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The common features of the formation of inhomogeneous magnetic

states in uniaxial antiferromagnets and superconductors in the

vicinity of phase transitions induced by an external magnetic

field are considered. The experimental data on the transverse

magnetization component are analyzed for the uniaxial crystals of

superconducting dichalcogenide 2H-NbSe2 and antiferromagnetic

ferrous carbonate FeCO3 in the framework of thermodynamic

approach.

1. Introduction

This article considers similarities in the formation

of intrinsic magnetic states in antiferromagnets and

superconductors. Recently, the inhomogeneous ground

state gained in a paramount importance due to

thorough investigation of the advantageous properties

of manganites and nanosized objects. Apparently

[1], the ground states of manganite models tend

to be intrinsically inhomogeneous because of strong

tendencies toward phase separation, typically involving

ferromagnetic metallic and antiferromagnetic charge and

orbital ordered insulating domains. Experiments in this

field were performed by means of diverse techniques ([2�

17]). At that time, V.G. Bar'yakhtar with co-authors

([18�21]) have developed a theoretical description of

the domain structures emerged in antiferromagnets

during the first-order magnetic phase transition driven

by an external magnetic field. It was also suggested

[2, 3, 9, 10] that, in antiferromagnets, there exist

inhomogeneous states similar to either the intermediate

or mixed states in type I and type II superconductors,

respectively, under destroying superconductivity by the

external magnetic field. The thermodynamic analysis has

shown that the spatial distribution of inhomogeneous

states is governed by the sign of interfacial energy,

independently of their nature. In fact, the intermediate

states were observed in spontaneously magnetized

substances, both ferro- and antiferromagnets, in non-

ferrous materials under conditions of the de Haas�

van Alfven effect [22] and in superconductors ( [23]

and references therein). The less studied similarities

of the mixed state formation in the different types

of substances are considered here for the uniaxial

crystals of superconducting dichalcogenide 2H-NbSe2
and antiferromagnetic ferrous carbonate FeCO3. Their

transverse magnetization components derived from the

high-field measurements (Figs. 1,2) are analyzed in a

framework of thermodynamic approach.

2. Thermodynamic Analysis of Magnetization

Transverse magnetization investigations proved to be

an effective tool for studying a spatially inhomogeneous

magnetic state. They revealed the intermediate [2] and

mixed [9] states in antiferromagnets alike those in

type I and type II superconductors, respectively. To

register the transverse magnetization of an anisotropic

crystal in a uniform magnetic field, the torque measuring

technique is available. It was successfully applied for a

long time in the studies of the magnetic anisotropy and

the Fermi surface [24]. In the Gaussian units, a torque

� is described by the relation

� = �M?HV; (1)

where H is the external magnetic field, V is the

sample's volume, M? is the transverse (with respect to

the applied magnetic field) component of the absolute

magnetization,M? =Mx cos��Mz sin�, z is directed

along the c axis, x is the direction along the a or b axis in

the ab plane, and � is the angle between the c axis and

the external magnetic field direction. The observation of

torque on the samples suggests a nonzero magnetization

component off from the magnetic field direction and,

consequently, the orientation dependence of free energy

of the sample in a magnetic field. The intrinsic torque

in superconductors gained a detailed analysis [28] after

the first observation of the turning of fine particles

of an anisotropic high-temperature superconductor by

a magnetic field [25�27]. Transverse magnetizations of

uniaxial superconductor 2H-NbSe2 and easy-axis Ising

antiferromagnet FeCO3 is first compared in the present

work.
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Fig. 1. Magnetization of uniaxial superconductor 2H-NbSe2 vs the

external magnetic field

2.1. Anisotropic superconductor

In the Gaussian units [29], a superconductor in a

magnetic field is described by the thermodynamic

equality

Gi = Fi(T;Bi)�
BiH

4�
; (2)

where Gi and Fi are the Gibbs potential and free-energy

density, respectively, of the i-phase. The mixed state or

else, the Shubnikov phase, and the phase with B � H ,

where the major volume fraction retains the normal

state, are labeled by indices i and j, respectively. The

ratio of the magnetic field and the induction in the mixed

state is assigned by the minimum condition for G at

definite H and T :

@

@Bi

Fi(T;Bi) =
H

4�
: (3)

The thermodynamic Gibbs potential for the array of

interacting vortices is defined as follows:

