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The method that allows one to find nonsingular expressions for the

pair correlation functions of a finite-size multicomponent liquid
system has been proposed. The system with the geometry of

a plane-parallel layer has been considered as an example. For

this system, we find the asymptotic expressions for the pair

correlation functions of density fluctuations and then we use a

special iteration procedure to get the next approximation for

them. These expressions do not involve singularities at the zero

point, in contrast to the asymptotic ones.

1. Introduction

The study of liquid systems in the framework of

statistical methods faces a number of difficulties

of principal character. Nontrivial is the problem of

studying even the simplest systems, to say nothing

of multicomponent liquids [1�8]. Important system

characteristics can be calculated knowing the pair

correlation functions of density fluctuations of the liquid

components [9, 10]. Unfortunately, the straightforward

calculation of correlation functions is rather a difficult

and laborious task. One of the consistent approaches to

solve this problem comprises the use of the Ornstein�

Zernike (OZ) system of integral equations [11]. The

integral equations are reduced to differential ones, and

the latter can be used to calculate the asymptotic

expressions for the pair correlation functions [12] which

describe correlations at large distances rather well (more

precisely, they are valid in a linear approximation

of the "-expansion). Their essential shortcoming is

their inadequacy at small distances. Moreover, the

corresponding expressions have singularities at the zero

point. It its turn, this results in certain complications,

especially when studying finite-size systems [13].

Therefore, challenging is the problem of calculating

the expressions for the pair correlation functions which

would behave more realistically at short distances as

well. In this work, we seek for the expressions for the

pair correlation functions of a finite-size multicomponent

liquid system which would be regular at the zero point.

The relevant method is based on an iterative procedure

which has been proposed first for single-component

unconfined systems [11] and afterwards extended and

applied to binary finite- and non-finite-size mixtures [13].

2. Formulation of the Problem

The essence of the method used in this work can be

explained as follows. First, the asymptotic solutions

of the OZ system of differential equations are found.

Further, these solutions are used in the OZ system of

integral equations to find approximate solutions for the

direct correlation functions of the system. At last, on the

basis of the latter, the first approximation of the pair

correlation functions is determined from the OZ system

of differential equations. As was already mentioned, such

a procedure was applied earlier when studying simpler

systems [11, 13, 14]. In this paper, we consider, as an

example, a finite-size N -component liquid system with

the geometry of a plane-parallel layer of thickness 2L.

The initial system of the OZ integral equations can

be written down in the matrix form as follows:

Ĝ(~r ) = F̂ (~r ) +

Z
F̂ (~r1)Ĝ(~r � ~r1)d~r1: (1)

In this equation, Ĝ(~r ) denotes the matrix of the pair

correlation functions and F̂ (~r ) stands for the matrix

of direct correlation functions. These functions are

normalized by densities and, in the case of a finite-size

system, depend, strictly speaking, on two arguments.

Here, for the sake of simplicity, we consider fluctuation

correlations for the configuration, where one of the

particles is situated in the layer middle-point. In this

case, the correlation functions would depend on a single

argument � the radius-vector of the second particle with

respect to the first one. It should be noted that, provided

the system is finite-size, the correlation functions even

in such simple configuration would depend not only on

the distance between particles but also on the direction

of the radius-vector.
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In the routine of applying the method, various

approximations for the pair correlation functions were

searched on the basis of the OZ differential equation

which looks like

4Ĝ(~r )� Ĉ�1
2

(Î � Ĉ0)Ĝ(~r ) = �Ĉ�1
2

F̂ (~r ): (2)

The notation Î in this equation stands for the unity

matrix of rank N . The equation also includes the

matrices of the pair spatial moments of the direct

correlation functions

Ĉ0 =

Z
F̂ (~r )d~r; (3)

Ĉ2 =
1

6

Z
F̂ (~r )r2d~r: (4)

The OZ differential equation itself can be deduced

from the OZ integral equation by expanding the pair

correlation functions in their Taylor series [11]. The

necessary condition in this case is the short-range

character of the direct correlation functions. Therefore,

the results obtained below can be applied only to

liquids, in which the long-range order is absent, i.e. the

intermolecular interaction potential is short-range for all

the components.

While considering a finite-size system, it is necessary

that the boundary conditions be determined at the

surfaces that confine it. In particular, we assume that

the correlation functions at each of the two surfaces that

confine the layer are equal to zero. There are two reasons

for this assumption. First, such conditions provide an

opportunity for the system under consideration to be

continuously transformed into the one unconfined in

space. Secondly, the zero-value boundary conditions are

the most convenient ones from the viewpoint of carrying

out the experiment, because they affect the character of

critical anomalies identically for the layers with various

thicknesses. In addition, they are rather easy to be

realized in practice [15].

