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We develop an approximate secondary quantization method for
describing the many-particle systems in the presence of bound
states of particles at low energies [1] (the kinetic energy of
particles is small in comparison to the binding energy of compound
particles). In this approximation, the compound particles are
considered on an equal basis with elementary particles that
means that the creation and annihilation operators of compound
particles can be introduced. The Hamiltonians, which specify
the interactions between compound and elementary particles and
between compound particles themselves, are found in terms of the
interaction amplitudes for elementary particles.

1. Introduction

The goal of this paper was to develop a microscopic
approach for describing the physical processes in many-
particle systems in the presence of bound states of
particles. To achieve this goal, we developed a secondary
quantization method for systems containing the bound
states of particles.

The basic results obtained in this paper are the
following:
1. The Fock space is introduced in the secondary
quantization formalism. In this space, the creation and
annihilation operators of elementary particles χ̂+, χ̂ and
their bound states η̂+, η̂ are introduced on an equal
basis.
2. The operators of the basic physical quantities acting
in this space including the Hamiltonians of interactions

of elementary particles and their bound states are
constructed.
3. It is shown that, in the approximation
of a “small radius of interaction”, the above-
mentioned Hamiltonians transform into the well-known
Hamiltonians for the Coulomb and dipole interactions
between particles of various kinds.
4. The theory of the van der Waals forces that act
between atoms is considered as the approbation of
the developed formalism. The description of such
effects within the usual formalism requires more
considerable efforts associated with the introduction
of interactions for the neutral currents of bound states
with electromagnetic fields.

Especially, we would like to note a role of the
obtained Hamiltonians which describe the interaction
between quasineutral particles (the bound states
of charged fermions) and an electromagnetic field,
elementary particles and bound states, and bound states
with one another. On the basis of these Hamiltonians,
one can study such phenomena as the Bose-Einstein
condensation in a gas of excited atoms, the interaction
of condensates with an electromagnetic field in Bose
and Fermi systems. These Hamiltonians can be also
a foundation for developing the kinetic theory for the
systems with bound states of particles.

Finally, we would like to stress that the developed
method can be easily generalized to the case of
bound states containing more than two particles. The
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generalization of the offered method for describing the
systems with bound states of bosons and also bosons
with fermions taking into account spins of particles can
be also performed without principal difficulties.

2. Fock Space H̃ for Systems with Bound
States of Particles

Consider a system consisting of two kinds of fermions
with masses m1 and m2. As was mentioned in the
introduction, it is more visual in this case to show
the recipe for the construction of the operators of
physical quantities in the presence of bound states of
particles within the secondary quantization method. For
simplicity we do not take into account a spin variable,
because its accounting is evident.

Let ψ̂1(x), ψ̂2(x) be the annihilation operators of two
kinds of fermions at a point x,

ψ̂1(x)|0〉 = ψ̂2(x)|0〉 = 0,

where |0〉 is the vacuum state vector. Then the state
vectors

|x1, . . . ,xn,y1, . . . ,ym〉 =

= ψ̂+
1 (x1) . . . ψ̂+

1 (xn)ψ̂+
2 (y1) . . . ψ̂+

2 (ym)|0〉, (1)

(n,m = 0, 1, 2, . . . ) form a basis in the space of states
H. In these states, the particles are at certain points
x1, . . . ,xn;y1, . . . ,ym ∈ R of the coordinate space.
The state vectors (1) satisfy the orthogonality and
normalization relations and form the complete set of
state vectors.

We assume that a particle of the first kind and
a particle of the second kind can form a bound state
specified by the wave function

ϕα(x1 − x2)δ(x−X), X =
m1x1 + m2x2

m1 + m2
, (2)

where x is the space coordinate and α are the quantum
numbers of a bound state (atom) (we suppose that the
particles of the same kind do not form the bound states).
The corresponding state vector has the form

|α,x〉 =
∫

dx1

∫
dx2ϕα(x1 − x2)×

×δ(x−X)ψ̂+
1 (x1)ψ̂+

2 (x2)|0〉.

For this reason, the operators

ϕ̂+
α (x) =

∫
dx1

∫
dx2ϕα(x1 − x2)×

×δ(x−X)ψ̂+
1 (x1)ψ̂+

2 (x2) (3)

are called as the creation operators of bound states
(atoms), so that

ϕ̂+
α (x)|0〉 = |α,x〉, ϕ̂α(x)|0〉 = 0.

If the atom has a certain momentum, then its state
vector is given by

|α,p〉 =
1√V

∫
dx1

∫
dx2ϕα(x1 − x2)×

×eipXψ̂+
1 (x1)ψ̂+

2 (x2)|0〉,

where V is the system volume. The corresponding
creation operator ϕ̂+

α (p) of an atom in a state with
momentum p is defined by

|α,p〉 = ϕ̂+
α (p)|0〉,

ϕ̂+
α (x) =

1√V
∑
p

ϕ̂+
α (p)e−ipx.

Taking into account that
∫

dy1ϕ
∗
α(y1 − y2)ϕβ(y1 − y2) = δαβ , (4)

it is easy to get the commutation relations

[ϕ̂α(x), ϕ̂+
α′(x

′)] = δαα′δ(x− x′) + χ̂αα′(x,x′),

[ϕ̂α(x), ϕ̂α′(x′)] = 0, (5)

where

χ̂αα′(x,x′) =
∫

dy
∫

dy′ϕ∗α(y)ϕα′(y′)×

×
{

ψ̂+
1 (x +

m2

M
y)ψ̂1(x′ +

m2

M
y′)×

×δ(y − y′ − m1

M
(x− x′))+

+ψ̂+
2 (x′ − m1

M
y′)ψ̂2(x− m1

M
y)×

×δ(y − y′ +
m2

M
(x− x′))

}
, M = m1 + m2.
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Moreover,

χ̂αα′(x,x′)|0〉 = 0.

The vectors

|x1, . . .︸ ︷︷ ︸
n

,y1, . . .︸ ︷︷ ︸
m

, z1, . . .︸ ︷︷ ︸
l

〉 ≡

≡
n∏

i=1

ψ̂+
1 (xi)

m∏

k=1

ψ̂+
2 (yk)

l∏

j=1

ϕ̂+
αj

(zj)|0〉 (6)

have obvious physical meaning under the following
conditions:

|xi − xj | & a, |yi − yj | & a, |zi − zj | & a,

|xi − yj | & a, |xi − zj | & a, |yi − zj | & a (7)

(x,y, z ∈ Ra, a À r0, r0 is the radius of the bound state;
see the definition of a below). In this case, the elementary
particles and their bound states are at certain space
points.

Notice that the state vectors (6) do not form a
basis in the Hilbert space H if conditions (7) are valid.
However, their linear span, which is a totality of the
following vectors

∑

n,m,l

∫
dx1 . . .

∫
dy1 . . .

∫
dz1 . . .

