines the frequency ωR at
the given values ωP and ωS . In this case, for each
fixed pumping frequency ωP , the vector equation of
a PM surface under the wave interaction in a given
plane can be replaced by the equivalent system of two
independent scalar equations. These are the equations
for the longitudinal and transverse components of ∆k
for a given direction (for example, kR ) that relate
the signal wave frequency and the angles of wave
propagation in the selected main plane:

∆ k‖(ωS , ϑS , ϑP , ϑR) = 0,

∆ k⊥(ωS , ϑS , ϑP , ϑR) = 0. (2)

Here, the variable ϑ denotes the angular coordinate θ
or Φ. Namely, ϑ = θ for the wave interaction in the
crystallographic planes XZ , Y Z and ϑ = Φ for the
interaction in the XY plane (Fig. 1,a). Equations (2)
for a fixed ωS or one of the angles ϑi describe (at a
given pumping frequency ωP ) the cross sections of the
PM surface. These cross sections help us to visualize the
characteristic features of the PM surface topology and to
develop the classification of the lines and points on this
surface that correspond to the noncritical PM of various
multiplicities.

The exact conditions of the vector group PM
(VGPM) are obtained by the calculation of the full
differentials of components of the wave frequency
mismatches ∆k‖ and ∆k⊥, Eqs. (2), at θP,S = const with
the following nullifying of the determinant of the system
of equations linear in dωS and dθS . These conditions take
the form

VS = VR

(
cos ψ − sin ψ

kR

∂kR

∂θR

)
, (3)

where Vj = ∂ωj/∂kj = ujej (j = S, R), ψ = θS0 −
θR0 is the angle between the directions of propagation
of the central spectral components of the signal ωS0

and generated ωR0 waves, and uj are the group
speeds of waves ωj . According to Eq. (3), there is the
compensation of a mismatch of the group velocities in
the direction of propagation of the signal radiation ωS

under VGPM due to the geometry of the interaction (the
term with cosψ) and the crystal anisotropy. In the main

Fig. 1. Diagrams that illustrate the choice of crystallographic
axes and the definition of angles that characterize the directions
of interacting waves (a). Noncritical vector group PM in the
frequency of the signal radiation (b). Double noncritical PM in
the frequency and angles (the group center) (c)

planes, where ∂kj/∂ϑj = −kj tgγj (γj is the anisotropy
angle), condition (3) can be converted to the form

VS = VR
cos(ψ − γR)

cos γR
. (4)

The exact VGPM conditions found in [14], which allow
the wide-band conversion, are reduced to the equality
of the projections of the group speeds of the signal and
generated waves with central frequencies ωS0 and ωR0

on the signal wave propagation directions kS ,

uSeS = uReS , (5)

where eS = kS/kS is the unit vector in the direction
of the signal wave propagation. The similar conditions
were obtained in [17]. Schematically, a realization of the
VGPM condition in the wide frequency range at fixed θS

is shown in Fig. 1,b. It can be seen that the direction of a
signal wave in this case is fixed, ϕ = θS0 − θP0 = const.
In order to find other noncritical PM conditions, we will
derive the relation between changes in the independent
variables ωS , θS , and θP on a PM surface. In view of
the geometry of the interaction shown in Fig. 1,c, the
system of equations (2) can be written in the form

∆k‖ = kR − kS cos ψ − kP cos β = 0,

∆k⊥ = kS sin ψ − kP sinβ = 0, (6)

where β = θR0 − θP0.
Calculating the full differentials for the longitudinal

∆k| | and transverse ∆k⊥ components of the wave
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mismatch from Eqs. (6), we obtain, after some
transformations, the system of equations
(

1
VR

− cos ψ

VS

)
dωS + kS

sin(ψ + γS)
cos γS

dθS−

−kP
sin(β − γP )

cos γP
dθP − kR tgγR dθR = 0,

sin ψ

VS
dωS + kS

cos(ψ + γS)
cos γS

dθS−

−kP
cos(β − γP )

cos γP
dθP − kR dθR = 0. (7)

Excluding dθR from Eq. (7), we obtain the relation

Ω dωS −GdθP + Q dθS = 0 , (8)

where

Ω = 1/VR − ηR/VS ,

G = kP sin (β + γR − γP ) /(cos γP cos γR),

Q = kS sin (ψ + γS − γR) /(cos γS cos γR),

ηR = cos (ψ − γR)/ cos γR.