3. Realization of the Method

Taking into account both the symmetry of the problem

and the fact that the correlation functions are nullified at

the system boundaries, we may present these functions

in the form of Fourier series, namely,

Ĝ(�; z) =

1X
m=0

Ĝm(�) cos
�(2m+ 1)�z

2L

�
; (5)

F̂ (�; z) =

1X
m=0

F̂m(�) cos
� (2m+ 1)�z

2L

�
: (6)

Here, � is the component of the distance (absolute value)

between the correlated particles (one of them is in the

middle of the layer) in the layer plane, and z is the

corresponding component in the perpendicular direction,

i.e. in the direction perpendicular to the layer plane.

In this case, the system of integral equations (1) for

separate harmonics can be written down as

Ĝm(�) = F̂m(�) + L

Z
F̂m(�1)Ĝm(j~�� ~�1j)d~�1: (7)

The OZ differential equation for various harmonics looks

like

4Ĝm(�)� (Î
�2(2m+ 1)2

4L2
+ Ĉ�1

2
(Î � Ĉ0))Ĝm(�) =

= �Ĉ�1
2

F̂m(�): (8)

Asymptotic expressions for the pair correlation functions

can be deduced from the OZ system of differential

equations if one takes the direct correlation functions,

in the zero-order approximation, to be proportional

to the Dirac delta-function: F̂ (~r ) = Ĉ0Æ(~r ) [12].

However, it should be noted that this assumption is not

fundamental; but this technique allows the correct result

to be obtained in the simplest way.

Having expanded the delta-function into its Fourier

series, we obtain the equation in the matrix form, from

which the asymptotic expressions for the pair correlation

functions are determined immediately:

4Ĝm(�)� (
�2(2m+ 1)2

4L2
Î + Ĉ�1

2
(Î � Ĉ0))Ĝm(�) =

= �Ĉ�1
2

Ĉ0

Æ(~�)

L
: (9)

After its Fourier-transforming in the layer plane, the

equation reads

((q2 +
�2(2m+ 1)2

4L2
)Î + Ĉ�1

2
(Î � Ĉ0))Ĝm(q) =

= Ĉ�1
2

Ĉ0

1

L
: (10)
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In this case, the Fourier-images of the pair correlation

functions equal

Ĝm(q) =

�
(q2 +

�2(2m+ 1)2

4L2
)Î + Ĉ�1

2
(Î � Ĉ0)

��1 Ĉ�1
2

Ĉ0

L
: (11)

The inverse matrix in Eq. (11) can be expressed in terms

of the eigenvalues of the matrix �̂ = Ĉ�1
2

(Î � Ĉ0).

Let us designate them as �2i (i = 1; 2; : : : ; N). For the

sake of simplicity, those eigenvalues will be considered

positive and different from each other (this assumption

does not affect the ultimate result qualitatively but

simplifies substantially the analysis). Then, using the

spectral expansion, we get�
(q2 +

�2(2m+ 1)2

4L2
)Î + Ĉ�1

2
(Î � Ĉ0)

��1
=

=

NX
i=1


̂i

q2 + �2i + �2(m+ 1=2)2=L2
: (12)

The matrices of the spectral expansion are defined as


̂i =

NY
k=1;
k 6=i

Î�2k � �̂

�2k � �2i
(13)

with the relation

NX
i=1


̂i = Î (14)

being valid for them. Expressions (11) and (12) can be

used to restore the expressions for the pair correlation

functions in the ~r-space. However, we shall not make

it at this stage. Instead, we shall use them to find

the Fourier-image of the matrix of direct correlation

functions on the basis of the OZ integral equation, the

matrix form of which in the Fourier-space can be written

down as follows:

F̂m(q) = Ĝm(q)(Î + LĜm(q))
�1: (15)

Expression (11) is the zero-order, or asymptotic,

approximation for the pair correlation functions. Taking

this circumstance into account, the first approximation

for the matrix of direct correlation functions can be

obtained as

F̂ (1)

m (q) = ((q2 +
�2(2m+ 1)2

4L2
)Î + Ĉ�1

2
)�1

Ĉ�1
2

Ĉ0

L
: (16)

Now, having executed the Fourier transformation of

the differential matrix equation (9), we find the

first approximation for the matrix of pair correlation

functions:

Ĝ(1)

m (q) =
1

L

"
((q2 +

�2(2m+ 1)2

4L2
)Î + Ĉ�1

2
(Î � Ĉ0))

�1�

�((q2 +
�2(2m+ 1)2

4L2
)Î + Ĉ�1

2
)�1

#
Ĉ�1
2

: (17)

On the basis of expressions (11), (12), (16), and (17), one

can find the pair and direct correlation functions in the

~r-space in the first approximation. It should be noted

that analogous formulae for binary systems similar to

Eq. (17) have already been obtained earlier [13].