︸ ︷︷ ︸
Ra

C(x1, . . .︸ ︷︷ ︸
n

,

y1, . . .︸ ︷︷ ︸
m

, z1, . . .︸ ︷︷ ︸
l

)|x1, . . .︸ ︷︷ ︸
n

,y1, . . .︸ ︷︷ ︸
m

, z1, . . .︸ ︷︷ ︸
l

〉, (8)

forms a subspace Ha of the space H. Let us show
that the state vectors (6) (with conditions (7)) form an
orthonormalized basis in the subspace Ha. To this end,
we need to take into account that, while calculating the
vacuum averages of the kind

〈0|ψ̂1(x1) . . . ψ̂2(x2) . . . ϕ̂α(x)×

×ϕ̂+
α′(x

′) . . . ψ̂+
2 (x′2) . . . ψ̂+

1 (x′1) . . . |0〉, (9)

we can use the Wick theorem with the contractions

ψ̂i
a

(x)ψ̂+
i′
a

(x′) = 〈0|ψ̂i(x)ψ̂+
i′ (x

′)|0〉 = δii′δ(x− x′),

ψ̂i
a

(x)ψ̂i′
a

(x′) = 0 (10)

if we consider the operators ψ̂1, ψ̂2, and ϕ̂ to be referred
to the time moment +0 and the operators ϕ̂+, ψ̂+

2 ,
ψ̂+

1 to the time moment −0. In addition, we should
remember that the creation and annihilation operators
ϕ̂α, ϕ̂+

α′ depend on ψ̂i, ψ̂i′ (see (3)). We also assume
that the wave function of atom (2) differs from zero for
|x1−x2| < r0. Taking into account (3) and noting that,
for |x′1 − x′2| > a,

ϕ̂α
ab

(z)ψ̂+
2
b

(x′2)ψ̂
+
1
a

(x′1) =
∫

dz1

∫
dz2ϕ

∗
α(z1 − z2)×

×δ(z− Z)ψ̂1
a

(z1)ψ̂2
b

(z2)ψ̂+
2
b

(x′2)ψ̂
+
1
a

(x′1) =

= ϕ∗α(x′1 − x2
′)δ(z−X′) = 0,

X′ =
m1x′1 + m2x′2

m1 + m2

and

ϕ̂α
ab

(z)ϕ̂+
α′

ba

(z′) =
∫

dz1

∫
dz2

∫
dz′1

∫
dz′2ϕ

∗
α(z1 − z2)×

×δ(z− Z)ϕα′(z′1 − z2
′)δ(z′ − Z′)×

×ψ̂1
a

(z1)ψ̂2
b

(z2)ψ̂+
2
b

(z′2)ψ̂
+
1
a

(z′1) =

=
∫

dz1

∫
dz2ϕ

∗
α(z1 − z2)δ(z− Z)×

×ϕα′(z1 − z2)δ(z′ − Z) = δαα′δ(z− z′)

(double contractions correspond to the operators ϕ̂α,
ϕ̂+

α ), we get

〈0| ψ̂1(x1) . . .︸ ︷︷ ︸
n

ψ̂2(y1) . . .︸ ︷︷ ︸
m

ϕ̂α1(z1) . . .︸ ︷︷ ︸
l

ϕ̂+
α′1

(z′1) . . .
︸ ︷︷ ︸

l′

ψ̂+
2 (y′1) . . .︸ ︷︷ ︸

m′

ψ̂1(x′1) . . .︸ ︷︷ ︸
n′

|0〉 =

= δnn′δmm′δll′
∑

Px′Py′ δ(x1 − x′1) . . .︸ ︷︷ ︸
n

×

× δ(y − y′1) . . .︸ ︷︷ ︸
m

δ(z1 − z′1)δα1α′1 . . .︸ ︷︷ ︸
l

. (11)

This relation shows that vectors (8) form the
orthonormalized basis in the subspace Ha if we consider
the creation and annihilation operators ϕ̂+

α (z) and ϕ̂α(z)
as Bose operators which commute with ψ̂i(x), ψ̂+

i (x).
The quantity Px′ in (11) is equal to +1 if the number
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of permutations of the arguments x′1 . . .x′n is even and
it is equal to −1 if the number of these permutations is
odd. The quantity Py′ is defined similarly.

With the use of (11), it is easy to find the projection
operator PHa

onto the subspace Ha:

PHa
=

∑

k+m+l≤n

1
k!

1
m!

1
l!

∫
dx1 . . .

∫
dy1 . . .

∫
dz1 . . .

︸ ︷︷ ︸
Ra

×

×|x1 . . .︸ ︷︷ ︸
k

y1 . . .︸ ︷︷ ︸
m

z1 . . .︸ ︷︷ ︸
l

〉〈x1 . . .︸ ︷︷ ︸
k

y1 . . .︸ ︷︷ ︸
m

z1 . . .︸ ︷︷ ︸
l

|.

This operator is such that the operators A acting in
the subspace Ha ∈ H correspond to the operators of
physical quantities A acting in H (hereinafter, the sums
of 1, 2, . . . n-particle subspaces over the bound states are
considered; n ≈ a/r0 À 1), and

A = PHaAPHa . (12)

Let us introduce now an auxiliary space H̃ with
Fermi creation and annihilation operators χ̂+

1 (x), χ̂+
2 (x),

χ̂1(x), χ̂2(x) and Bose creation and annihilation
operators η̂+

α (x), η̂α(x) and let us take the vectors

|x1, . . . ,y1, . . . , z1, . . . ) =

= χ̂+
1 (x1) . . . χ̂+

2 (y1) . . . η̂+
α (z1) . . . |0)

as a basis of this space, where |0) is the vacuum vector
in H̃. Then the linear span of the vectors

|x1, . . . ,y1, . . . , z1, . . . ) ∈ H̃a, x,y, z ∈ Ra (13)

determines the subspace H̃a of the space H̃.
Now we can easily establish the isomorphic

correspondence between Ha and H̃a,

|x1, . . . ,y1, . . . , z1, . . . 〉 ⇐⇒

⇐⇒ |x1, . . . ,y1, . . . , z1, . . . ), (14)

which preserves the scalar product

〈x′, . . . ,y′, . . . , z′, . . . |x, . . . ,y, . . . , z . . . 〉 =

= (x′, . . . ,y′, . . . , z′, . . . |x, . . . ,y, . . . , z . . . ),

x,y, z ∈ Ra, x′,y′, z′ ∈ Ra. (15)

We can also establish the isomorphism between the
operators A ⇐⇒ Ã acting in the spaces Ha and H̃a

according to the formula:

〈x′, . . . ,y′, . . . , z′, . . . |A|x, . . . ,y, . . . , z . . . 〉 =

= (x′, . . . ,y′, . . . , z′, . . . |Ã|x, . . . ,y, . . . , z . . . ),

x,y, z ∈ Ra, x′,y′, z′ ∈ Ra. (16)

This isomorphic correspondence is remained after the
multiplication of an operator by a number, after the
addition of operators, and after the multiplication of
operators:

λA ⇐⇒ λÃ, A + B ⇐⇒ Ã + B̃,

A B ⇐⇒ ÃB̃. (17)

Formulas (12),(16) lead to

(x′, . . . ,y′, . . . , z′, . . . |Ã|x, . . . ,y, . . . , z . . . ) =

= 〈x′, . . . ,y′, . . . , z′, . . . |A|x, . . . ,y, . . . , z . . . 〉,

x,y, z ∈ Ra, x′,y′, z′ ∈ Ra. (18)

This relation determines the operators of various
physical quantities Ã acting in H̃a and, hence, transfers
the quantum theory, in which the compound particles
(bound states) and elementary particles exist on an equal
basis from the space of states H into the space of states
H̃a. We would like to recall here that ϕ̂+

α entering (6) is
determined by (3).

Relation (18) determines the operator Ã uniquely
in H̃a, but it does not determine it uniquely in H̃. It
is evident that the operator Ã acting in H̃ (continued
from H̃a to the whole space H̃) is determined up to the
term Ã′, the matrix elements of which are zero in the
space H̃a (Ã = Ã′ + Ã′′). If we introduce the projection
operator PH̃a

onto the subspace H̃a and require that
the operator Ã have no nonzero matrix elements in
the orthogonal subspace, then the operator Ã will be
determined uniquely in H̃, and Ã = PH̃a

Ã′′PH̃a
. When

constructing the operator Ã acting in H̃, we will omit
the projection operator PH̃a

. The reason for this is
the assumption that the matrix elements of operators
(in the position space), corresponding to a quite large
external parameter R ∼ |xi − xj |, give a dominant
contribution to quantum-mechanical processes. Further,
we consider that R À r0 (usually in the case of collisions
between particles, R−1 ∼ √

mE , where E is the particle
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kinetic energy). The above inequality makes it possible
to choose the parameter a (see (7)) as follows 1:

R À a À r0. (19)

The operators’ matrix elements shouldn’t depend on the
parameter a chosen in such a way. We will conceptually
lower the bound state’s radius, r0 → 0. Then the whole
scheme will not depend on the parameter a, as we have
already remarked, up to the values of a = r0. Therefore,
owing to the inequality R À a, the subspace H̃a can be
identified with the space H̃ (a → 0, a À r0), i.e. PH̃a

→
1 while a → 0. At the same time, we haven’t violated
the quantum-mechanical description of the bound states
due to the inequality a À r0.