It is seen from condition (8) that, for the vanishing
coefficients Ω, G, or Q, each of the independent variables
ωS , θS , and θP can change in a wide range, which
provides the noncriticality of a PM. The condition
Ω = Ω0 = 0 corresponds to the VGPM (dθS/dωS =
dϕ/dωS = 0 at θP = const). The conditions Q = Q0 = 0
and G = G0 = 0 correspond to the tangential PM in the
signal (TPM; dωS/dθS = dωS/dϕ = 0 at θP = const)
and in the pumping (TPM; dωS/dθP = 0 at ϕ =
const). The subscript 0 denotes that all the values that
determine Ω and Q should be taken for the parameters
that correspond to the central frequencies or directions
at which the corresponding type of a noncritical PM is
realized.

3. Noncritical PM and Group Centers for the
Summary Frequency Generation in a
Biaxial KTP Crystal

KTP crystals with the transparency band 0.35—4.5 µm
are the most promising nonlinear materials. They have

the large nonlinear coefficients (∼ 7 × 10−12 m/V)
and the high threshold of an optical damage (∼ 5 ×
108 W/cm2) [18—20]. The angle between the optical
axes in a KTP crystal is equal to 2 V = 34.6◦ (at
λ = 1.064 µm) [21]. The optical axes are situated in the
XZ plane, therefore the wave interaction in this plane
is the most interesting. Consider the conditions for the
realization of noncritical PMs in the generation of the
summary frequency in the KTP crystal. Since the KTP
crystal is positive (ne > no) in the XZ plane at V < θ ≤
90◦, the generated radiation should be an ordinary wave.
This is necessary for the compensation of the positive
dispersion of the crystal by its anisotropy under the
fulfillment of the PM conditions. Thus, the following
types of interaction are allowed in the XZ plane: oe—o,
eo—o, and ee—o. Analogous types of interaction are
possible also in the Y Z plane at arbitrary values of θP .
At 0 ≤ θ < V , we have ne < no in the XZ plane. Thus,
the KTP crystal is negative, and the sum frequency wave
should be a e-wave. In this work, all the calculations were
carried out numerically using the dispersion relations
[19]

n2
x = 2, 9971 +

0, 041030
λ2 − 0, 038368

− 0, 012568 λ2,

n2
y = 3, 0197 +

0, 044090 λ2

λ2 − 0, 042035
− 0, 012046 λ2,

n2
z = 3, 3055 +

0, 063289
λ2 − 0, 044783

− 0, 013987 λ2. (9)

Fig. 2,a,b shows angles θP and ϕ versus the signal
wavelength λS in the whole range of the crystal
transparency band, for which it is possible to realize
VGPM for the discrete wavelengths of pumping waves.