G = nLF +

X
i;j

Uij �
BH

4�
; (4)

where F is the free-energy density of an isolated vortex,

nL is the number of vortices in unit volume, Uij is the

vortex repulsion potential, and

B = nL�0: (5)

In such a way, the first term in (4) describes the net

energy of isolated vortices. The second term in (4) is

Fig. 2. Magnetization of uniaxial antiferromegnet FeCO3 in a

magnetic field pulse of the amplitude Hmax > H2. The arrows

point out the curve feature shift

the vortex repulsion energy. The third term in (4)

accounts the external field effect. It tends to favor large

values of the induction B. This means that the external

field H is the virtually external pressure which tends to

increase the vortex density.

The following analysis of the measurements

will incorporate quantitative estimate of the vortex

interaction in the range Hc1 � H � Hc2, in which

the average intervortex distance a0 obeys the inequality

� � a0 � �. The quantity � is the superconducting

coherence length, a0 =

p
�0=B is the vortex lattice

parameter, and � is the penetration depth (1=�2 �

nL � 1=�2)). Within such a range of vortex lattice

parameters and the field, the free-energy density of a

uniform superconductor in the London limit (� � �)

is [29]

F =
B2

8�
+
B

4�
Hc1

ln (�a0=�)

ln (�=�)
; (6)

where � is a constant of the order of unity, which

depends upon the flux line lattice structure. It is

considered as a parameter to be found from experimental

data. Then, the magnetization M is readily found as

�4�M = (�0=8��
2
) ln (Hc2�=H): (7)

In fact, the considered field range is restricted from

below by the field H 0 > Hc1, beyond which the

irreversibility can be ignored, so that the relationship

(7) holds in a field range

H 0 < H � Hc2:: (8)

The London equations may be generalized to the

case of anisotropic superconductor by substituting the

isotropic effective mass for the anisotropic mass tensor
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[30]. Then eq. (6) transforms to the free-energy equation

of the tilted vortex lattice

8�F = B2
+ (�0=4��

2
)(m1B

2
x +m3B

2
z)

1=2
ln (Hc2�=B);

(9)

where m1 and m2 are the in-plane components of the

mass tensor; m1 = m2 in a uniaxial superconductor, and

m3 is that in the c-axis direction. By minimizing (9) with

respect to B, the magnetization components are

�Mz =M0

m3 cos �p
m(�)

; �Mx =M0

m1 sin �p
m(�)

; (10)

where � is the off c-symmetry axis angle and

M0 =
�0

32�2�2
ln
Hc2�

H
; m(�) = m1 sin

2 � +m3 cos
2 �:

(11)

2.2. Easy-axis antiferromagnet

Let us consider the plane case of a two-sublattice

antiferromagnet with uniaxial anisotropy. In a proper

theoretical description, the thermodynamic potential

[31] or, else, the energy density is commonly represented

as

� =
A

2
� ~m2

+
a

2
�m2

z +
b

2
� l2z � ~m � ~h; (12)

where ~h = ~H � M0, ~m = ( ~M1 + ~M2)=M0, ~l =

( ~M1 �
~M2)=M0, j ~M1j = j ~M2j = M0, z is the

direction along the principal crystallographic axis, ~M1,
~M2 represent magnetic moments of sublattices. Their

moduli are assumed constant, which is true for the

lowest temperatures T � TN, with TN being the

Neel temperature of antiferromagnetic ordering. ~H is

the external field; ~m, ~l are the vectors of ferro- and

antiferromagnetism, respectively.

In expression (12), the first term is referred to the

exchange energy, and the second and third terms are

the energies of crystal anisotropy.

For antiferromagnets with the �easy axis� anisotropy,

which is the case of FeCO3, b < 0. Under

the additional condition of (a + b) < 0, the

minimization of Eq. (12) yields the dependence

mz(hz). It describes the so-called spin-flop transition.

The antiferromagnet with the absolute values of

anisotropy constants exceeding enough the exchange

interaction constant A undergoes a direct transition

into the saturated ferromagnetic state in the applied

magnetic field hz, omitting the spin-flop. The first

situation was observed by J.S. Jacobs on manganese

fluoride MnF2, the second one was registered by J.S.

Jacobs [32], and later on by V.I. Ozhogin [34] on

FeCO3.