The matrix elements of operators should not depend
on the parameter a chosen in this way. Let us mentally
decrease the radius of a bound state, r0 → 0. Then
the whole scheme, as we have already noted, will not
depend on a up to the values a = r0 and, hence,
the subspace H̃a can be identified with H̃ due to the
inequality R À a. In other words one can considers that
PH̃a

→ 1 for a → 0. At the same time, we do not break
the quantum-mechanical description of bound states by
virtue of the inequality a À r0. From the physical point
of view, the inequality r0 ¿ R gives a stability domain
for bound states considered as elementary particles.
The calculation of the following approximation is to be
associated with regard for a difference of the subspace
Ha from the space H.

Finally, we note that, for an arbitrary vector | ) ∈
H̃a, the following evident relations are true:

ζ̂(x)ξ̂(x′)| ) = 0, ( |ζ̂+(x)ξ̂+(x′) = 0,

|x− x′| < a, (20)

or

ζ̂(x)ξ̂(x′)H̃a = 0, H̃aζ̂+(x)ξ̂+(x′) = 0,

|x− x′| < a,

where ζ̂ and ξ̂ are any of the annihilation operators
χ̂1, χ̂2, andη̂.

3. Operators of Physical Quantities in Space H̃

Here, we consider a method for obtaining the operators
˜̂
A. Let operator Â represent the normal-ordered product

of the operators ψ̂i(v), ψ̂+
i (u), (i = 1, 2):

Â(u,v) = ψ̂+
1 (u1) . . . ψ̂+

2 (u2)ψ̂1(v1) . . . ψ̂2(v2) . . . (21)

The operators of such a type are the particle density
operator ρ̂i(x),

ρ̂i(x) = ψ̂+
i (x)ψ̂i(x)

the momentum density operator π̂i(x),

πi(x) = − i

2

(
ψ̂+

i (x)
∂

∂x
ψ̂i(x)− ∂

∂x
ψ̂+

i (x)ψ̂i(x)
)

,

the Hamiltonian of a system, etc.
The matrix element on the right-hand side of (18)

may be written as the following vacuum average:

〈0|ψ̂1(x1) . . . ψ̂2(x2) . . . ϕ̂α(x) . . . Â(u,v)×

×ϕ̂+
α′(x) . . . ψ̂2(x′2) . . . ψ̂1(x′1) . . . |0〉. (22)

Let us note that, while calculating this average by using
the Wick theorem, the quantity which is averaged over
the vacuum state has the meaning of a mixed T -product
if one considers the operators ψ̂1, . . . , ψ̂2, . . . , ϕ̂ . . . to be
referred to the time moment +0, operators ψ̂+

1 , . . . , ψ̂+
2 ,

. . . , ϕ̂+ . . . to −0, and the normal-ordered operator
Â(u,v) to the time moment 0. Thus, there is no need to
place the contractions inside the expression for Â(u,v).
Let

Ab(y1, . . . ,y2, . . . ,y, . . . ;

y′1, . . . ,y′2, . . . ,y′, . . . ;u,v) ≡ Ab(y;y′;u,v) (23)

be the analytic expression that corresponds to the
diagram “b”, for which the operators with arguments u
are related to the operators with arguments y1, . . . ,y2,
. . . ,y, . . . . The latter arguments are spaced apart
by the distances greater than a and coincide with
some of arguments x1, . . . ,x2, . . . ,x, . . . ,. The similar
statement should be also made concerning the arguments
y′1, . . . ,y′2, . . . ,y′, . . . . Therefore, the operator ˜̂

A(u,v)
acting in H̃ is given, in according to (7), by

˜̂
A(u,v) =

∑

b

∫
R̂1R̂2R̂Ab(y;y′;u,v)R̂′1R̂

′
2R̂

′, (24)

1For the Coulomb interaction, the inequality R À r0 is equivalent to E ¿ ε0, because r0 = n2h̄2

me2 , ε0 = me4

2n2h̄2 , n ∼ 1.
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where

R̂1 =
∏

χ̂+(y1)dy1, R̂2 =
∏

χ̂+(y2)dy2,

R̂ =
∏

η̂+(y)dy, R̂′1 =
∏

χ̂(y′1)dy
′
1,

R̂′2 =
∏

χ̂(y′2)dy
′
2, R̂′ =

∏
η̂(y′)dy′

and the summation is taken over all diagrams of the
described type.

If Â(v) = 1 (see proof of (11)), then ˜̂
A(v) = 1 on the

subspace H̃a. Let now Â(u,v) = ψ̂1(v). Then the only
diagrams of the described type for the vacuum average
〈0| . . . ψ̂1(v) . . . |0〉 will be the diagrams

Ab1 = ψ̂
a
(v) . . . ψ̂+

1
a

(y′),

Ab2 = ψ̂2
a

(y2) . . . ψ̂1
b

(v) . . . ϕ̂+
α

ba

(y′). (25)

The expressions

Ab1(y
′
1;v) = δ(v − y′1),

Ab2(y2;y′,v) =
∫

dx1

∫
dx2ϕα(x1 − x2)

×δ(X− y′)δ(v − x1)δ(x2 − y2) = ϕα(v,y2,y′)

correspond to these diagrams. Here, ϕα(v,y2,y′) is
defined in accordance with (2). Therefore, according to
(24), we have

˜̂
ψ1(v) =

∫
dy′1Ab1(y

′
1,v)χ̂1(y′1)+

+
∫

dy2

∫
dy′Ab2(y2;y′,v)χ̂+

2 (y2)η̂(y′)

or

˜̂
ψ1(v) = χ̂1(v) + Ô1(v), (26)

where

Ô1(v) =
∫

dyϕ̂(v,y)χ̂+
2 (y),

ϕ̂(x1,x2) = ϕα(x)η̂α(X), x = x1 − x2,

X =
m1x1 + m2x2

m1 + m2
. (27)

Similarly, we obtain

˜̂
ψ2(v) = χ̂2(v) + Ô2(v), (28)

where

Ô2(v) = −
∫

dyχ̂+
1 (y)ϕ̂(y,v).

Deriving (27) and (28), we essentially used inequalities
(7).

Now let us consider Â(u,v) = ψ̂+
1 (u)ψ̂1(v). In this

case, the following five diagrams

A1 = ψ̂
a

. . .u1
a
v1
b

. . . ψ̂+

b
,

A2 = ψ̂
a

. . . ψ̂
b

. . .u1
b
v1
c

. . . ϕ̂+

ca
,

A3 = ϕ̂
ab

. . .u1
b
v1
c

. . . ψ̂+

c
. . . ψ̂+

a
,

A4 = ϕ̂
ab

. . .u1
b
v1
c

. . . ϕ̂+

ca
,

A5 = ψ̂
a

. . . ϕ̂
bd

. . .u1
d
v1
c

. . . ϕ̂+

ca
. . . ψ̂+

b

correspond to this operator (indices 1 and 2 for ψ̂ and
ψ̂+ can be easy restored if we take into account (3) and
the definition of contractions). The analytic expressions
corresponding to these diagrams have the form

˜̂
A1 = χ̂+

1 (u1)χ̂1(v1),

˜̂
A2 =

∫
dz1

∫
dz2ϕ̂(z1, z2)δ(z1 − v1)χ̂+

1 (u1)χ̂+
2 (z2) =

=
∫

dz2ϕ̂(v1, z2)χ̂+
1 (u1)χ̂+

2 (z2),

˜̂
A3 =

∫
dz1

∫
dz2ϕ̂

+(z1, z2)δ(z1 − u1)×

×χ̂2(z2)χ̂1(v1) =
∫

dz2ϕ̂
+(u1, z2)χ̂2(z2)χ̂1(v1),

˜̂
A4 =

∫
dz1

∫
dz2

∫
dz′1

∫
dz′2ϕ̂

+(z1, z2)×

×ϕ̂(z′1, z
′
2)δ(z1 − u1)δ(v1 − z′1)δ(z2 − z′2) =

=
∫

dz2ϕ̂
+(u1, z2)ϕ̂(v1, z2),

˜̂
A5 =

∫
dz1

∫
dz2

∫
dz′1

∫
dz′2ϕ̂

+(z1, z2)×
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×ϕ̂(z′1, z
′
2)δ(z1 − u1)δ(v1 − z′1)χ̂

+
2 (z′2)χ̂2(z2) =

=
∫

dz2

∫
dz′2ϕ̂

+(u1, z2)ϕ̂(v1, z′2)χ̂
+
2 (z′2)χ̂2(z2).