It can be seen from the figure that, in order to obtain
a wide-band vector PM in the KTP crystal as in most
other nonlinear crystals, a long wavelength pumping
(λP > 1 µm) is required, for example, the 1.337- and
1.833-µm radiation of an YAG laser [22]. According
to Fig. 2,a,b, the VGPM in the XZ plane is realized
in the near IR range for the oe—o interaction and in
the far IR range for the eo—o interaction. In total,
these two interaction types (oe—o and eo—o) allow the
tuning of the VGPM almost in the whole transparency
range of the KTP crystal except for a small wavelength
range 1.81—2.32 µm. On an interaction of the ee—o
type in the XZ and Y Z planes, we obtain the widest
region of the frequency conversion in the VGPM that
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covers all the transparency band of the KTP crystal (the
dashed lines in Fig. 2,a,b). This interaction is similar
to the oe—o interaction for short wavelengths and to
the eo—o interaction for long wavelengths (Fig. 2,b).
However, in this case, the effective nonlinear coefficient
deff = 1/2 (d15 − d24) sin 2θ sin 2φ vanishes at φ = 0
and φ = 90◦, that is in the XZ and Y Z planes.
Therefore, this type of interaction can be realized only
for the waves interacting in the intermediate planes that
contain the Z axis (for example, at φ ≈ 45◦). The
dashed curves demonstrate the possibility of scanning
the VGPM for rays leaving the main dielectric planes
of the crystal, where deff 6= 0. On the curves ϕ (λS)
(Fig. 2,a), we marked the points that correspond to
the conditions for the double noncriticality in the
frequency and the divergence angle of the IR radiation
ωS , at which the conditions for the vector group and
tangential PMs are fulfilled simultaneously, as shown
schematically in Fig. 1,c. The horizontal and vertical
segments show the frequency and angular intervals,
within which the generated radiation intensity decreases
twice. This double noncritical PMs in the frequency and
one of the angles are called the group center (GC).
This center is associated with the minimum of θP (λS)
(point A) shown in Fig. 2,b. When the geometry of the
interaction changes, the wide PM bands shift along the
presented VGPM curves. It is obvious that, under the
eo—o interaction, the GC is realized only in the collinear
case, which is convenient for the wide-band conversion
of IR signals and images due to the absence of a walkaff
of the signal and resulting radiations. As can be seen
from Fig. 2,b, the VGPM is possible at two values of
λS for the oe—o interaction at the fixed angle θP , and
the fixed wide region ∆λS can be converted in frequency
at two values of angle θP . Smaller values of θP on the
line B − A − C − D correspond to the case ϕ > 0,
and greater values of θP do to the case ϕ < 0, while
point B corresponds to the collinear PM (ϕ = 0). The
minimal value of the signal wavelength at the VGPM
is reached at point C (Fig. 2,b) at the maximal angle
ϕ (Fig. 2,a). The maximal value of λS in the VGPM
scheme is realized at point B for the collinear interaction.
Two branches of the curve θP (λS) are met at point D
at θP = 90◦, where the solutions with ϕ > 0 and ϕ < 0
become identical. Fig. 2,a,b shows that, for both types
of the interaction, the size of the PM surface decreases
when λS approaches ∼ 2 µm. It will be shown below
that these cases correspond to the shrinking of the PM
surface to the critical PM points.

The curves of the wide-band conversion, which are
shown in Fig. 2,a,b, are the singular lines on the PM

Fig. 2. Functions ϕ = f (λS) (a) and θP = f (λS) (b) illustrate
the possibility of the frequency and angular tunings of the regions
of vector group phase matching for a wide-band conversion of the
IR radiation for various types of wave interaction in the XZ and
Y Z planes of a KTP crystal at the pumping wavelengths λP : 1 —
1.064 µm, 2 — 1.337, 3 — 1.750, 4 — 1.833, 5 — 1.0795, 6 — 3.8.
Horizontal and vertical segments show the spectral and angular
widths of the conversion at the group center calculated for the
crystal of 1 cm in length

surface in the space of three coordinates λS , ϕ, and
θP . The projections of this surface at λP = 1.064 µm
and the oe—o interaction on the three coordinate planes
are shown in Fig. 3,a,b,c. In particular, we show the
lines of the cross section of the PM surface by planes
θP = const in the coordinates λS and ϕ. This surface
has a convex shape, although it can have singularities
also (in particular, discontinuities). All possible vector
schemes of interactions (including collinear and critical
ones) can be associated with this surface. Due to the
symmetry of the PM conditions with respect to the
change θP → 2π− θP , ϕ → −ϕ, Fig. 3 shows only a half
of this surface. The VGPM condition is realized along
the line that passes through the points of the horizontal
tangent lines dϕ/dλS = 0 to these curves (Fig. 3,a). It
is clear that the top and bottom points of the considered
cross sections of the PM surface correspond to two
branches of the function θP (λS) shown in Fig. 2,b. The
wide-band conversion regions can be scanned by the
consistent change of θP and ϕ. In contrast to the singular
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Fig. 3. Cross sections of the PM surface for the oe—o type of interaction in the ZX plane of the KTP crystal at λP = 1.064 µm by
planes θP = const (a) (1 — θP = 73.1◦, 2 — 73.5, 3 — 74.25, 4 — 77, 5 — 79, 6 — 83.6, 7 — 90); λS = const (b); ϕ = const (c). Lines a,
b, b′ and c correspond to the vector group, tangential with respect to the signal and pumping and conditional PM, respectively. Points
of the double noncritical PM are marked by the symbols: ♦ — group center, × — tangential center and ¤ — conditional center

