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General expressions for the resistance and impedance of one-

dimensional ideal nanoconductors and semiconductors of finite

length are obtained and illustrated for models of the systems of

parallel regular atomic chains the electronic structure of which

was modeled on the basis of the method of null-range potentials.

1. Introduction

If a point defect is located on the surface or in the bulk

of a nonmetallic crystal, then energy levels may appear

in each forbidden band of its one-electronic spectrum.

On the association of defects into a cluster, such a level

splits into a multiplet, the number of sublevels of which

coincides in general with that of the defects forming a

cluster. If such defects form an infinite regular chain or

one-dimensional path of parallel chains, then impurity

levels merge into waveguide bands inside the forbidden

band of a crystal-matrix. Electrons or holes of such

bands are located near the chain, but can move freely

along it. Depending on the depth of an impurity level

E0, the waveguide band is either entirely located inside

the forbidden band or it overlaps partly the adjacent

bands. The same waveguide bands are formed along one-

dimensional periodic atomic structures such as carbon

nanotubes and nanowires formed inside pores produced

by MeV-energy heavy ions in different materials.

If the Fermi level crosses several waveguide bands,

then the concerned one-dimensional structures are

conductors, whose finite conductivity is caused at low

temperatures and in the absence of defects only by the

scattering of carriers on contacts at their ends. Notice

that the resistance R0 of an ideal conducting one-atomic

chain at zero temperature is the universal constant [1]

R0 =
�~

e2
= 1:293� 104
:

One-dimensional conductors such as carbon nanotubes

[2�4] or metal nanobridges [5, 6] and under certain

conditions nanowires in pores produced by the beams

of MeV-energy heavy ions [7] can be considered as

the connection of n ideal parallel one-atomic chains.

Therefore, their electronic spectrum contains n, maybe

overlapping, waveguide bands. Electric resistance of

such conductors is R0=n
0, where n0 � n is the number

of the waveguide bands crossing the Fermi level.

In this paper, these results are generalized on the case

where the Fermi level of a system of parallel one-atomic

chains gets on the top edge of one or several occupied

waveguide bands whereupon it is non-conducting at zero

temperature. In addition, a simple expression for the

impedance of the investigated structures in a harmonic

field is deduced.

The aforementioned statements follow directly from

the general concepts of the elementary quantum theory

of solids and are true for any model of quantum particle

motion in a periodic field. Therefore, without loss of

generality, for the specification of the electron dynamics

in waveguide bands formed along real periodic chains

of defects in crystals or along one-dimensional periodic

atomic structures like carbon nanotubes, it is enough to

use the elementary model in which the atomic carcass of

the one-dimensional structure is considered as a periodic

sequence of null-range potentials (NRP) [8, 9]. Despite

a rather poor description of the electronic structure

of single atoms, a great advantage of such a model

is in the accurate account of all peculiar properties

of electronic spectra of quantum dots, atomic chains,

and crystals resulting from their geometry. The last

section of the paper is devoted to the description of

one-electronic states of the considered structures in

frameworks of the NRP model as a base for the numerical

illustrations and estimates for specific one-dimensional

periodic compounds.

2. Resistance of One-dimensional Structures

Let's consider now a finite quasi-one-dimensional system

of length L such that it is reasonable to speak about

a quasi-wave vector k. If a potential difference U is

applied to the ends of the system, then an electric current

may flow. For the calculation of conductance, we use
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the Boltzmann kinetic equation in the approximation

of relaxation time. In this approximation, a change

of the equilibrium electron distribution Fermi function

Æn(E(k)) at a rather small displacement U is determined

by the expression

Æn(k) = �e
U

L
V (k)�(E)

@n(E)

@E
; (1)

where V (k) is the electron speed with quasi-momentum

k and energy E(k) ,

V (E(k)) =
1

~

@E(k)

@k
;

�(E) is the relaxation time of carriers with energy

E. Taking into account that the unique mechanism

of relaxation in an ideal system is the scattering or

absorption of carriers on the contacts, we put

�(E) =
L

jV (E)j
: (2)

According to (1), the current caused by a displacement

U is given by the expression

I =
e

�

X
�

�/aZ
0

Æn(E�(k))eV (E�(k))dk; (3)

in which the summation is formally performed over all

one-dimensional bands E�(k).

