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A general theoretical method of determination of the effective
parameters of heterogeneous physical solids is discussed. This
method is demonstrated for a simple example of the determination
of the effective electrical resistance and in the more complex case of
finding the effective thermal conductivity of two-layer structures
in photothermal experiments. Unlike previous works devoted to
this problem, the bulk light absorption is considered. It is shown
that the effective thermal parameters depend in the general case
on the optical parameters of layers and the effective sample. The
method of standardization of the effective thermal conductivity is
proposed.

1. Introduction

One of the basic tasks of physics is searching for the
effective parameters of those physical bodies which
are inhomogeneous. These bodies can be associations
of homogeneous ones. Effective parameters can be
different: effective density, effective mass, effective
moment of inertia, effective heat capacity, effective
electric resistance, effective thermal resistance, effective
dielectric permeability, effective light refraction index,
effective absorption light coefficient, effective radius,
etc. Often enough, the word “effective” is dropped.
Effective parameters enter physics for two reasons:
first, knowing a value of the effective parameter helps
to receive the integral description (presentation) of a
heterogeneous physical body; secondly, this gives us the
possibility by simple calculations to forecast a result of
the measurement of a certain physical quantity in the
experiment.

2. Effective Parameters of Heterogeneous
Solids in the General Case

The universal method to introduce effective parameters
is as follows. Let a physical quantity A that depends on
the parameter p of a homogeneous physical body,

A = fA (p) , (1)

be measured in the experiment. Consider a
heterogeneous physical body with the same sizes and
the form as the homogeneous one under the same
physical conditions, and let the quantity A depend on
the parameters p1, p2, ...pn of the heterogeneous physical
body as follows:

A = gA (p1, p2, ..., pn) . (2)

Then, by definition, the effective parameter p of the
heterogeneous physical body can be determined from the
equation

fA (p) = gA (p1, p2, ..., pn) . (3)

At the same time, it is worth to mark which exactly
physical quantity has being measured in experiment. In
our case, the quantity A is in this role. We call such a
quantity as “the base measurable magnitude”.

Equation (3) can have synonymous upshots, can have
a few solutions, and can have no solutions at all. In the
first case, the effective parameter is monovaluable, in
the second — polyvaluable, and the third case means
that there is no possibility to replace a heterogeneous
physical body by a homogeneous one so that the result of
measuring the quantity A in the latter case be identical
to that for the heterogeneous body.

Suppose now that it is possible to measure other
quantity B in the experiment rather than A. Let its
dependence on the parameter p be

B = fB (p) (4)

for a homogeneous body and

B = gB (p1, p2, ..., pn) (5)

for a heterogeneous one. Then, in the search for the
effective parameter p, we get another equation unlike
Eq. (3):

fB (p) = gB (p1, p2, ..., pn) . (6)

Consequently, we will also get another value for p.
So we get ambiguity for the effective parameter.

1The work was reported at the II Ukrainian Scientific Conference on Semiconductor Physics, Chernivtsi, September 20—24, 2004.
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Fig. 1. Sketch of the photoacoustic experiments

Nevertheless, if one always specifies “the base measurable
magnitude” by using the concept “effective parameter”,
then the ambiguity disappears and remains only in the
case of a polyvaluable solution of Eq. (3) or (6).

As for the effective electric resistance, we can search
it from the condition that, at the identical voltage
through the homogeneous and composite areas, the
values of the electrical currents are identical in both
cases. Let the current Ih through the homogeneous area
of a circle depend on its resistance R (it is the effective
resistance of a heterogeneous area) and on the voltage
U as

Ih =
U

R
. (7)

For a heterogeneous area, the current Ic depends on
the voltage U applied to this area and on the resistances
R1, R2, ..., Rn of homogeneous areas, which compose it,
as follows:

Ic =
U

f (R1, R2, ..., Rn)
. (8)

The effective resistance R of the composed area can
be found by equating the value of currents passing
through the homogeneous area of the circle Ih (7) and
through the composed one Ic (8):

U

R
=

U

f (R1, R2, ..., Rn)
⇒ (9)

R = f (R1, R2, ..., Rn) . (10)

We see that the effective resistance is a monovaluable
quantity. It is clear that effective parameters in physics
are searched not only in electrodynamics but also in
other fields.