line of the VGPM, most points on the PM surface
correspond to narrow-band PMs which can be realized
in a wider region of λS in comparison with group PMs.

The line connecting the right and left points
of the considered cross sections (Fig. 3,a), where
dϕ/dλS →∞, corresponds to the noncritical tangential
PM (TPM) in the angle ϕ. At the end points of
λS on the PM surface, the tangential PM changes
to the collinear PM. The tangential PM corresponds
to the condition of touching the surfaces of the wave
vectors kS and kR [1, 2] and hence to the same
directions of the group speeds of the signal uS and
generated uR radiations. Since the angle between kj and
uj is equal to the anisotropy angle γj , the TPM
condition Q = 0 can be represented in the form ψ =
γR − γS . Due to the weak anisotropy of real crystals,

the wave propagation directions at the TPM are close
to collinear PMs, which was analyzed in [14] in detail.
As can be seen from Fig. 3,a, the angular deviation ϕ
relative to the collinear case in the TPM can reach a
few degrees (γS = −1, 45◦) for the KTP crystal.

The intersection point of two considered lines on
the PM surface corresponds to the double noncriticality
region, i.e. to the GC. The joint consideration of the
conditions of a vector group PM and a collinear PM,
which are reduced to the equality of the projections of
the group speeds uS and uR on the direction of the signal
propagation and to the requirement of the coincidence
of the directions of these speeds, leads to the equality
of the group velocities uS = uR at the GC point. Thus,
the GC corresponds to the real group synchronism of
waves with double noncriticality in the frequency and
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the propagation direction of the signal radiation. Fig.
2,b shows that the minimal values of θP min, at which
the GC is realized, decrease, and the PM surface is
expanding when λS approaches the regions with stronger
dispersion. Apart from the tangential PM in respect to
the signal, there is also a tangential PM in the pumping
which corresponds to the condition G = 0 and coincides
with the line ϕ = 0 for the oe—o interaction (Fig.
3,a). The two lines of the tangential PMs intersect at
the extreme left and right points of the PM surface at
θP = 90◦, ϕ = 0. The other types of noncritical PMs and
the regions of intersection of the lines corresponding to
the PM noncritical in one variable, are considered in the
next section.

4. Conditional Phase Matchings

For solving a number of applied problems, the promising
scheme is that with a double noncritical PM, which is
unsensitive to the frequency change and the divergence
of one of the waves or to the propagation directions
of both waves. For example, the noncritical PM in ωS

and ϕ can be applied to the conversion of radiation
from thermal sources, which allows the visualization of
color IR images. Such regions of double noncriticality
were revealed from time to time in experimental works
[1,9,23—25]. However, we have demonstrated for the first
time that GCs exist in all non-linear crystals [14—16].

Using the PM surface, the general classification of
noncritical PMs in one variable can be carried out
on the basis of the singular lines on this surface.
The classification of the points of double noncriticality,
which lie on the intersection of these lines, can also
be developed. This classification allows a purposeful
experimental search for these points. The regions of
double noncriticality in the angles ϕ and θP are
called tangent centers (TCs). In Fig. 3,a, these centers
correspond to the extreme points of the PM surface along
the λS axis. This type of the double noncritical PM
allows us to obtain large angular apertures of the signal
and pumping. However, it has a narrow spectral width
of the PM. Figure 3,b,c shows the cross sections of the
PM surface by the planes λS , ϕ = const at the fixed λP .
These cross sections allow us to consider other types of
the double noncritical PM.