Let's consider a simple regular chain of monovalent

atoms which has only one band and therefore is a metal.

In this case, formula (3) is reduced to the form

I =
e2U

�~

EmaxZ
Emin

�
�
@n(E)

@E

�
dE =

=
e2

�~
U [n(Emin)� n(Emax)] : (4)

Thus, the ballistic resistance of the considered system is

R =
�~

e2[n(Emin)� n(Emax)]
: (5)

At low temperatures where the relation

[n(Emin)� n(Emax)] � 1 holds, the formula becomes the

universal constant, the quantum of resistance R0 =
�~
e2
.

It is easy to generalize the given formula for a case

where the system has more than one band and the Fermi

level crosses p bands:

R = R0

 
pX
�

[n(E�
min)� n(E

�
max)]

!�1
:

If the edges of bands are far enough from the Fermi level,

that is, if the electronic gas of a conductor is degenerate,

then

R =
R0

p
:

The given formula shows that the ballistic conductance

does not depend on parameters of the system, but

depends only on the number of bands crossing the Fermi

level.

In semiconductors where the chemical potential level

� lies in an interval between two bands, formula (3) is

transformed into the expression

I = �
e2

�~
U

2
4�

EvZ
�1

@nh

@E
dE +

1Z
Ec

@ne

@E
dE

3
5 ;

where ne and nh are the distribution Fermi functions

for electrons and holes, respectively, Ev and Ec are the

levels corresponding to the top of the valence band and

the bottom of the conduction band, respectively and

integrals should be spread onto the bands nearest to �.

We have expanded the limits of integration up to �1,

which does not result in errors as far as the widths of

bands � kBT .

Taking into account that, for a one-dimensional pure

semiconductor,

� = Ev +
Eg

2
�

1

4
kT ln

�
m�

e

m�
h

�
;

where m�
e and m�

h are the effective masses of electrons

and holes, respectively, Eg is the width of the forbidden

band, we get the following expression for its ballistic

electric resistance:

R = R0e
Eg

2kBT

"�
m�

e

m�
h

�1=4
+

�
m�

e

m�
h

��1=4#�1
:

Thus, upon a reduction of temperature, R of one-

dimensional pure semiconductors grows exponentially.

However, in semiconductors with a narrow forbidden

band at temperatures kBT � 1
2
Eg , the ballistic

resistance is at least twice less than R0.
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3. Impedance of One-dimensional Conductor

Let's consider now the case where the applied electric

displacement changes by the harmonic law with

frequency !: U(t) = Ue�i!t. To find the dependence

of the ballistic conductance on the frequency, we

use, as before, the Boltzmann kinetic equation in the

approximation of relaxation time. In this approximation,

Æn(k; t) = �e
U

L

V (k)�(E)

1� i!�(E)

@n(E)

@E
e�i!t:

Respectively, with the account of (3), we obtain

I(t) = �
e2

�

X
�

�/aZ
��/a

@n(E�(k))

@E

V (E�(k))

1� i! L
jV (E�(k))j

dk�U(t):

For a conductor, the real part of the conductance which

determines the energy dissipation is

ReG(!) =
e2

�~

EmaxZ
Emin

V 2

V 2 + !2L2

�
�
@n(E)

@E

�
dE: (6)

As the expression
�
�

@n(E)
@E

�
behaves similarly to the

delta function centered at the Fermi level, the main

contribution to (6) has form

ReG(!) =
e2

�~

V 2
F

V 2
F + !2L2

:

Notice that, in contrast to static conductivity, this

expression includes such parameters of the system as its

length L and the electron speed VF at the Fermi level.

If the Fermi level crosses some bands, then

ReG(!) =
e2

�~

pX
�

V 2
F�

V 2
F�

+ !2L2
:

For a semiconductor, formula (6) looks as

ReG(!) =
e2

�~

"
�

EvZ
�1

V 2

V 2 + !2L2

�
�
@nh

@E

�
dE+

+

1Z
Ec

V 2

V 2 + !2L2

�
�
@ne

@E

�
dE

#
:

The derivatives in the integrands fall down exponentially

by moving away from the edges of bands, and the basic

contributions to integrals are given by the vicinities of

the edges. Hence, for the calculation of ReG(!), we can

use the effective mass approximation and, assuming that

the semiconductor is non-degenerate, change the Fermi

distribution by the Boltzmann one.