3. Effective Heat Conductivity of Two-layer
Structures in Photothermal Experiments

The determination of the effective thermal conductivity
is one of the main problems in the physics of
heat propagation through multilayer solid structures.
The photoacoustic technique is widely applied to the
experimental study of these parameters [1, 2] due to
its simplicity and high sensitivity. In order to obtain a
photoacoustic signal, a closed photoacoustic cell (front-
surface illumination) and an open photoacoustic cell
(rear-surface illumination) [3] (see the sketch of these
experiments in Fig. 1) are generally used.

In [4—6], a general theoretical approach to the
calculation of the effective thermal conductivity
and effective thermal diffusivity especially for two-
layer samples, which seems to us to be adequate
for photothermal experiments, was suggested. The
calculations are based on the idea that the photoacoustic
signal or the temperature response is measured only at
one surface of a two-layer sample. In this case, this
structure can be described by means of an imaginary
homogeneous sample, whose volume is similar to a “black
box” for an instrument. For this reason, it can be
defined as an effective one-layer sample. So, the main
requirement for the calculation of the effective thermal
conductivity is the equality of the temperature at the
front or rear surface of the real two-layer structure and
that at the front or rear surface of the effective one-layer
sample. We postulate that, in this case, the calculated
thermal parameters of the effective one-layer sample are
the effective thermal parameters of the real two-layer
structure. Such an approach is considered to be correct
since the temperature is measured on the absolute Kelvin
scale. At the same time, the “electrical and thermal
analogy” [7, 8] often used for the calculation of effective
thermal parameters is limited, because it is based on the
calculations only of the temperature difference.

In the mentioned papers [4—6], it was supposed
that the laser radiation was absorbed at the sample
surface. Here, we generalize this approach to the search
for effective thermal parameters in the case of bulk
light absorption. In this case, the problem becomes
complicated, in principle, due to the necessity to
calculate both the effective thermal parameters and the
effective optical parameters self-consistently.

We propose to obtain the effective optical parameters
by means of the comparison of the measured optical
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parameters of a real many-layer structure and the
optical parameters of the one-layer effective sample at
its surface. The compared optical parameters can be,
for example, the light reflection coefficient or the light
propagation coefficient depending on the experimental
procedure. Thus, in contrast to the case of surface light
absorption, the effective thermal parameters depend on
the optical parameters of the layers. Moreover, this
dependence is different depending on the experimental
situation. It is very important to note that, in the case
of bulk light absorption, the “electrical and thermal
analogy” is not applicable.

We take into account the thermal properties of the
interface between the layers and show that it has a
drastic role in the heat transfer through the structure. In
fact, it has some thickness and a thermal conductivity
that differs from the bulk thermal conductivities of the
layers. For simplicity, we use the model of the surface
interface, by supposing that its thickness tends to zero.
In this case, it can be described by the surface thermal
conductivity η [9], and the thermal parameters of the
different layers are changed sharply at the interface. The
necessity to account for this interface is demonstrated
by a lot of experimental investigations [10—13] and
theoretically [14, 15].

4. Physical Model of Heat Exchange in a
Two-layer Structure and Effective
One-layer Sample

In photothermal experiments, the common mechanism
to produce a thermal perturbation of a solid is the
absorption of an incident laser beam. Let the intensity of
this beam be I0. Assume that the emission falls normally
on the surface x = 0 of the first layer of a two-layer
structure (Fig. 2,a). This first layer is characterized by
length d1, bulk thermal conductivity χ1, light absorption
coefficient β1, and the light refraction coefficient n1.
The corresponding parameters of the second layer are
denoted as d2, χ2, β2, and n2.

Similarly to [16], we suppose that the energy of the
light is converted to heat instantly at every point of
the sample. At the same time, we neglect the light
absorption at the interface plane x = d1 for the sake
of simplicity. We consider that each layer is uniform
and isotropic, having unit cross-section. By hypothesis,
the left surface x = 0 is adiabatically insulated (the
condition of the highest possible photo-thermal effect
under the given laser perturbation). The opposite surface
x = d = d1+d2 is in isothermal contact with the ambient
heat reservoir at the equilibrium temperature T0.

Fig. 2. a — real two-layer structure; b — effective one-layer
structure

At small intensities of the light, the temperatures in
the first and the second layers can be described by the
following linear thermal diffusion equations:

−χi
∂2Ti (x)

∂x2
= Qi (x) , i = 1, 2, (11)

where Ti (x) is the temperature in the i-th layer; Qi (x) is
the intensity of the local heat sources caused by the light-
heat conversion at the same layer; and Ti−T0

T0
¿ 1. Due

to the last inequality, χi depend only on the temperature
T0.