It is important to note that the first-order character

of the spin-flop transition in an external magnetic field

adjusted with great precision in the z-direction is lost,

when ~h tilts off from the z-axis by an angle  beyond

the critical value  c. The critical angle is determined

by the magnetic anisotropy field and the exchange field

ratio corresponding to the ratio jbj=A [35]. For instance,

the critical angle of MnF2 is  c � 30
0 (thirty angular

minutes).

3. Experimental Part

Ferrous carbonate FeCO3 is a transparent

antiferromagnet with strong uniaxial magnetic

anisotropy [32] which has been postulated to be an

ideal Ising system [33]. Its magnetic properties arise

predominantly from the effect of a cubic crystal field

with the trigonal distortion and spin-orbit coupling in

the 5D ground state of a Fe2+ ion [33]. The magnetic

excitations at low temperatures have been measured by

neutron, infrared, and Raman scattering, as well as by

Mossbauer studies. To investigate these excitations,

the external magnetic field and internal exchange

interactions also have been considered. It should be

noted that the spin-lattice coupling exceeds the exchange

interactions for an order of magnitude. This system is

described in detail in [36]. Its theoretical aspects were

discussed in [37] and [38].

Similar to experiments [32] and [34], a magnetic

field was generated by a pulsed solenoid, and the

measurements were performed using the inductance

technique. The magnetic measuring technique for

examining inhomogeneous magnetic states in the

immediate vicinity of the phase transition should satisfy

extremely strict requirements, which are motivated and

summarized below:

1. The measured properties should not differ much from

those at the absolute zero temperature for the sake of

comparison with theory so that the condition T � TN
is satisfied, providing the samples are cooled by liquid

helium (T = 4:2 K).

2. In the vicinity of the phase transition, the magnetic

properties rapidly change in a variable field. Then its

high uniformity is required just as in measurements of

the de Haas�van Alfven effect in metals.
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Fig. 3. Semi-log plot of the measured and calculated torque

dependences �(H) at T = 4.2 K. Inset presents the experiment

geometry

3. To avoid effects of the relaxation process in the

sample, the magnetic field sweep should not be too fast

in measurements operating range. So the inductance of

a solenoid for the field production was large enough to

provide a pulse length of � 15� 10
�3 s.

4. Great precision of the magnetic field orientation

relative to the crystal axis should be achieved as the

permitted error should not exceed one angular minute.

To this end, the solenoid was mounted on an isolated

plate with the slope varied by means of 4-�m screws.

5. The inductance measuring technique should provide

the registration of all three magnetization vector

components, which was achieved by winding three coils

on a sample.

6. To elucidate carefully the magnetization distribution

inside a sample, several pick-up coils were used. They

were inductively coupled with different parts of the

crystal.

7. To distinguish the narrow region in the intimate

vicinity of the phase transition, the threshold scanning

circuit was utilized. The oscillographic record started in

the field approaching the threshold value Hthr just below

the critical field Hc. Then the scan scale was magnified

by many times.

The observation of the transverse magnetization in

the mixed state of a superconductor put the following

specific requirements on the samples and experimental

techniques employed. 1) The sample should be an

anisotropic superconductor. Our sample under study

meets this requirement as its anisotropy parameters are

close to those of the yttrium high-Tc superconductor,

on which the intrinsic torque was first observed. Their

effective mass ratios in the c-axis direction and in-

plane are 10 and 25, respectively, proving moderate

anisotropy. Moreover, due to the uniaxial anisotropy,

the superconducting compound 2H-NbSe2 is the most

appropriate object for the model description. 2) Pinning

effects should be minimal. In fact, the high-quality single

crystals of 2H-NbSe2 under study are characterized

by the ratio of the depinning and depairing critical

currents jc=jo � 10
�6 which is low enough to describe

them as the cleanest type-II superconductors. Their

field dependences of magnetization have two reversible

regions, viz., weak fields H � Hc2 and near the upper

critical field Hc2. 3) As the magnitude of equlibrium

magnetization is not large as compared to the applied

field (see, e.g., [29]), the torque should be amplified by

the sample's volume according to (1). It was realized

in our case due to the opportunity of obtaining large

crystals of 2H-NbSe2. The volume of the crystal under

study was estimated as 19.7�10�9 m3 with accuracy

better than 1% on the basis of weight measurements

(127 mg) and using the density value 6.44 g/cm3

calculated from the atomic distribution in the unit cell

of 2H-NbSe2 determined from the X-ray measurements.