As a result, we get

ReG(!) =
e2

�~
e
� Eg

2kBT �

�

(�
m�

e

m�
h

� 1

4

�
1�

!2

!2h
e
!
2

!
2

h Ei

�
!2

!2h

��
+

+

�
m�

h

m�
e

� 1

4

�
1�

!2

!2e
e
!
2

!2
e Ei

�
!2

!2e

��)
;

where !2h = 2kBT
m�

h
L2
, !2e =

2kBT
m�

e
L2
, Ei(x) =

+1R
x

e�t

t dt.

For x! 0, the asymptotic expression

xex
+1Z
x

e�t

t
dt � (�C � ln(x))x

is valid, where C = 0:5772 is the Euler constant. Then,

for ! < !e and ! < !h, we obtain

ReG(!) =
e2

�~
e
� Eg

2kBT �

�

(�
m�

e

m�
h

� 1

4

�
1 + C

!2

!2h
+
!2

!2h
ln

�
!2

!2h

��
+

+

�
m�

h

m�
e

� 1

4

�
1 + C

!2

!2e
+
!2

!2e
ln

�
!2

!2e

��)
:

4. Numerical Modeling

The basic features of the electronic structure of the

considered systems are manifested already for periodic

chains with two atoms in an elementary cell. We assume

that cells of such chains (Fig. 1) are located along the

axis x and their position is defined by radius vectors

~n = n~a, and the relative displacement of atoms inside

a cell is defined by the radius vector ~c. According to

the method of NRP, the interaction of an electron (or

a hole if the chain is formed by a donor impurity in
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nonmetallic crystals) with atoms of a chain is modeled

not by a periodic potential but by a periodic sequence

of boundary conditions imposed on the wave function of

an electron 	(~r ) at the points where there are atoms [8],

[9]:

lim
�n;s!0

�
@

@�n;s
(�n;s	)� b�n;s	

�
= 0; (7)

�n;s = j~r � n~a� s~cj ; n = 0;�1; :::; s = 0; 1:

Here, the unique parameter of interaction b is chosen so

that the energy E0 of ionization of an isolated atom or

impurity equals ~
2b2

2m , where m is the mass or effective

mass of a carrier. Thus, it is assumed that the wave

function 	(~r; E) for the state of a carrier with energy

E(< 0) in the waveguide band satisfies the stationary

Schr�odinger equation

�
~
2

2m
�	 = E	 (8)

everywhere except for points (7). Setting

 =

r
�
2m

~2
E

let's present wave function of the carrier as:

	(~r; E) =

+1X
n=�1

An
e�j~r�n~aj

j~r � n~aj
+

+1X
n=�1

Bn
e�j~r�(~c+n~a)j

j~r � (~c+ n~a)j
:

(9)

Note that, for any choice of coefficients An; Bn providing

the convergence of the corresponding series, function (9)

satisfies Eq. (8) everywhere except for the points n~a;~c+

n~a. Boundary conditions (7) result in the following

homogeneous system of equations for An; Bn:8>><
>>:

+1P
n=�1

�n0nAn +
+1P

n=�1

�n0nBn = 0;

+1P
n=�1

~�n0nAn +
+1P

n=�1

�n0nBn = 0;

(10)

n0 = 0;�1;�2:::

Here,

�n0n = (� � b)Æn0n +
e�jn

0�nja

jn0 � nj a
(1� Æn0n) ;

Fig. 1

�n0n =
e�j(n

0�n)~a�~cj

j(n0 � n)~a� ~cj
; ~�n0n =

e�j(n
0�n)~a+~cj

j(n0 � n)~a+ ~cj
: (11)

Taking into account that matrices (11) depend on the

difference of indices, we search for a solution of the

system (10) in the form

An = A0e
�ikna; Bn = B0e

�ikna: (12)

This reduces (10) to the linear homogeneous system�
A0D(; k) +B0G(; k) = 0;

A0G(; k) +B0D(; k) = 0;
(13)

where

D(; k) = �h�  +

+1X
n=�1

e�jnja

jnj a
eikna;

G(; k) =

+1X
n=�1

e�jn~a�~cj

jn~a� ~cj
eikna: (14)