Equations (11) must be complemented by thermal
boundary conditions. In accordance with [4], they can
be written in the following form:

dT1 (x)
dx

∣∣∣∣
x=0

= 0, (12a)
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Fig.3. Sketch of the electromagnetic wave propagation in two-layer
structure

−χ1
dT1 (x)

dx

∣∣∣∣
x=d1

= η
(
T1 (x)|x=d1−0 − T2 (x)|x=d1+0

)
,

(12b)

χ1
dT1(x)

dx
= χ2

dT2(x)
dx

, (12c)

T2 (x)|x=d = T0. (12d)

Equation (12a) determines the adiabatic contact at
the surface x = 0; Eq. (12b) determines the heat flux
through the plane interface x = d1 with surface heat
conductivity η; Eq. (12c) is the condition for the thermal
flux continuity at the interface (it is worth to note that
the temperature at the interface plane does not have
a continuous value in the general case and can have a
gap here [6]); and, finally, Eq. (12d) is the condition for
isothermal contact at the surface x = d.

To calculate Qi (x), it is necessary to take into
account the complicated process of light propagation
through the two-layer structure, accounting for the light
absorption in each medium and the reflection at all
surfaces.

To obtain the effective thermal conductivity of the
two-layer structure in accordance with [4], we need to
imagine some one-layer sample with the length d =
d1 + d2 and the unit cross-section (Fig. 2,b). Let us
suppose that the thermal conductivity of this sample
is χ, the light absorption coefficient is β, and the light
refraction coefficient is n. The boundary conditions at
the surfaces x = 0 and x = d of that one-layer sample
must be the same as at the surfaces x = 0 and x = d of
the real two-layer structure, namely

dT (x)
dx

∣∣∣∣
x=0

= 0, (13a)

T (x)|x=d = T0, (13b)

where T (x) is the temperature in the one-layer sample.
This temperature has to satisfy the following thermal
diffusion equation:

−χ
∂2T (x)

∂x2
= Q (x) , (14)

where Q (x) is the intensity of the bulk heat sources in
the one-layer sample.

5. Electromagnetic Waves and Heat Sources
in a Real Two-layer Structure and the
Effective One-layer Sample

The arrows in Fig. 3 denote the wave propagation
directions. We suppose that the incident wave falls
normally on the surface x = 0, is plane and
monochromatic, has the polarization direction along
the y-axis, and propagates along the x-axis (Fig. 3).
The magnetic fields of these waves are directed along
the z-axis. We limit ourselves to nonmagnetic media
(magnetic permittivity µ ≈ 1), so the magnetic
induction of the magnetic field is ~B ≈ µ0

~H, where µ0 is
the vacuum magnetic permittivity.

We restrict ourselves by the case of weak wave
attenuation where the imaginary part of the dielectric
permeability is much more less than its real part or, in
other words, where the effective decay length of the light
is much more than the light wavelength (β1,2 ¿ kn1,2),
where k is the wave number in vacuum. Then the electric
fields in front of the first layer Ey0, in the first layer Ey1,
in the second layer Ey2, and behind the sample Ey3 can
be written without the oscillation factor eiωt as follows:

Ey0 (x) = E0

(
e−ikx + Reikx

)
, (15a)

Ey1 (x) = E1

{
exp

(
−

(
in1k +

1
2
β1

)
x

)
+

+R1 exp
((

in1k +
1
2
β1

)
(x− d1)

)}
, (15b)

Ey2 (x) = E2

{
exp

(
−

(
in2k +

1
2
β2

)
(x− d1)

)
+

+R2 exp
((

in2k +
1
2
β2

)
(x− d)

)}
, (15c)
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Ey3 (x) = E3 exp (−ik (x− d)) . (15d)

Here, E0 is the amplitude of oscillations of the electric
field of the incident electromagnetic wave in vacuum,
and the index y means the projection on the y-axis. We
find the unknown quantities E1, E2, E3, R, R1, and
R2 from the boundary conditions [16] (the equality of
tangential components of the vectors of the electric and
magnetic fields). Based on the Maxwell equations for
linearly polarized waves [19]

−iω ~B = rot ~E (16)

and on the geometry of the problem (see Fig. 3), it is
easy to obtain the boundary conditions as the following
system of equations:

Ey0 (0) = Ey1 (0) , (17a)

Ey1 (d1) = Ey2 (d1) , (17b)