4) The measurements of total absolute magnetization

of 2H-NbSe2 show that the torque signal near the

upper critical field Hc2 should be of the order of 10�3

dyn�cm (10�10 N�m), if the transverse magnetization

were equal to the total magnetization. The available

torque measurement technique gave an accuracy of

10�5 dyn�cm. This method allowed us to measure the

capacitance with an accuracy of 10�4pF. The large-

scale magnet M7 at the High Magnetic Field Laboratory

in Grenoble provided a highly uniform field in the

sample region. The calibration of signals was performed

using a miniature coil (diameter 4.8 mm, length 1.4

mm, number of turns 20) mounted in the region

of the sample in a field of 12 T with an accuracy

of 3%. The out-of-plane angle of the external field

direction was estimated as 13Æ with an accuracy of 1Æ

appropriate for measurements of a torque as a function

of magnetic field. The experiment geometry is illustrated

by Fig. 3.

The measurements presented in this figure clearly

demonstrate the transverse magnetization component of

a 2H-NbSe2 single crystal in the field range Hc1 � H �

Hc2, with Hc1 being the lower critical field. It is analyzed

below.
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4. Discussion

The measured field dependence of the torque is presented

by Fig. 3 in comparison with calculations based on the

following relation derived on the basis of the London

electrodynamics:

�(H) =
�0HV

64�2�2ab


2 � 1


2=3
sin

2 �

"(�)
ln

�

�Hc2(kc)

H"(�)

�
: (13)

Here, �0 is referred to a magnetic flux quantum, " and


 are the anisotropy parameters,

"(�) = (sin
2 � + 
2 cos2 �)1=2; (14)

and � � 1.

The compound under study is the classical London

superconductor as the penetration depth � of a weak

magnetic field in its interior sufficiently exceeds the

coherence length � for the M component along the

normal to the ab-plane responsible for superconductivity:

�ab�1000 �A and the coherence length �c�10�A though

larger than the interlayer distance. A satisfactory

agreement between the measured and calculated

dependences is observed. The region of the apparent

deviation of the measured curve from the calculated

one is temperature-dependent suggesting a relation of

the field Hint to the contribution of the intervortex

interaction to the magnetization. It is calculated in

assumption that the interaction is considerable when the

vortex lattice parameter and the penetration depth are

identical:

a0 =

r
�0

Hint

= �: (15)

The slope of M?(lnH) allows one to find the magnetic-

field penetration depth � using Eqs. (10) and (11). The

relation derived from the London theory yields

�ab = m�c2=4�nse
2; (16)

with � = 1200 �A. In a magnetic field as high as 120 kOe,

a0 has the order of the coherence length in the same field

direction, i.e. about 20 �A.

5. Magnetic Properties of FeCO3 in the

Vicinity of the Antiferromagnet�

Ferromagnet Phase Transition

Both the longitudinal and transverse magnetization

components were measured. The rate of field sweep

ranged within 5�30 � 106 Oe/s. The angle  ofthe tilt

of ~H from the c3-axis direction varied within 0�10Æ.

The samples of natural origin were taken from different

deposits. Various sample geometries from a cylinder with

the axis along [111] direction to a disc with the face

normal to [111] direction were examined.

Main results

1. Magnetization in a magnetic field pulse with the

amplitude Hmax of about 180 kOe is shown in Fig. 2.

The onset field of the magnetization change is H1 = 148

kOe and the cutoff is H2 = 176 kOe. The susceptibility

averaged over the H1 �H2 range is 2:7� 10
�2 CGSM.

2. Absolute value of the transverse magnetization

component at any angle  (0 <  < 10
Æ) is such that the

directions of the total magnetization and the magnetic

field ~H coincide suggesting the absence of magnetization

components normal to ~H at any values of H and angles

 .

3. In the vicinity of H1 and H2, the sample's

magnetization changes faster than that in the

intermediate field range H1 < H < H2. The maximum

susceptibility in these regions is almost twice higher than

that within the range H1 < H < H2. The susceptibility

amplitude in cylindrical samples with the aspect ratio

� = 0:2 is up to 40% larger than that in disks with � = 5.