In Fig. 2,b, the double noncritical PM in ωS and
ϕ corresponds to the minimum θPmin = 73.03◦ of
the function θP (λS). Points B and C extremal in λS

determine the regions of double noncriticality in the
angles ωS and θP . Namely, point B corresponds to the
wide-band collinear PM tangent in the pumping, while

point C corresponds to the maximum with respect to
the angle ϕ on the PM surface. Consider the latter
singularity on the PM surface in more details. Note
that the maximal value ϕmax = 6.43◦ is reached at
θP = 83.57◦. If θP further increases, ϕmax decreases. The
same effect takes place in the region 2π−θP — ϕmax. The
cross section of the PM surface by the plane θP = 90◦

(Fig. 3,a) is symmetric relative to the axis ϕ = 0. In the
region ϕmax at a fixed angle between the wave vectors
kP and kS , the large changes in the angle θP can be
observed (Fig. 3,b). Thus, we obtain one more type of
the noncritical PM. In this case, the triangle of the wave
vectors with a fixed angle ϕ (Fig. 1), which expresses the
momentum conservation, allows the rotations by quite
large angles (2 ÷ 3◦). Since the large changes in the
angles θP,S are possible if the condition θP − θS = ϕ
is satisfied, we call this type of noncritical PM as a
conditional PM (CPM). This type of PM is realized, in
particular, for the cylindrical focusing of waves ωP,S . In
this case, there is a plenty of pairwise interactions of the
radiation components from the wide ranges of the wave
vectors directions [6]. The line of a CPM can be found by
considering the cross sections of the PM surface by the
planes λS = const shown in Fig. 3,b. The CPM is realized
at the points of the cross sections, where dϕ/dθP = 0.
The corresponding line passes in the PM surface from
the region ϕmax to the GC region. In Fig. 3,c, it is
line c. Near the intersection point of this curve with the
VGPM line at θP = 83.57◦ and ϕ = ϕmax = 6.43◦, we
obtain the double noncriticality in ωS and θP which can
be called a conditional center (CC). To the best of our
knowledge, the CC was not experimentally used till now
for the visualization of wide-band IR images.

To obtain the analytical expression for the conditions
of the realization of a CPM, we write down Eq. (8) in
the form

Ω dωS + (Q−G ) dθP + Qd(θS − θP ) = 0. (10)

At ωS = const, this relation and the condition d θS =
dθP yield

D0 = Q0 −G0 =
kS

cos γS
sin (ψ0 + γS − γR)−

− kP

cos γP
sin (β0 + γR − γP ) = 0. (11)

The last relation should be valid on the PM surface
together with (2) or (6). Condition (11) together with
the equality kP sinβ0 = kS sin ψ0 can be written as

ctgψ0 sin (γS − γR) cos γP + ctgβ0 sin (γP − γR)×
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× cos γS + sin (γS − γP ) sin γR = 0. (12)

This relation contains only the geometric parameters
of the system for central frequencies. Thus, the CPM
is realized in the vector scheme of the interaction of
waves. Therefore, on the corresponding line, we have
ψ0 6= 0, β0 6= 0 everywhere, except for two points
of the double tangential PM (ϕ = 0, θP = 90◦).
Consider a CPM with the interaction of two usual and
one unusual waves. It follows from Eq. (12) that the
unusual wave always propagates at an angle of 90◦ with
respect to the Z axis (along the X axis in the XZ
plane). For example, for the oe—o interaction (Fig. 3),
the CPM is realized at θS = π/2 and ϕ = π/2−θP .
This is related to the appearance of a singularity on the
PM surface in the neighborhood of ϕmax. If we define
the pumping direction by the deviation ∆θP = π/2−θP

from the XY plane rather than by a deviation from the
Z axis, the CPM will be observed along the straight line
ϕ = ∆θP . Thus, when the PM surface expands in the
direction of the θP axis, it also expands regularly in the
direction of the ϕ axis. Below we show that the shrinking
of the PM surface in a small region also occurs along all
the three coordinates.