Ey2 (d) = Ey3 (d) , (17c)

∂E0y (x)
∂x

∣∣∣∣
x=0

=
∂E1y (x)

∂x

∣∣∣∣
x=0

, (17d)

∂E1y (x)
∂x

∣∣∣∣
x=d1

=
∂E2y (x)

∂x

∣∣∣∣
x=d1

, (17e)

∂E2y (x)
∂x

∣∣∣∣
x=d

=
∂E3y (x)

∂x

∣∣∣∣
x=d

. (17f)

Using the condition of a weak attenuation
(β1,2 ¿ kn1,2) in each layer, we obtain

E1 = α1E0, (18a)
1

E2 = α2E1, (18b)

R =
1− n1f1

1 + n1f1
, (18c)

R1 =
n1 − n2f2

n1 + n2f2
exp

(
−

(
in1k +

β1

2

)
d1

)
, (18d)

R2 =
n2 − 1
n2 + 1

exp
(
−

(
in2k +

β2

2

)
d2

)
, (18e)

where

α1 = 2
(

1 + n1 + (1− n1)
n1 − n2f2

n1 + n2f2
e−(2in1k+β1)d1

)−1

,

(19a)

α2 =
2 exp

(
−

(
in1k + β1

2

)
d1

)

1 + n2
n1

+
(
1− n2

n1

)
n2−1
n2+1e−(2in2k+β2)d2

, (19b)

f1 =
n2f2 + n1th

((
in1kd1 + β1

2

)
d1

)

n1 + n2f2th
((

in1kd1 + β1
2

)
d1

) , (19c)

f2 =
1 + n2th

((
in2k + β2

2

)
d2

)

n2 + th
((

in2k + β2
2

)
d2

) . (19d)

Here, |R|2, |R1|2, and |R2|2 are the coefficients of
light reflection from the surfaces x = 0, x = d1, and x =
d, respectively; and |α1|2 and |α2|2 are the coefficients of
light propagation through the surfaces x = 0 and x = d1,
respectively.

As to the one-layer effective sample, the electric field
strength in front of the sample, Ey0, inside the sample,
Ey, and behind the sample, E′

y, are

Ey0 (x) = E0

(
e−ikx + RF eikx

)
, (20a)

Ey (x) = E
(
e−(ink+ β

2 )x + R̃e(ink+ β
2 )(x−d)

)
, (20b)

E′
y (x) = E′e−ik(x−d). (20c)

We find the unknown quantities RF , R̃, E, and E′ by
analogy with the determination of those for a two-layer
structure:

E = αE0, (21a)

RF =
1− nf

1 + nf
, (21b)

R̃ =
n− 1
n + 1

exp
(
−

(
ink +

β

2

)
d

)
, (21c)

where

α = 2 (1 + n)
(
(1 + n)2 − (1− n)2 e−(2ink+β)d

)−1

,

(22a)
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f =
{

1 + nth
((

ink +
β

2

)
d

)}
/

/

{
n + th

((
ink +

β

2

)
d

)}
. (22b)

Here, |RF |2 and
∣∣∣R̃

∣∣∣
2

are the coefficients of light
reflection in the one-layer structure from the surfaces
x = 0 and x = d, respectively, and |α|2 is the coefficient
of light propagation through the surface x = 0 of the
one-layer sample.

Given all the parameters of an electromagnetic wave
propagating through the two-layer structure and the
effective medium, we can obtain the intensities of the
bulk heat sources in these media. They are equal to
−div~q, where ~q = 1

µ0

[
~E ~B

]
is the Poynting vector.

Thus, the intensity of the heat sources in the first layer
averaged by the coordinate x within the wavelength λ
with regard for the weak attenuation (β1,2 ¿ kn1,2) is
equal to

Q1 (x) = β1n1|α1|2I0

(
e−β1x + |R1|2e−β1(d1−x)

)
. (23a)

The intensity of such sources in the second layer
looks as

Q2 (x) = β2n2|α1 · α2|2I0

(
e−β2(x−d1) + |R2|2e−β2(d−x)

)
.

(23b)

Here, I0 = ε0E2
0

2 c is the intensity of the incident
emission, ε0 is the vacuum dielectric permittivity, and c
is the velocity of light in vacuum.

The first terms in Eqs. (23) are the heat sources
arising from the incident waves, and the second ones
are the heat sources arising due to the reflected waves.
The interfering waves do not create heat sources, since
they disappear due to the self-averaging within the light
length.