The width of the magnetic field interval,�H = H1�H2,

is practically independent of the sample's shape.

5.1. Magnetic susceptibility

in the phenomenological consideration

The trivial phenomenological analysis of the magnetic

properties of antiferromagnets commonly deals with

the thermodynamic potential including the main

interactions related to the spontaneous magnetization

of sublattices. The results of such an analysis for

moderately anisotropic antiferromagnets [31] are invalid

for the description of magnetization measurements on

FeCO3 crystals. The pronounced magnetic anisotropy

of FeCO3, the absence of the transverse magnetic

moment components in experiments with H parallel

to c3 and the published data [39�41] suggest that

the thermodynamic potential should include, in this

case, the interactions related only to the longitudinal

components of the sublattice magnetization vectors.

The crystal under study will be first regarded as

a two-sublattice antiferromagnet with the sublattice

magnetizations denoted as follows:

~m1 =

~M1

M0

; ~m2 =

~M2

M0

:

Here, M0 is the spontaneous saturation magnetization

identical for both sublattices. The external magnetic

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 8 859
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field h = hz = Hz=M0 is directed along the

crystallographic symmetry axis. In this case, the

thermodynamic potential of the antiferromagnet is

represented as

� = �
1

2
Æ
�
m2

1 +m2
2

�
� 
m1m2 � (m1 +m2)h; (17)

with the variables m1 = m1z, m2 = m2z, m = m1 +m2

changing in the limits

�1 � m1 � +1; �1 � m2 � +1; �2 � m � +2:

Expression (17) is valid for the description of

homogeneous states with imperfections not larger than

the unit cell dimension. Otherwise the quantities m1

and m2 are referred to the sublattice magnetizations

averaged over the regions larger than all potential

inhomogeneities.

In the absence of a magnetic field, the

antiferromagnetic state corresponds to the minimum

of (17) with the following relationship between the

quantities:


 < 0; j
j > jÆj

or

h1 = � (
 � Æ) > 0; h2 = � (
 + Æ) > 0:

The minimization of (17) with respect to the variables

m1 and m2 considering their variation limits yields

solutions for the sublattice magnetizations at different

magnetic field intensities:

A) h < h1 :

m1 = +1; m2 = �1; m = 0; �1 = �h1;

B) h1 < h < h2 :

8>>>>><
>>>>>:

m1 = +1; m2 = �
h+ 


Æ
;

m = �
h+ (
 � Æ)

Æ
(Æ < 0);

�2 = �h1 �
(h� h1)

2

h2 � h1
;

C) h > h2 :

m1 = +1; m2 = +1; m = +2; �3 = h2 � 2h:

Solution A) which is realized in weak fields corresponds

to the antiferromagnetic state. Solution B) describes

the high-field ferromagnetic state. The transition from

one state into another occurs near the critical field

hII = 1=2 (h1 + h2) = �
. It is worth noting

that only one sublattice changes the magnetization

during the transition, while the other maintains the

saturation magnetization over the whole range of

magnetic field variation. The above-presented equations

yield two types of transitions from the antiferro-

into ferromagnetic state depending on the sign of the

constant Æ:

I) If Æ > 0, then h2 < h1 and the reorientation of the

second sublattice occurs in field h = h2 by the first-order

phase transition. The total magnetization in this field

changes jump-likely with �m = 2. In the field interval

h2 < h < h1, the metastable states exist and hysteresis

is possible.

II) At Æ < 0, the field h2 > h1 and transition occurs

continuously in the field interval �h = h2 � h1. In

this interval, solution B) is realized. In an increasing

magnetic field, the second-order phase transition occurs

at h = h1, and the magnetic susceptibility reveals a

jump-like increase �� =
2M0

H2 �H1

. The linear increase

of the magnetization ceases at h = h2, where the second-

order phase transition occurs as well, and the magnetic

susceptibility vanishes again.

The way of definition of the first term in the

thermodynamic potential implies that the constant

Æ stands for the intrasublattice exchange interaction

energy. Its sign is determined predominantly by that

of J11 which is the sign of the interaction between

a singled out ion and those pertained to the second

coordination sphere. If the sign of J11 favors the

ferromagnetic ordering inside a sublattice, the transition

under study will be of the first order. Such a situation

apparently takes place in layered antiferromagnets

FeCl2, FeBr2, etc. [36]. If signJ11 = sign J12, then

the transformation occurs continuously with the second-

order phase transitions at the onset and at the end.