Whence, we find operators (24) corresponding to
diagrams (23) as

˜̂
A1 = χ̂+

1 (u1)χ̂1(v1),
˜̂
A2 = χ̂+

1 (u1)Ô1(v1),

˜̂
A3 = Ô+

1 (u1)χ̂1(v1),
˜̂
A4 + ˜̂

A5 = Ô+
1 (u1)Ô1(v1).

Deriving the latter expression we have taken into
account the anticommutation relations for χ̂, χ̂+. Hence,
bearing in mind (27) and (28), we obtain the final

expression for the operator ˜̂
A(u,v) = ˜ψ̂+

1 (u1)ψ̂1(v1)
that corresponds to Â(u,v) = ψ̂+

1 (u1)ψ̂1(v1):

ψ̂+
1 (u1)ψ̂1(v1) → ˜ψ̂+

1 (u1)ψ̂1(v1) =

= ˜̂
ψ

+

1 (u1)
˜̂
ψ1(v1). (29)

Similarly, we get

ψ̂1(u1)ψ̂1(v1) → ˜ψ̂1(u1)ψ̂1(v1) = ˜̂
ψ1(u1)

˜̂
ψ1(v1),

ψ̂+
1 (u1)ψ̂2(v1) → ˜ψ̂+

1 (u1)ψ̂2(v1) =

˜̂
ψ

+

1 (u1)
˜̂
ψ2(v1), . . . (30)

In a general case, the following formula is true:

ψ̂+
i1

(ui1) . . . ψ̂+
in

(uin)ψ̂j1(vj1) . . . ψ̂jm(vjm) →
˜ψ̂+

i1
(ui1) . . . ψ̂jm(vjm) = ˜̂

ψ
+

i1(u1)
˜̂
ψjm

(vjm). (31)

To explain this formula, we note that each of the
operators ψ̂j(vj) (or ψ̂+

i (ui)) entering Â(u,v) (see (21))
is related to other operators ψ̂+ (or ψ̂) which do not
enter Â(u,v) only by a unique way, which leads to
binary relations (29), (30). Therefore, we come to (31) by
sorting out all the operators ψ̂i, ψ̂i′ contained in Â(u,v).

The operators ψ̂i(x), ψ̂j(x′) are anticommutative.
For this reason, there is a question concerning the
consistency of (30), (31). The anticommutativity of
˜̂
ψi(x), ˜̂

ψj(x′) (and also ˜̂
ψ

+

i (x), ˜̂
ψ

+

j (x′) ) represents the
consistency condition,

{˜̂ψi(x), ˜̂
ψj(x

′)} = {˜̂ψ
+

i (x), ˜̂
ψ

+

j (x′)} = 0.

The validity of these formulas can be easily proved if we

use definitions (27)—(28) for ˜̂
ψ, ˜̂

ψ
+

and the commutation
relations for χ̂, χ̂+ and η̂α, η̂+

α .

4. Operators of Particle Density and
Momentum Density in Space H̃

In this section, we consider the operators of basic
physical quantities. These operators act in the Hilbert
space H̃. Let us start from the density operator for
particles of the first kind. The corresponding operator
acting in the original Hilbert space H is of the form

ρ̂1(x) = ψ̂+
1 (x)ψ̂1(x). (32)

Hence, in accordance with (30), we obtain

˜̂ρ1(x) = ˜̂
ψ

+

1 (x)˜̂ψ1(x) = χ̂+
1 (x)χ̂1(x)+

+Ô+
1 (x)χ̂1(x) + χ̂+

1 (x)Ô1(x) + Ô+
1 (x)Ô1(x). (33)

Note that the operators with zero matrix elements in
the subspace H̃a occur on the right-hand side of (29),
because the points u1 and v1 are close to each other.
Since

Ô+
1 (x)χ̂1(x) =

∫
dyφ̂+(x,y)χ̂2(y)χ̂1(x),

χ̂+
1 (x)Ô1(x) =

∫
dyχ̂+

1 (x)χ̂+
2 (y)φ̂(x,y),

and the operator ϕ̂(x,y) differs from zero only for
|x − y| . a, these operators do not have the matrix
elements in the subspace H̃a according to (20) and,
therefore, can be omitted. Using the permutation
relation {χ̂+

2 (z1), χ̂2(z2)} = δ(z1 − z2), we write the
operator Ô+

1 (x)Ô1(x) as

Ô+
1 (x)Ô1(x) =

∫
dz1

∫
dz2ϕ̂

+(x, z2)ϕ̂(x, z1)×

×χ̂+
2 (z1)χ̂2(z2) +

∫
dzϕ̂+(x, z)ϕ̂(x, z).

The matrix element of the second term is zero in the
subspace H̃a, because z1 ≈ z2 ≈ x (see (20)). For this
reason, this term can be omitted. Thus, with the use of
the method that was described in the previous section,
we have

˜̂ρ1(x) = χ̂+
1 (x)χ̂1(x) +

∫
dzϕ̂+(x, z)ϕ̂(x, z). (34)
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Similarly, if ρ̂2(x) = ψ̂+
2 (x)ψ̂2(x) represents the density

operator for particles of the second kind, then

ρ̂2(x) → ˜̂ρ2(x),

where

˜̂ρ2(x) = χ̂+
2 (x)χ̂2(x) +

∫
dzϕ̂+(z,x)ϕ̂(z,x). (35)

Bearing in mind (27) and the assumption about the
“small radius” of a bound state, we get the formulas
∫

dzϕ̂+(x, z)ϕ̂(x, z) ≈ η̂+
α (x)η̂α(x),

∫
dzϕ̂+(z,x)ϕ̂(z,x) ≈ η̂+

α (x)η̂α(x),

which allow us to obtain the density operators for
particles of the first and second kinds

˜̂ρ1(x) = χ̂+
1 (x)χ̂1(x) + η̂+

α (x)η̂α(x),

˜̂ρ2(x) = χ̂+
2 (x)χ̂2(x) + η̂+

α (x)η̂α(x). (36)

Thus, the operators η̂+
α (x), η̂α(x) can be interpreted as

the creation and annihilation operators of bound states
with quantum numbers α at the point x, and η̂+

α (x)η̂α(x)
as the density operator of bound states. Formula (36)
has a simple physical meaning: the density of particles
of the first kind is equal to the sum of densities of free
particles of the same kind and bound states (each bound
state contains one particle of the first kind).

Consider the state vector Φ(X) = η̂+
α (X)|0〉, which

specifies a compound particle at the point X (this state
vector corresponds to the continuous spectrum). Then,
in accordance with (36), we have

(Φ(X), ρ̂1(x1)Φ(X′)) =

= δ(X−X′)
(

M

m2

)3∣∣∣∣ϕα

(
M

m2
(x1 −X)

)∣∣∣∣
2

.