5. Frequency Scanning of the Group Centers
and a Triple Noncritical PM

As was shown above, there are three closed PM curves
on the PM surface that correspond to a noncritical PM
in one of the parameters λS , ϕ, or θP and also a line
of the conditional PM, along which one can observe a
large consistent changes of the directions θP and θS . The
intersection points of the first three lines create two pairs
of the group centers with the double noncriticality in λS

and ϕ (or θP ) and two tangent centers at the minimal
and maximal values of λS (the left and right TCs). As
was already shown, the line of the conditional PM always
passes through a TC, and the intersection of this line
with the VGPM line creates a CC. Thus, this region
can be considered as the region of a triple noncritical
PM (in λS , θP , and θS). A real triple noncritical PM
in the variables λS , ϕ, and θP will be reached under
shrinking the PM surface with changing the pumping
wavelength λP and with the contraction of all singular
lines and points of the double noncritical PM into a small
region (a point in the limiting case), after which the PM
conditions do not longer hold. The triple noncriticality
occurs for each type of the interaction at the exactly
determined values of λS, P . This limiting point can be
called a critical point (CP) in view of the violation of

the PM conditions. This name is most suitable because
this region has properties similar to those in the critical
point of matter, in which the difference between the
liquid and gaseous states disappears. We suggest that
critical points of matter can be related to bifurcations
in the structure and properties of matter which occur
under the influence of non-linear wave interactions.

In order to scan the central frequency of the
conversed wide spectral band in the region of the group
or conditional centers, one can change the plane of
the wave interaction or the pumping wavelength. The
feasibility of the frequency scanning of the VGPM and
a change of the PM surface size during a change in the
pumping wavelength are illustrated in Fig. 2a, b. We
have also carried out the detailed investigations of the
frequency tuning of the group centers, i.e. of the regions
of double noncriticality in λS and ϕ. Figure 4 shows
the feasibility of the GC scanning with respect to λS

under a change in the pumping wavelength λP for the
waves interacting in the XZ and Y Z planes. Along each
line of scanning, we have the equality uS = uR and
the noncriticality in the frequency and the signal wave
propagation direction in a wide IR and visible ranges. In
the same figure, we show the functions θP and ϕ versus
λS for each GC. It should be noted that θP → 0 in the
XZ plane with the increase in λP and, correspondingly,
angle ϕ rapidly increases for the oe—o interaction in the
short wavelength range of λS .

As can be seen from Fig. 4, for interactions of
the oe—o and eo—o types, the GCs exist in the
whole transparency band of the KTP crystal, with the
exception of a small range of the central wavelengths of
the signal radiation from 1.813 to 2.318 µm (in the ZX
plane) and from 1.831 to 2.214 µm (in the Y Z plane).
The dashed lines show the GC scanning for the ee—o
interaction, for which a non-zero value of deff is realized
when the interaction plane deviates from the XZ and
Y Z planes. The interaction of this type can provide a
smooth GC tuning within the whole transparency band
of the KTP crystal. During the GC scanning, other
regions of the double noncritical PM also shift.

With decrease in λP in the near IR in the case of
the oe—o interaction, the PM surface reduces in size,
θP → 90◦, and ϕ → 0. In a limit at λP = 0.9994 µm,
λS0 = 1.813 µm (the XZ plane) and at λP = 0.906 µm,
λS0 = 1.831 µm (the Y Z plane), this surface shrinks
into a point, as shown in Fig. 4,a,b. The neighborhoods
of these points correspond to the triple noncritical PMs
in ωS and two angles ϕ and θP . When approaching this
point, the vector PM transfers to collinear PMs (ϕ = 0)
in the directions of the X and Y axes. The lines of the
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GC tuning end in the characteristic CPs, after which the
PM conditions do not longer hold (kP + kS < kR).