4. Expressions for Correlation Functions

In order to calculate the pair and direct correlation

functions in the first approximation, it is necessary

to know the eigenvalues �2i (i = 1; 2; : : : ; N) of the

matrix �̂+ Ĉ�1
2

Ĉ0 = Ĉ�1
2

. Having executed the spectral

expansion and the inverse Fourier transformation, we

obtain the following expression for the harmonics of

direct correlation functions:

F̂ (1)

m (�) =
Ĉ�1
2

Ĉ0

2�L

NX
i=1

�̂iK0

 
�

r
�2i +

�2(2m+ 1)2

4L2

!
;

(18)

whereK0(u) is the Macdonald function of the zero order.

The matrices of the spectral expansion �̂i are found by

the relation

�̂i =

NY
k=1;
k 6=i

Î�2k � Ĉ�1
2

�2k � �2i
: (19)

Similarly to the 
̂i matrices, the equality

NX
i=1

�̂i = Î : (20)

is valid for the matrices of the spectral expansion �̂i.

Therefore, the expressions for the harmonics of pair

correlation functions in the first approximation look like

Ĝ(1)

m (�) =
Ĉ�1
2

2�L

NX
i=1

"

̂iK0

�
�

r
�2i +

�2(2m+ 1)2

4L2

�
�

948 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 9



NONSINGULAR EXPRESSIONS

��̂iK0

�
�

r
�2i +

�2(2m+ 1)2

4L2

�#
: (21)

For comparison, the harmonics of the matrix of pair

correlation functions in the zero-order approximation are

determined by the expression

Ĝm(�) =
Ĉ�1
2

Ĉ0

2�L

NX
i=1


̂iK0

�
�

r
�2i +

�2(2m+ 1)2

4L2

�
:

(22)

Though those presented results for the correlation

functions in various approximations are cumbersome,

they do allow a certain comparative analysis to be

carried out.

5. Analysis of the Results and Conclusions

It is quite evident that the expressions for the pair

correlation functions in the zero-order approximation

and for the direct correlation functions in the

first approximation possess a singularity at the

zero point. The basic difference between them is

the issue: which magnitudes do the corresponding

eigenvalues, which are calculated from the spectral

expansion of the inverse matrices, acquire while

the system is approaching its critical state? This

question is rather a non-trivial one and requires

a separate research which is beyond the scope of

this work. Nevertheless, it is worth noting that,

from physical considerations, one may expect that

the direct correlation functions would remain short-

range even in this case. It was this assumption

that was used while deriving the expressions for

the correlation functions of the system in various

approximations.

The absence of a singularity in the first

approximation for the pair correlation functions is not so

obvious. However, if one should take into account that

the Macdonald functions have a logarithmic singularity

at the zero point, and the sum of the matrices of the

spectral expansion is equal to the unity matrix [see

relations (14) and (20)], it is easy to verify that it is

true.

To summarize, we draw attention to the fact

that the properties of various approximations of

the pair and direct correlation functions of the

multicomponent system, which were considered

above, coincide completely with those of the pair

and direct correlation functions of single-component

systems [11].
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ÍÅÑÈÍÃÓËßÐÍI ÂÈÐÀÇÈ ÄËß ÏÀÐÍÈÕ

ÊÎÐÅËßÖIÉÍÈÕ ÔÓÍÊÖIÉ ÏÐÎÑÒÎÐÎÂÎ

ÎÁÌÅÆÅÍÎ� ÁÀÃÀÒÎÊÎÌÏÎÍÅÍÒÍÎ�

ÐIÄÊÎ� ÑÈÑÒÅÌÈ

Î.Ì. Âàñèëü¹â, Î.Â. ×àëèé

Ð å ç þ ì å

Çàïðîïîíîâàíî ìåòîä, ùî äîçâîëÿ¹ çíàõîäèòè íåñèíãóëÿðíi âè-

ðàçè äëÿ ïàðíèõ êîðåëÿöiéíèõ ôóíêöié ïðîñòîðîâî îáìåæå-

íî¨ áàãàòîêîìïîíåíòíî¨ ðiäêî¨ ñèñòåìè. ßê ïðèêëàä ðîçãëÿíó-

òî ïðîñòîðîâî îáìåæåíó áàãàòîêîìïîíåíòíó ðiäêó ñèñòåìó ç

ãåîìåòði¹þ ïëîñêîãî ïàðàëåëüíîãî ïðîøàðêó. Äëÿ òàêî¨ ñèñ-
òåìè çíàéäåíî àñèìïòîòè÷íi âèðàçè äëÿ ïàðíèõ êîðåëÿöiéíèõ

ôóíêöié ôëóêòóàöié ãóñòèíè, ïiñëÿ ÷îãî ¨õ áóëî óòî÷íåíî çà

äîïîìîãîþ ñïåöiàëüíî¨ iòåðàöiéíî¨ ïðîöåäóðè. Öi âèðàçè, íà

âiäìiíó âiä àñèìïòîòè÷íèõ, íå ìiñòÿòü îñîáëèâîñòåé â íóëi.
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