For a wave packet

ΨX0 =
∫

dXfX0(X)Φ(X),

∫
dX

∣∣∣∣fX0(X)
∣∣∣∣
2

= 1,

the quantity

(ΨX0 , ρ̂1(x1)ΨX0) =

=
∫

dX
∣∣∣∣fX0(X)

∣∣∣∣
2(

M

m2

)3∣∣∣∣ϕα

(
M

m2
(x1 −X)

)∣∣∣∣
2

should be treated as the probability density to find the
first particle at the point x1 if the atom is in a state
ΨX0 . If the bound state is localized near a point X0

(i.e., |fX0(X)|2 → δ(X−X0)), then

(ΨX0 , ρ̂1(x1)ΨX0) →
(

M

m2

)3∣∣∣∣ϕα

(
M

m2
(x1 −X0)

)∣∣∣∣
2

.

Since M
m2

(x1 − X0) = x = x1 − x2, we come, as it
should be, to the probability distribution for the space
coordinate of the first particle in an atom, which is at
the point X0.

Let us find now the momentum density operator in
the space H̃. The momentum density operator π̂1(x) for
particles of the first kind is defined in the original Hilbert
space as

π̂1(x) = − i

2

(
ψ̂+

1 (x)
∂ψ̂1(x)

∂x
− ∂ψ̂+

1 (x)
∂x

ψ̂1(x)
)

. (37)

Then, according to (30),

π̂1(x) → ˜̂π1(x) =

= − i

2

(
˜̂
ψ

+

1 (x)
∂
˜̂
ψ1(x)
∂x

− ∂
˜̂
ψ

+

1 (x)
∂x

˜̂
ψ1(x)

)
. (38)

Following the derivation of (34) and (35) for ˜̂ρ1(x) and
˜̂ρ2(x), we obtain

˜̂π1(x) = − i

2

(
χ̂+

1 (x)
∂χ̂1(x)

∂x
− ∂χ̂+

1 (x)
∂x

χ̂1(x)
)
−

− i

2

∫
dy

(
ϕ̂+(x,y)

∂ϕ̂(x,y)
∂x

− ∂ϕ̂+(x,y)
∂x

ϕ̂(x,y)
)

.

(39)

Analogously,

˜̂π2(x) = − i

2

(
χ̂+

2 (x)
∂χ̂2(x)

∂x
− ∂χ̂+

2 (x)
∂x

χ̂2(x)
)
−

− i

2

∫
dy

(
ϕ̂+(y,x)

∂ϕ̂(y,x)
∂x

− ∂ϕ̂+(y,x)
∂x

ϕ̂(y,x)
)

.

(40)
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It is convenient for our further consideration to
rewrite (39), (40) in terms of the center-of-mass variables
y = y1 − y2 and Y = m1y1+m2y2

m1+m2
:

˜̂π1(x) = −i2
(

χ̂+
1 (x)

∂χ̂1(x)
∂x

− ∂χ̂+
1 (x)
∂x

χ̂1(x)
)
−

− i

2

∫
dy

∫
dYδ(x−Y − m2

M
y)×

×
{

ϕ̂+(y,Y)
∂ϕ̂(y,Y)

∂y
− ∂ϕ̂+(y,Y)

∂y
ϕ̂(y,Y)+

+
m1

M

(
ϕ̂+(y,Y)

∂ϕ̂(y,Y)
∂Y

− ∂ϕ̂+(y,Y)
∂Y

ϕ̂(y,Y)
)}

,

˜̂π2(x) = −i2
(

χ̂+
2 (x)

∂χ̂2(x)
∂x

− ∂χ̂+
2 (x)
∂x

χ̂2(x)
)
−

− i

2

∫
dy

∫
dYδ(x−Y +

m1

M
y)×

×
{
−ϕ̂+(y,Y)

∂ϕ̂(y,Y)
∂y

+
∂ϕ̂+(y,Y)

∂y
ϕ̂(y,Y)+

+
m2

M

(
ϕ̂+(y,Y)

∂ϕ̂(y,Y)
∂Y

−−∂ϕ̂+(y,Y)
∂Y

ϕ̂(y,Y)
)}

,

(41)

where ϕ̂(y1,y2) ≡ ϕ̂(y,Y). Note that, in terms of the
same variables, the operators ˜̂ρ1(x) and ˜̂ρ2(x) have the
form

˜̂ρ1(x) = χ̂+
1 (x)χ̂1(x)+

+
∫

dy
∫

dYδ(x−Y − m2

M
y)ϕ̂+(y,Y)ϕ̂(y,Y),

˜̂ρ2(x) = χ̂+
2 (x)χ̂2(x)+

+
∫

dy
∫

dYδ(x−Y +
m1

M
y)ϕ̂+(y,Y)ϕ̂(y,Y). (42)

Formulas (41) and (42) can be explicitly expressed
through the creation and annihilation operators η̂+

α (x),
η̂α(x) of atoms if we employ (26). Taking into account
(41), it is easy to find the operator ˜̂π = ˜̂π1(x) + ˜̂π2(x)
of the total momentum density of the system in the
approximation, in which the radius of a bound state is
small,

˜̂π = ˜̂π1(x) + ˜̂π2(x) =

= − i

2

(
χ̂+

1 (x)
∂χ̂1(x)

∂x
− ∂χ̂+

1 (x)
∂x

χ̂1(x)
)
−

− i

2

(
χ̂+

2 (x)
∂χ̂2(x)

∂x
− ∂χ̂+

2 (x)
∂x

χ̂2(x)
)
−

− i

2

(
η̂+

α (x)
∂η̂α(x)

∂x
− ∂η̂+

α (x)
∂x

η̂α(x)
)

. (43)

The third term in this formula is in accordance with
the interpretation of η̂+

α (x), η̂α(x) as the creation and
annihilation operators of a bound state with quantum
numbers α at the point x.

5. Construction of Hamiltonians

Finally, let us consider a Hamiltonian in the space H̃.
We suppose that this Hamiltonian has the standard form
in the Hilbert space H and can be written as

Ĥ = Ĥ0 + V̂ , (44)

where Ĥ0 and V̂ are the operators of kinetic energy and
potential energy given by

Ĥ0 =
2∑

i=1

1
2mi

∫
dx

∂ψ̂+
i (x)
∂x

∂ψ̂i(x)
∂x

,

V̂ =
1
2

2∑

i=1

2∑

j=1

∫
dx

∫
dx′νij(x− x′)×

×ψ̂+
i (x)ψ̂+

j (x′)ψ̂j(x′)ψ̂i(x) (45)

and νij(x−x′) is the potential energy of the interaction
of particles of kinds i and j. After the similar calculations
that lead us to the expressions for ˜̂ρ, ˜̂π, we obtain

Ĥ0 → ˜̂H0 =
2∑

i=1

1
2mi

∫
dx

∂χ̂+
i (x)
∂x

∂χ̂i(x)
∂x

+

+
∫

dx1

∫
dx2

{
1

2m1

∂ϕ̂+(x1,x2)
∂x1

∂ϕ̂(x1,x2)
∂x1

+

+
1

2m2

∂ϕ̂+(x1,x2)
∂x2

∂ϕ̂(x1,x2)
∂x2

}
. (46)

Next, by changing to the center-of-mass variables (see
(2)) and noting that

ϕ̂(x1,x2) = ϕα(x)η̂α(X), x = x1 − x2,

X =
m1x1 + m2x2

m1 + m2
,
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we get

∂

∂x1
=

∂

∂x
+

m1

M

∂

∂X
,

∂

∂x2
= − ∂

∂x
+

m2

M

∂

∂X
.