The condition of solvability of (13) yields the dispersion

equation

D2(; k)� jG(; k)j
2
= 0

connecting the energy and quasi-momentum of an

electron in the waveguide band. The ideal chain with two

atoms in an elementary cell has two waveguide bands

with the energies defined by the equations

D(; k)� jG(; k)j = 0: (15)

In contrast to a simple one-atomic chain of mono-

valence atoms which is always a metal, the two-

atomic periodic chain, even within the framework of the

considered model, can be either a one-dimensional metal

or a one-dimensional insulator depending on whether

waveguide bands overlap or not. If atoms of one chain
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Fig. 2

Fig. 4

are exactly in the middle between atoms of another

chain (Fig. 2), then one band can be considered as a

continuation of other band. That is, the edge of the

Brillouin zone k = �
a
actually is not the edge of bands

and is a point of the Peierls instability since a small

displacement of one chain along the x-axis results in

the appearance of a gap (Fig. 5) at this place. At such

a displacement, a metal becomes a semiconductor or

an insulator. If the chains of atoms are moved away

from each other, then the bottom edge of the top band

appears, at a certain moment, below the top edge of the

bottom band, and such a system again becomes a metal.

A further increase in the distance between the chains, the

bands draw together and deform until just the complete

merging for large distances.

From system (13), we can find a quotient of B0 and

A0 and, with regard for (12) and (9), get the explicit

expression for the Bloch wave functions for the both

Fig. 3 Fig. 5

waveguide bands

 �(~r; k) = A0

 
+1X

n=�1

e�jr�n~aj

j~r � n~aj
e�ikna�

�
G(; k)

jG(; k)j

+1X
n=�1

e�j~r�(~c+n~a)j

j~r � (~c+ n~a)j
e�ikna

!
:

Example 1

As an example, we consider the system of two parallel

identical chains of atoms with an ionization potential

of 2 eV and with the period a = 4:245 �A. The band

scheme of such a system is shown in Fig. 3. The

Fermi level is depicted by a dashed line. It crosses both

bands, therefore the conductivity will be the sum of two

terms. Contributions from different bands are different

in view of the distinction of speeds at the Fermi level.

For the top band, VFc = 5:68�104 m=s. For the bottom

band, VFv = 7:78 � 104 m=s. The dependence of the

conductivity of each channel
ReG(!)
G0

, where G0 =
e2

�~
, on

the frequency ! is shown in Fig. 4.

Example 2

As another example, we consider the system of two

parallel identical chains of atoms with an ionization

potential of 2 eV and with the period a = 4:245 �A and

the displacement vector ~c = (2 �A, 1 �A). The band

scheme of such a system is shown in Fig. 5. The gap
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Fig. 6

between bands Eg = 0:24 eV. The dependence of

conductivity
ReG(!)
G0

on the frequency ! at 300 K (solid

line) and 250 K (dashed line) is shown in Fig. 6.

The numerical examples show that changes of the

resistance of the considered one-dimensional conductors

and semiconductors with temperature and frequency are

great enough to be registered in nanosystems by using

the available experimental techniques.

The author is grateful to Prof. V.M. Adamyan for
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ÁÀËIÑÒÈ×ÍÀ ÏÐÎÂIÄÍIÑÒÜ ÒÀ IÌÏÅÄÀÍÑ

ÎÄÍÎÂÈÌIÐÍÈÕ ÑÈÑÒÅÌ

C.B. Òèùåíêî

Ð å ç þ ì å

Îòðèìàíî âèðàçè äëÿ îïîðó òà iìïåäàíñó îäíîâèìiðíèõ iäåàëü-

íèõ íàíîïðîâiäíèêiâ òà íàïiâïðîâiäíèêiâ ñêií÷åííî¨ äîâæèíè.

Îòðèìàíi ðåçóëüòàòè ïðîiëþñòðîâàíî äëÿ ìîäåëåé ó âèãëÿäi

ñèñòåì ïàðàëåëüíèõ ðåãóëÿðíèõ àòîìíèõ ëàíöþæêiâ, åëåê-

òðîííà ñòðóêòóðà ÿêèõ ìîäåëþâàëàñü íà îñíîâi ìåòîäó ïîòåí-

öiàëiâ íóëüîâîãî ðàäióñà.
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