For the effective sample, we have

Q (x) = βn|α|2I0

(
e−βx + |R|2e−β(d−x)

)
. (24)

The physical sense of the terms in Eq. (24) is the
same as in Eqs. (23).

6. Temperature Distributions in the Two-layer
Structure and the Effective One-layer
Sample

To simplify the calculations which are aimed only at the
illustration of the principal idea and do not break the

general qualitative picture, we consider the case where
the intensities of reflected waves are much smaller than
those of the incident waves. This consideration assumes
that the reflection coefficients (see Eqs. (18d) and (18e))
must satisfy the conditions

|R1,2| ¿ 1, (25)

or the wave has attenuated before coming up to the
interface, or, in other words, the wave decay length β−1

1

must be much less than the thickness of the first layer
d1:

β1d1 À 1. (26)

Inequality (25) is valid, for example, in the case of a
small difference in the optical densities of the bordering
media, i.e. if the conditions

|n1 − n2| ¿ n1, n2 (27a)

hold in the first layer, and the inequality

|n2 − 1| ¿ n2 (27b)

holds in the second one.
As a result, the equations for Q1,2 (x) are as follows

[see Eq. (23)]:

Q1 (x) = β1n1I0|α1|2e−β1x. (28a)

Q2 (x) = β2n2I0|α1α2|2e−β2(x−d1). (28b)

The solutions of Eqs. (11) with the boundary
conditions (12) and the intensities of heat sources (28)
are

T1 (x) = T2 (d1) +
I0n1

η
|α1|2

(
1− e−β1d1

)
+

+
|α1|2I0n1

χ1β1

(
β1 (d1 − x) +

(
e−β1d1 − e−β1x

))
(29a)

on the interval 0 ≤ x < d1, where T2(d1) is defined by
formula (29b) at the point x = d1 and

T2 (x) = T0 +
|α1 · α2|2I0n2

χ2β2
×

×
{

β2 (d− x)

(
1 +

n1

n2

1
|α2|2

(
1− e−β1d1

)
)

+
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+ e−β2d2 − e−β2(x−d1)

}
(29b)

on the interval d1 < x ≤ d.
It is obvious from Eqs. (29) that the two

temperatures depend on the optical parameters of both
layers. The temperature T1 (x) is determined by both
thermal conductivities χ1,2, while the temperature T1 (x)
is determined only by the thermal conductivity of its
own layer χ2. The thermal conductivity η of the interface
influences only the temperature distribution of the first
layer.

For the effective one-layer sample, we also consider
the case of weak reflection. That is, the refraction
coefficient n satisfies the inequality

|n− 1| ¿ 1, (30)

or the wave has attenuated before coming up to the end
of the effective sample, which means

βd À 1. (31)

Under such conditions, formula (24) takes the
simpler form

Q = βnI0|α|2e−βx. (32)

It is easy to obtain from Eqs. (13),(14), and (32) that

T (x) = T0 +
I0n|α|2

χβ

(
β (d− x) + e−βd − e−βx

)
. (33)

7. Effective Thermal Conductivity

Based on the results of works [4, 6] and Introduction, the
calculational procedure of the effective parameters can
be realized in different ways depending on the specificity
of the photothermal experiment. One of them requires
the equality of the temperatures at the front surfaces
of the two-layer structure and the one-layer sample.
The second possibility is related to the equality of the
temperatures at the rear surfaces. In both cases, the
obtained thermal conductivity of the one-layer sample is
the effective thermal conductivity of the real two-layer
structure by definition. For this reason, we call the one-
layer sample as the “effective sample”. We denote the
corresponding effective thermal conductivities obtained
in different ways as χF and χR.

The effective thermal conductivity χF can be
obtained from the following equation:

T1 (0) = T (0) . (34)

Since the isothermal condition holds at the rear
surface, we must equate the temperatures at points
very close to the surface x = d in order to calculate
the effective thermal conductivity χR. So the effective
thermal conductivity χR can be obtained from the
equation

T2 (d− δ) = T (d− δ) , (35)

where δ is a small value, δ
d ¿ 1.

Substituting Eqs. (29a) and (33) in Eq. (34), we
obtain

1
χF

=
|α1|2
|α|2

(
n1β

n

(
1
η

+
d2

χ2

)
1− e−β1d1

βd− 1 + e−βd
+

+
1
χ1

βn1

β1n

β1d1 − 1 + e−β1d1

βd− 1 + e−βd
+

+
|α2|2
χ2

βn2

β2n

β2d2 − 1 + e−β2d2

βd− 1 + e−βd

)
. (36)

It is evident from this equation that the effective
thermal conductivity depends on the thermal and optical
parameters of both layers.