We will bring the last term in (46) to the form

1
2M

∫
dX

∂η̂+
α (X)
∂X

∂η̂α(X)
∂X

−

− 1
2µ

∫
dx

∫
dXη̂+

α (X)η̂β(X)
∂ϕ∗α(x)

∂x
∂ϕβ(x)

∂x
,

where µ = m1m2/(m1 +m2) is the reduced mass. Thus,

˜̂H0 =
1

2m1

∫
dx

∂χ̂+
1 (x)
∂x

∂χ̂1(x)
∂x

+

+
1

2m2

∫
dx

∂χ̂+
2 (x)
∂x

∂χ̂2(x)
∂x

+

+
1

2M

∫
dX

∂η̂+
α (X)
∂X

∂η̂α(X)
∂X

−

− 1
2µ

∫
dx

∫
dXη̂+

α (X)η̂β(X)
∂ϕ∗α(x)

∂x
∂ϕβ(x)

∂x
. (47)

Let us now find ˜̂
V (V̂ → ˜̂

V ). According to (30), we
have

˜̂
V =

1
2

2∑

i=1

2∑

j=1

∫
dx

∫
dx′νij(x− x′)×

×˜̂
ψ

+

i (x)˜̂ψ
+

j (x′)˜̂ψj(x
′)˜̂ψi(x),

where ˜̂
ψi(x) = χ̂i(x) + Ôi(x) (see (30)). Thus, ˜̂

V can be
represented in the form

˜̂
V = ˜̂

V 0 + ˜̂
V 1 + ˜̂

V 2 + ˜̂
V 3 + ˜̂

V 4,

where ˜̂
V k (k = 0, . . . 4) contains k multipliers of type

χ̂ and 4− k multipliers of type Ô. The operators Ôi(x)
have, according to (27) and (28), the form

Ôi(x) =
∫

dyϕ̂i(x,y)χ̂+
i′ (y), (48)

where

ϕ̂1(x,y) = ϕ̂(x,y), ϕ̂2(x,y) = ϕ̂(y,x)

and the index i′ is determined as follows: 1′ = 2, 2′ = 1.
Then the operator ˜̂

V 0 can be presented in the form

˜̂
V 0 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2νij(x1 − x2)×

×
∫

dy1

∫
dy2

∫
dy3

∫
dy4ϕ̂

+
i (x1,y1)×

×ϕ̂+
j (x2,y2)ϕ̂j(x2,y3)ϕ̂i(x1,y4)×

×χ̂i′(y1)χ̂j′(y2)χ̂+
j′(y3)χ̂+

i′ (y4). (49)

Note that the operators ϕ̂ and ϕ̂+ in (49) are normally
ordered, whereas χ̂ and χ̂+ are not. Therefore, we order
them by using the Wick theorem:

χ̂i′(y1)χ̂j′(y2)χ̂+
j′(y3)χ̂+

i′ (y4) =

=: χ̂i′(y1)χ̂j′(y2)χ̂+
j′(y3)χ̂+

i′ (y4) : +

+ : χ̂i′
a

(y1)χ̂j′(y2)χ̂+
j′
a

(y3)χ̂+
i′ (y4) : +

+ : χ̂i′
a

(y1)χ̂j′(y2)χ̂+
j′(y3)χ̂+

i′
a

(y4) : +

+ : χ̂i′(y1)χ̂j′
a

(y2)χ̂+
j′
a

(y3)χ̂+
i′ (y4) : +

+ : χ̂i′(y1)χ̂j′
a

(y2)χ̂+
j′(y3)χ̂+

i′
a

(y4) : +

+ : χ̂i′
a

(y1)χ̂j′
b

(y2)χ̂+
j′
a

(y3)χ̂+
i′
b

(y4) : +

+ : χ̂i′
a

(y1)χ̂j′
b

(y2)χ̂+
j′
b

(y3)χ̂+
i′
a

(y4) : . (50)

The operator ϕ̂(x,y) ≡ ϕα(x − y)η̂α(m1x+m2y
m1+m2

) differs
from zero only for x ≈ y (|x − y| < a). Thus, only
those of ϕi, for which |y1 − y4| < a contribute to the
integral over y in (49). This means that, by virtue of
(20), the first term in (50) does not contribute to the
matrix element of ˜̂

V 0 taken between the states belonging
to H̃a, because ϕ̂i(x1,y4)χ̂i(y1)Φ = 0. Similarly, one can
prove that the terms which contain single contractions
in (50) give no contribution to the matrix element of
˜̂
V 0 taken between the states in H̃a. The penultimate
term in (50) containing the double contractions does
not also contribute to the above-mentioned matrix
element. Indeed, the penultimate term in (50) equals
δ(y1 − y3)δ(y2 − y4). In this case, the nonzero matrix
element exists for x1 ≈ x2 and, in virtue of (20),
ϕ̂j(x2,y3)ϕ̂i(x1,y4)Φ = 0. Thus, only the latter term in
(50) equal to δ(y2−y3)δ(y1−y4) can give a contribution
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to the matrix element of ˜̂
V 0. Therefore, not changing

the matrix elements in H̃a, the operator ˜̂
V 0 can be

represented in the form

˜̂
V 0 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2

∫
dy1

∫
dy2×

×νij(x1 − x2)ϕ̂+
i (x1,y1)ϕ̂+

j (x2,y2)×

×ϕ̂j(x2,y2)ϕ̂i(x1,y1)

or, according to (48),

˜̂
V 0 =

1
2

∫
dx1

∫
dx2

∫
dy1

∫
dy2×

×ϕ̂+(x1,y1)ϕ̂+(x2,y2)ϕ̂(x2,y2)ϕ̂(x1,y1)×

×
{

ν11(x1 − x2) + ν22(y1 − y2)+

+ν12(x1 − y2) + ν21(y1 − x2)
}

. (51)

Similarly, noting that

˜̂
V 1 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2νij(x1 − x2)×

×
∫

dy
{

ϕ̂+
i (x1,y)χ̂i′(y)χ̂+

j (x2)χ̂j(x2)χ̂i(x1)+

+ϕ̂+
j (x2,y)χ̂i(x1)χ̂+

j′(y)χ̂j(x2)χ̂i(x1) + h.c.

}
,

˜̂
V 3 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2νij(x1 − x2)×

×
∫

dy1

∫
dy2

∫
dy3

{
ϕ̂+

i (x1,y1)ϕ̂+
j (x2,y2)×

×ϕ̂j(x2,y3)χ̂i′(y1)χ̂j′(y2)χ̂+
j′(y3)χ̂i(x1)+

+ϕ̂+
i (x1,y1)ϕ̂+

j (x2,y2)ϕ̂i(x1,y3)×

×χ̂i′(y1)χ̂j′(y2)χ̂j(x2)χ̂+
i′ (y3) + h.c.

}

and performing the same derivation as for obtaining ˜̂
V 0,

it is easy to verify (using the anticommutation relations
for χ̂, χ̂+ and (50)) that we can consider

˜̂
V 1 = ˜̂

V 3 = 0 (52)

not changing the matrix elements of ˜̂
V 1 and ˜̂

V 3 in
the subspace H̃a. Next, it is evident that the following
formula is valid:

˜̂
V 4 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2νij(x1 − x2)×

×χ̂+
i (x1)χ̂+

j (x2)χ̂j(x2)χ̂i(x1). (53)

Finally, we get

˜̂
V 2 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2νij(x1 − x2)×

×
{

Ô+
i (x1)Ô+

j (x2)χ̂j(x2)χ̂i(x1)+

+Ô+
i (x1)χ̂+

j (x2)Ôj(x2)χ̂i(x1) + h.c.+

+Ô+
i (x1)χ̂+

j (x2)χ̂j(x2)Ôi(x1)+

+χ̂+
i (x1)Ô+

j (x2)Ôj(x2)χ̂i(x1)
}

.