A tendency of the contraction of the PM surface to a
CP is also seen in Fig. 2,a,b. Analogous CPs are realized
under the eo—o interaction in the XZ and Y Z planes.
The parameters of these CPs are presented in Table 1.
In the case of the ee—o interaction in the transparency
band of the KTP crystal, the angle θP does not approach
90◦. Therefore, the region of triple noncriticality is not
realized.

For the regions of double noncriticality at λP =
1.064 µm and the oe—o interaction in the XZ plane,
we have calculated the signal wavelengths, angles θP and
ϕ, and the spectral δ νS and angular δ ϕ, δ θP conversion
widths which are presented in Table 2. The calculations
of δ νS and δ ϕ were carried out with the use of formulas
derived in [14] with the assumption that the PM factor
F (∆k) takes the form F (∆k) = sinc2(∆k l/2), where
sinc τ = sin τ /τ .

It can be seen from Table 2 that, with the use of
a VGPM, we can increase the spectral interval of the
converted IR radiation by more than an order and make
this interval larger than 500 cm−1. With the use of
crystals thinner than 1 cm, we can obtain the spectral
conversion widths larger than 1000 cm−1. The double
noncriticality of the GC allows us to simultaneously and
significantly increase the angular aperture of the signal
radiation and to improve the efficiency of conversion
of the radiation from heat sources. A large angular
divergence of the converted IR signal is admissible for
the CC when using a laser radiation with cylindrical
divergence in the range of several degrees. We note that
the positions of the noncriticality points calculated using

T a b l e 1. Laser pumping and IR signal wavelengths, at
which the triple noncritical PMs (the critical points of the
non-linear interaction) are realized in the KTP crystal

Plane oe—o interaction eo—o interaction
λP , µm λS , µm λP , µm λS , µm

XZ 0.9994 1.813 3.830 2.318
Y Z 0.906 1.831 4.048 2.214

T a b l e 2. Spectral and angular conversion widths in
the regions of a double noncritical PM on the summary
frequency generation in the KTP crystal (λP = 1.064 µm,
the oe—o interaction in the XZ plane)

Type of double λS , φ, θP ,
√

Lδν,
√

Lδφ,
√

LδθP ,
noncriticality µm deg. deg. cm−1/2 cm1/2deg. cm1/2deg.
GC 1.754 2.37 73.03 513.5 1.27
CC 1.693 6.43 83.57 532.4 0.11 3.22
TC (left) 1.132 0 90 43.8 1.09 2.59
TC (right) 2.611 0 90 36.8 1.45 4.04

Fig. 4. Scanning the group centers for the summary frequency
generation on the vector interactions of various types: in the ZX

plane (a) and in the Y Z plane (b) in the KTP crystal. The circles
mark the limiting points of a triple noncritical PM

other available data on the dispersion of the KTP crystal
[26,27] are in good agreement between one another in the
near IR range and differ (up to 10 %) in the regions near
the boundaries of the absorption bands of the crystal.
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6. Conclusions

In the present work, using the KTP crystal as an
example, we have developed a general approach to the
analysis of the conditions for the multiple noncritical PM
(in the parameters ωS , θS , and θP ) in biaxial crystals
on the summary frequency generation. This approach is
based on the analysis of the topology of the PM surface
in the space of the frequency and angular coordinates
and on the properties of the singular lines on this
surface and their intersection points. The wide-band
character of the signal radiation and the possibility of the
frequency scanning of the monochromatic laser pumping
are taken into account. The following results have been
obtained.

It is shown that, during the non-linear frequency
conversion in biaxial crystals, a noncritical PM in the
signal frequency ωS or in the propagation directions of
the signal and pumping waves θS, P can be realized on
the closed lines on the PM surface. In the regions near
the intersection points of these lines, the conditions for a
double noncritical PM in the frequency ωS and the angle
θS (θP ) or in both these angles are realized.