We note that the calculation of the effective
thermal conductivity by Eq. (35), which corresponds to
measurements by the “open-cell” method, gives another
result, namely

1
χR

=
1
χ2

|α1|2
|α|2

(
n2

n
|α2|2 1− e−β2d2

1− e−βd
+

n1

n

1− e−β1d1

1− e−βd

)
.

(37)

In this case, the effective thermal conductivity
depends only on the thermal conductivity of the second
layer, and χR depends on the optical parameters of the
structure as well, but according to another law.

From expressions (36) and (37), we see that the
effective values of thermal conductivities depend on the
optical parameters of the effective sample. To achieve
the standardization of effective thermal conductivity,
it is necessary to choose some values of the optical
parameters of the effective sample. Moreover, two basic
tasks to introduce the effective parameter which were
posed in Introduction, are executed. For simplicity, we
suggest that the effective sample absorbs all radiation
on the frontal surface. It can be attained by accepting
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n = 1 and β → ∞. In this case, formulas (36) and (37)
become

1
χF

= |α1|2
((

1
η

+
d2

χ2

)
n1

(
1− e−β1d1

)

d
+

+
n1

χ1

β1d1 − 1 + e−β1d1

β1d
+

n2|α2|2
χ2

β2d2 − 1 + e−β2d2

β2d

)
.

(38)

1
χR

=
1
χ2
|α1|2

(
n2|α2|2

(
1− e−β2d2

)
+ n1

(
1− e−β1d1

))
.

(39)

8. Recommendations as for the Comparison of
Theory and Experiment

In the comparison of the theoretical predictions with
experimental data, the following items seem to be
important.

1. One must have a collection of standard samples
with various heat conductivities, whose dimensions are
the same as the dimensions of a two-sample structure.
The frontal surface of these standard samples needs to be
painted in the black color to absorb the laser radiation.

2. One must measure the temperature on the frontal
surface of the two-sample structure in the photothermal
experiment. Let it be TF which is the same value given
by formula (29а) at the point x = 0.

3. Among the standard samples with various
heat conductivities, one should pick up one, whose
temperature on the frontal surface is equal to TF , when
the laser intensity is the same as that in the case of the
two-sample structure. Let the heat conductivity of this
standard sample be equal to χexp

F .
4. The agreement of the theory with the experiment

will be attained, when the value χexp
F becomes equal to

that given by formula (38).
Similar steps can be also done for the back surface.

9. Conclusions

We have discussed the general theoretical method of
determination of the effective parameters of heteroge-
neous physical solids and have presented a new app-
roach to the calculation of the effective thermal con-
ductivity of two-layer structures. It can be applied to
the interpretation of the results of photothermal expe-
riments in the case of bulk light absorption. We have

concluded that, in the general case, the effective thermal
conductivity depends on the optical parameters of both
the two-layer structure and the effective sample. For the
standardization of the effective thermal conductivity, it
is offered to measure it on optically absolutely black
effective samples. Thus, two basic problems of the
introducion of effective thermal conductivity, which are
discussed above, have been solved.
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ЗАГАЛЬНА МЕТОДИКА РОЗРАХУНКУ ЕФЕКТИВНИХ
ПАРАМЕТРIВ НЕОДНОРIДНИХ ТВЕРДИХ ТIЛ

I. Лашкевич

Р е з ю м е

Обговорено загальну теоретичну методику вiдшукання ефек-
тивних параметрiв неоднорiдних фiзичних тiл i їхнi властиво-
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стi. Продемонстровано її на простому прикладi розрахунку
ефективного електричного опору, а також у складнiшому ви-
падку визначення ефективної теплопровiдностi двошарових
структур у фототермiчних експериментах. На вiдмiну вiд попе-
реднiх робiт, присвячених проблематицi вiдшукання ефектив-

ної теплопровiдностi, тут розглянуто випадок об’ємного погли-
нання свiтла. Показано, що ефективна теплопровiднiсть у за-
гальному випадку залежить вiд оптичних параметрiв шарiв i
вiд оптичних параметрiв ефективного зразка. Запропоновано
спосiб унiфiкацiї ефективної теплопровiдностi.
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