It can be easily seen that the first two terms and the
corresponding Hermitian conjugate terms do not give a
contribution to the matrix element of ˜̂

V 2 in the subspace
H̃a. Therefore, we can consider

˜̂
V 2 =

1
2

2∑

i,j=1

∫
dx1

∫
dx2

∫
dy1

∫
dy2×

×νij(x1 − x2)
{

ϕ̂+
i (x1,y1)ϕ̂i(x1,y2)×

×χ̂i′(y1)χ̂+
j (x2)χ̂j(x2)χ̂+

i′ (y2)+

+ϕ̂+
j (x2,y1)ϕ̂j(x2,y2)×

×χ̂+
i (x1)χ̂j′(y1)χ̂+

j′(y2)χ̂i(x1)
}

.

The first and second terms in this expression give a
contribution to the matrix element of ˜̂

V 2 in H̃a under
the arrangement of contractions

: χ̂i′
a

(y1)χ̂+
j
a

(x2)χ̂j
b

(x2)χ̂+
i′
b

(y2) : +
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+ : χ̂i′
a

(y1)χ̂+
j (x2)χ̂j(x2)χ̂+

i′
a

(y2) :=

= δji′δ(y1 − x2)δ(y2 − x2)+

+δ(y1 − y2)χ̂+
j (x2)χ̂j(x2),

and the second term contributes under the following
arrangement:

: χ̂+
i (x1)χ̂j′

a

(y1)χ̂+
j′
a

(y2)χ̂i(x1) :=

= δ(y1 − y2)χ̂+
i (x1)χ̂i(x1).

Thus, we have

˜̂
V 2 =

∫
dx1

∫
dx2ν12(x1 − x2)ϕ̂+(x1,x2)ϕ̂(x1,x2)+

+
∫

dx1

∫
dx2ϕ̂

+(x2,y2)ϕ̂(x2,y2)×

×
{

ν11(x1 − x2)χ̂+
1 (x1)χ̂1(x1)+

+ν21(x1 − y2)χ̂+
1 (x1)χ̂1(x1)+

+ν22(x1 − y2)χ̂+
2 (x1)χ̂2(x1)+

+ν12(x1 − x2)χ̂+
2 (x1)χ̂2(x1)

}
. (54)

The first term in this formula, being quadratic in the
field operators, can be combined with the latter term in
(47). As a result, we obtain
∫

dx1

∫
dx2ν12(x1 − x2)ϕ̂+(x1,x2)ϕ̂(x1,x2)−

− 1
2µ

∫
dx

∫
dXη̂+

α (X)η̂α(X)
∂ϕ∗α(x)

∂x
∂ϕα(x)

∂x
=

=
∫

dx
∫

dXη̂+
α (X)η̂β(X)ϕ∗α(x)×

×
{
− 1

2µ
∆x + ν12(x)

}
ϕβ(x).

Since ϕβ(x) satisfies the Schrödinger equation
{
− 1

2µ
∆x + ν12(x)

}
ϕβ(x) = εβϕβ(x),

where εβ are atomic energy levels, the latter formula
takes the form
∫

dX
∑
α

εαη̂+
α (X)η̂α(X).

Hence, in view of (46), (47), and (54), the Hamiltonian
of the system ˜̂H takes the form

˜̂H = ˜̂H0 + H̃1
int + H̃2

int + H̃3
int,

where

˜̂H0 =
2∑

j=1

1
2mj

∫
dx

∂χ̂+
j (x)
∂x

∂χ̂j(x)
∂x

+

+
∑
α

∫
dX

{
1

2M

∂η̂+
α (X)
∂X

∂η̂α(X)
∂X

+ Eαη̂+
α (X)η̂α(X)

}

(55)

is the Hamiltonian of free particles and bound states,
and

H̃1
int =

∫
dx1

∫
dx2

∫
dy2ϕ̂

+(x2,y2)×

×ϕ̂(x2,y2)
{(

ν11(x1 − x2)+

+ν21(x1 − y2)
)

χ̂+
1 (x1)χ̂1(x1)

(
ν22(x1 − y2)+

+ν12(x1 − x2)
)

χ̂+
2 (x1)χ̂2(x1)

}
, (56)

H̃2
int =

1
2

∫
dx1

∫
dx2

∫
dy1

∫
dy2ϕ̂

+(x1,y1)×

×ϕ̂+(x2,y2)ϕ̂(x2,y2)ϕ̂(x1,y1)×

×
{

ν11(x1 − x2) + ν22(y1 − y2)+

+ν12(x1 − y2) + ν21(y1 − x2)
}

, (57)

H̃3
int =

1
2

∫
dx1

∫
dx2

{
ν11(x1 − x2)×

×χ̂+
1 (x1)χ̂+

1 (x2)χ̂1(x2)χ̂1(x1)+

+ν22(x1 − x2)χ̂+
2 (x1)χ̂+

2 (x2)χ̂2(x2)χ̂2(x1)+
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+2ν12(x1 − x2)χ̂+
1 (x1)χ̂1(x1)χ̂+

2 (x2)χ̂2(x2)
}

(58)

are the interaction Hamiltonians. The Hamiltonian
H̃1

int corresponds to scattering of particles of the first
and second kinds by bound states; the Hamiltonian
H̃2

int corresponds to the scattering of bound states by
bound states; finally, the Hamiltonian H̃3

int corresponds
to scattering of particles of the first and second
kinds by particles of the same kinds. The interaction
Hamiltonians (56) and (57) may be written through
the creation η̂+

α (x) and annihilation η̂α(x) operators
of atoms by using (26). We want to emphasize that
the obtained interaction Hamiltonians do not lead to
the decay and formation of compound particles, as it
should be in the low-energy approximation. This reflects
the fact that atoms are absolutely stable in the main
approximation.

6. Van der Waals Forces

In this section, on the basis of the developed formalism,
we investigate the forces acting between neutral atoms
being in the ground state (van der Waals forces). To
solve this problem, let us turn to the Schrödinger
equation that determines the energy spectrum of the
system,

ĤΦ = EΦ, Ĥ = Ĥ0 + V̂, (59)

where the operators ˜̂H0 and ˜̂
V = ˜̂H

1

int + ˜̂H
2

int + ˜̂H
3

int

are defined by (55), (56)-(58). Since the studied system
consists of two atoms, we should seek for a solution of
(59) in the form

Φαβ(X,X′) =
∑

λρ

∫
dY

∫
dY′Kαβ;λρ(X,X′;Y,Y′)×

×η̂+
λ (Y)η̂+

ρ (Y′)Φ0. (60)

The interaction Hamiltonian ˜̂
V is equal, in accordance

with (56)—(58), to

V̂ =
1
2

∫
dX

∫
dYη̂+

α (X)η̂+
β (Y)η̂γ(Y)η̂δ(X)×

×Gδγ;αβ(X−Y), (61)

where

Gδγ;αβ(X−Y) =
∫

dx
∫

dyϕ∗α(x)ϕ∗β(y)ϕγ(y)ϕδ(x)×

×
{

ν12(X−Y − m1x + m2y
M

)+

+ν21(X−Y +
m1y + m2x

M
)+

+ν11(X−Y +
m2

M
(x− y))+

+ν22(X−Y − m1

M
(x− y))

}
.

We suppose that the kinetic energy of atoms is
small in comparison to the energy of levels |εα|
(εα < 0). In this case, according to (55), the operator
˜̂H0 can be represented in the form

Ĥ0 =
∑
α

∫
dXεαη̂+

α (X)η̂α(X). (62)

It can be easily seen that

Ĥ0η̂
+
λ (Z)η̂+

ρ (Z′)Φ0 = (ελ + ερ)η̂+
λ (Z)η̂+

ρ (Z′)Φ0,

V̂ η̂+
λ (Z)η̂+

ρ (Z′)Φ0 =
∑

αβ

Gλρ;αβ(Z− Z′)η̂+
α (Z)η̂+

β (Z′)Φ0.