It is established that, as in the case of uniaxial
crystals [14], the equality of the projections of the
group speeds of the IR signal and the summary
frequency radiation on the propagation direction of the
IR radiation is fulfilled in the case of the vector group
PM. On the intersection of the lines of the vector
group PM and the tangential PM at the group center,
the group speed of the signal is equal to that of the
generated radiation, uS = uR. For the KTP crystal, the
calculations of the spectral δν and angular δ ϕ conversion
widths for the group center have been carried out for
a pumping neodymium laser at 1.064 µm. By using
crystals of 1÷10 mm in thickness, it is possible to obtain
δν ≈ 500÷ 1500 cm−1 and δ ϕ ≈ 1.5÷ 10◦.

The possibility of the realization of a specific scheme
of the angular noncriticality (a conditional PM) has been
considered, when the wave propagation directions (θP,S)
are changed simultaneously if the condition θP −θS = ϕ
is satisfied. It is shown that the angle ϕ increases linearly
if θP deviates from 90◦.

The simultaneous realization of a vector group PM
and a conditional PM in the region of maximally possible
angles ϕmax between the directions of interacting waves
has been demonstrated. This interaction scheme and also
the use of GCs allow the conversion of not only wide-
band IR signals, but also IR images.

It has been shown that, on the laser wavelength
change in the long-wave region λP > 1 µm, the group

centers can be scanned in the range 0.7 ÷ 1.81 µm
in the case of the oe—o interaction and in the range
2.32÷ 4.5 µm for the eo—o interaction. Under the ee—o
interaction on the escape from the XZ or Y Z planes,
the regions of double noncriticality are scanned in the
whole transparency band of the KTP crystal.

The PM critical points are realized at the end points
of the lines of the frequency scanning of group centers,
when the PM surface shrinks as θP approaches 90◦ (the
collinear interaction). In this case, we obtain the triple
noncritical PM in the signal frequency and the angles
θP,S or ϕP,S . The critical points in the XZ plane are
realized at λP = 0.9994 µm, λS = 1.813 µm (the oe—o
interaction) and at λP = 3.830 µm, λS = 2.318 µm (the
eo—o interaction).

The use of multiple noncritical PMs allows the
purposeful separation of nonlinear crystals for new
devices of quantum electronics.
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КОНЦЕПЦIЯ КРАТНИХ НЕКРИТИЧНИХ ФАЗОВИХ
СИНХРОНIЗМIВ ПРИ НЕЛIНIЙНОМУ
ПЕРЕТВОРЕННI ЧАСТОТИ
У ДВОВIСНИХ КРИСТАЛАХ

М.Є. Корнiєнко, В.I. Задорожний, Т.С. Сiденко

Р е з ю м е

На прикладi двовiсного кристала титанiлфосфату калiю (KTP)
розвинуто загальний пiдхiд i проведено аналiз умов некритич-
них фазових синхронiзмiв (ФС) рiзної кратностi для процесу
генерацiї сумарної частоти. Пiдхiд ґрунтується на розглядi за-
гальних властивостей поверхнi ФС, побудованої в координатах
частот i кутiв поширення взаємодiючих хвиль, аналiзi їх особ-
ливих лiнiй i точок перетину цих лiнiй. На поверхнi ФС роз-
глянуто лiнiї некритичностi за частотою сигнала або кутами
поширення хвиль накачки та сигналу. Запропоновано класи-
фiкацiю двократно некритичних ФС (за частотою та одному
з кутiв або за обома кутами). Встановлено, що область дво-
кратної некритичностi за частотою та розбiжнiстю IЧ-сигналу
може скануватися по всiй областi прозоростi кристала КТР
при перестроюваннi частоти довгохвильової лазерної накачки.
Проаналiзовано новий тип кратного некритичного синхронiз-
му (умовний ФС), який реалiзується за узгодженої змiни на-
прямкiв поширення накачки та сигналу в областi максимальної
величини кута мiж взаємодiючими хвилями. Показано мож-
ливiсть реалiзацiї некритичностi за трьома незалежними па-
раметрами — за частотою та двома кутами. Кратнi некритичнi
ФС дозволяють як вiзуалiзовувати широкосмуговi IЧ-спектри
та IЧ-зображення, так i використовувати цi методи при пере-
твореннi частоти фемтосекундних лазерних iмпульсiв.
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