(63)

These formulas show that we can seek for a solution of
(59) in the simpler, as compared to (60), form

Φαβ(X,X′) =
∑

λρ

Kαβ;λρ(X,X′)η̂+
λ (X)η̂+

ρ (X′)Φ0,

so that the coordinates of atoms have definite values in
the state Φαβ(X,X′). Upon substituting this expression
into (59) and using (63), we obtain

Kαβ;γδ(εγ + εδ)+

+
∑

λρ

Kαβ;λρGλρ;γδ(Z− Z′) = EαβKαβ;γδ. (64)

A perturbative approach in conformity to this equation
can be easily developed in the domain of great |Z −
Z′| when the quantity Gλρ;γδ(Z − Z′) becomes small
according to (61). Expanding Kαβ;γδ in G,

Kαβ;γδ = K1
αβ;γδ + K1

αβ;γδ + K2
αβ;γδ + . . . ,

Eαβ = E0
αβ + E1

αβ + E2
αβ + . . . ,
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we get, in the zeroth order,

K0
αβ;γδ(εγ + εδ) = E0

αβK0
αβ;γδ,

whence

K0
αβ;γδ = K0

αβδαγδβδ, E0
αβ = εα + εβ . (65)

Taking into account this result, we have, in the first
approximation,

K1
αβ;γδ(εγ + εδ) + K0

αβGαβ;γδ(Z− Z′) =

= (εα + εβ)K1
αβ;γδ + E1

αβK0
αβδαγδβδ.

By setting here α = γ, β = δ, we get

E1
αβ = Gαβ;αβ(Z− Z′), (66)

and, for α, β 6= γ, δ,

K1
αβ;γδ = K0

αβ

Gαβ;γδ(Z− Z′)
(εα + εβ − εγ − εδ)

, α, β 6= γ, δ (67)

The second order of the perturbative approach gives

K2
αβ;γδ(εγ + εδ) +

∑

λρ

K1
αβ;λρGλρ;γδ(Z− Z′) =

= (εα + εβ)K2
αβ;γδ + E1

αβK1
αβ;γδ + E2

αβK0
αβ;γδ.

Taking here α = γ, β = δ, we obtain
∑

λρ

K1
αβ;λρGλρ;αβ(Z− Z′) = E1

αβKαβ;αβ + K0
αβE2

αβ ,

whence, according to (66), (67) we have

E2
αβ =

∑

λρ

′Gαβ;λρ(Z− Z′)Gλρ;αβ(Z− Z′)
(εα + εβ − ελ − ερ)

. (68)

The prime above the sum means that the terms with
λ = α, ρ = β are omitted. The state vector Φαβ(X,X′)
in the main approximation of the perturbative approach
is determined by

Φαβ(X,X′) = K0
αβ η̂+

α (X)η̂+
β (X′)Φ0 + . . . (69)

(the constant K0
αβ may be found from the normalization

relation (Φαβ , Φαβ) = 1). Formulas (66) and (68) for
E1

αβ and E2
αβ give us the corrections to the energy of

levels E0
αβ = εα + εβ . It follows from the obtained

formulas that the energy of two atoms, being in the

ground state α and spaced apart at sufficiently long
distances, is defined by

Eαα = 2εα + Gαα;αα(Z− Z′)+

+
∑

λρ

′Gαα;λρ(Z− Z′)Gλρ;αα(Z− Z′)
(2εα − ελ − ερ)

+ . . . (70)

Let us prove now that Gαα;αα(Z−Z′) ≡ 0. In doing
so, we use the formula [4]

1√
R2 − 2Rρx + ρ2

=
1

|R− ρ| =

=
1
R

+
∞∑

n=1

(
ρ

R

)n

Pn(x), x = cos ϑ,

where x = cos ϑ, ϑ is the angle between the vectors R
and ρ, and Pn(x) are the Legendre polynomials. Noting
that (see (61))

Gαα;αα(Z− Z′) =
∫

dx
∫

dy
∣∣∣∣ϕα(x)

∣∣∣∣
2∣∣∣∣ϕα(y)

∣∣∣∣
2

×

×
{

ν12(Z− z′ − m1x + m2y
M

)+

+ν21(Z− z′ +
m1y + m2x

M
)+

+ν11(Z− z′ +
m2

M
(x− y))+

+ν22(Z− z′ − m1

M
(x− y))

}
,

we come, taking into account the spherical symmetry of
|ϕα(x)|2, to
Gαα;αα(Z− Z′) = 0. (71)

We have also used here that

νab(Z− Z′) =
eaeb

|Z− Z′| , e1 = −e2 = e.

We also get

Gαα;λρ(Z− Z′) =
∫

dx
∫

dyϕ∗ρ(x)ϕ∗λ(y)×

×ϕα(y)ϕα(x)
{

ν12(Z− z′ − m1x + m2y
M

)+

+ν21(Z− z′ +
m1y + m2x

M
)+

+ν11(Z− z′ +
m2

M
(x− y))+
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+ν22(Z− z′ − m1

M
(x− y))

}
.

The presence of the multipliers ϕα(y) and ϕα(x) makes
it possible to expand the expression in braces in powers
of x, y. As a result, we have

Gαα;βλ(Z− Z′) =

=
1

|Z− Z′|3
(
−3(ndβα)(ndλα) + (dβαdλα)

)
,

where

n =
Z− Z′

|Z− Z′| , dβα = e

∫
d3xxϕ∗β(x)ϕα(x).

(dβα are the matrix elements of the dipole moment of
an atom). Thus, the potential energy of the interaction
between atoms, V (Z− Z′), is defined by [2], [3]

V (Z− Z′) ≡ E2
αα − 2εα =

1
|Z− Z′|6×

×
∑

βλ

′ | − 3(ndβα)(ndλα) + (dβαdλα)|2
2εα − εβ − ελ

< 0. (72)

Since εβ , ελ > εα, V (Z − Z′) < 0. Therefore, the
attractive forces (van der Waals forces) act between
neutral atoms at long distances.

In conclusion, we note that, for the Coulomb
interaction,

ν11 = ν22 =
e2

|x| , ν12 = ν21 = − e2

|x| .

As a result, formulas (56) and (57) take the form

H̃1
int =

∫
dx1dx2χ̂

+(x1)χ̂(x1)×

×vα′α(x1 − x2)η̂+
α′(x2)η̂α(x2),

H̃2
int =

∫
dx1dx2vαβ;γδ(x1 − x2)η̂+

α (x1)×

×η̂+
β (x2)η̂γ(x2)η̂δ(x1).

Moreover, for |x| À r0, we have

vα′α(x1 − x2) → e

x3
xdα′α,

vαβ;γδ(x) =
1
x5

(
x2(dαδdβγ)− 3(xdαδ)(xdδγ)

)
.

Thus, the obtained Hamiltonians H̃1
int, H̃2

int describe
the dipole—particle and dipole–dipole interactions.

1. Peletminskii S.V., Slyusarenko Yu.V. // J. Math. Phys. —
2005. — 46. — P. 022301—022334.

2. Landau L., Lifshitz E. Quantum Mechanics. — New York:
Pergamon Press, 1967.

3. Davydov A.S. Quantum Mechanics. — New York: Pergamon
Press, 1976.

4. Jackson D. Fourier Series and Orthogonal Polynomials (The
Carus Monographs, N6). — Minnesota, 1941.

Received 07.06.05

ДИНАМIКА ЗВ’ЯЗАНИХ СТАНIВ ЧАСТИНОК У МЕТОДI
ВТОРИННОГО КВАНТУВАННЯ

С.В. Пелетминський, Ю.В. Слюсаренко

Р е з ю м е

Побудовано наближений метод вторинного квантування для
опису систем багатьох частинок за наявностi зв’язаних станiв
частинок з низькою енергiєю (кiнетична енергiя мала порiв-
няно з енергiєю зв’язку складених частинок). У цьому набли-
женнi складенi частинки розглядаються на рiвнi з елементар-
ними, що означає можливiсть введення операторiв народжен-
ня i знищення. Гамiльтонiани, якi визначають взаємодiю мiж
елементарними i складеними частинками, а також мiж сами-
ми складеними частинками, записанi через амплiтуди взаємодiї
елементарних частинок.
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