The comparison of the measured and calculated

magnetization curves of FeCO3 shows that the transition

in this antiferromagnet tracks type II. Accordingly,

the same signs should be ascribed to both the intra-

and intersublattice interactions in antiferromagnetic

FeCO3. The sign of the intrasublattice interaction in

the antiferromagnet may be also found in the molecular

field approximation by comparison of the Neel (TN) and

Weiss (�) temperatures. The experimental curve allows

us to evaluate the ratio of the intra- and intersublattice

interaction values:

Æ



=
h2 � h1

h2 + h1
= +0:08:

We should mention that if the proposed approach

describes correctly the magnetization curve of FeCO3,
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then the magnetization measurement is the most

accurate method to estimate the intrasublattice

exchange interaction among all of the known methods.

So then, the phenomenological thermodynamic potential

(17) incorporating only interactions related to the

longitudinal components of sublattice magnetizations

provides the sorting of antiferromagnet�ferromagnet

transitions, considering the sign of the intrasublattice

exchange interaction constant Æ. For negative Æ, the

existence of two critical magnetic fields h1 and h2 is

described correctly.

5.2. Transverse magnetization components and

restrictions of the two-sublattice model

The above-presented phenomenological analysis put no

restrictions on magnitudes of transverse magnetization

components. Though the thermodynamic potential

was chosen in the assumption of their absence, the

solutions are formally true in the presence of the

transverse magnetization without any contribution to

the interaction. That is why a further consideration of

their magnitudes is necessary.

The molecular field approximation represents the

field and temperature dependences of the sublattice

magnetization by the following relations:

M1 =M0Bs(y1);

where Bs(y1) is the Brillouin function for spin S

and yi = Hi�BgS=kT . Therefore, at T = 0, a

sublattice should saturate (Mi(0) = M0) in any

non-zero field. In the magnetic field range h1 <

h < h2, the longitudinal magnetization component

of FeCO3 varies continuously. In this situation, if

the sublattice magnetization modulus is constant, then

the vector ~m2 should turn continuously by an angle

of �. A magnitude of the transverse magnetization

component should approachM0 in maximum. However,

transverse magnetization components are absent in the

experiment. This feature persists under switching on

the transverse components of the magnetic field which

could align the transverse magnetization components if

they were randomly oriented over the crystal. Perhaps,

the zero transverse magnetization of sublattices with

conservation of the magnetization absolute value in a

variable magnetic field might be assumed. However,

this idea is in conflict with the results of the

two-sublattice model. In such a case, the effective

spin Se� = 1=2 should be assigned to an ion,

and the interaction of ions should be described in

terms of the Ising model. These assumptions are

presently confirmed by numerous experiments [39�

41]. Consequently, the sublattices of FeCO3 may

be only oppositely directed. On the one hand, this

is the foundation for thermodynamic potential (17).

On the other hand, the bipartition of a sublattice

does not explain any intermediate value of its

magnetization.

It is reasonable to assume the splitting of the

sublattice under study into a large enough number of

subsublattices. In the multisublattice approximation,

the multistep character of the magnetization curve

manifests successive reorientations of subsublattices.

The calculated magnetization curve tracks the measured

one with any precision as the number of introduced

sublattices is practically unlimited.

According to the results of Section 4.2, the physical

reason for the sublattice splitting may be regarded as

follows. Considering the interaction of sublattices, the

minimal energy corresponds to the parallel orientation

of their spins. Otherwise, considering the sublattices as

isolated subsystems with Æ < 0, the minimal energy

corresponds to their splitting into several subsublattices

with different spin orientations.

The specificity of the current problem is that the

external magnetic field h compensates the effective field

of the intersublattice interaction 
 � m1 affecting an

isolated sublattice:

h2e� = h+ 
m1 + Æm2:

In such a way, the magnetic field lifts the degeneracy of

this sublattice. It splits into n components. Their field

is represented by the expression

nX
j=1


ijmj = Æ + 2

kX
j=1


ij = �Æ � 2

nX
j=k+1


ij :

Here,mj =Mj=M0j is the reduced magnetic moment

of the j-th sublattice which can attain the values mj =

�1, (�mj = �2) and 
ij are the relevant molecular field

coefficients. The total value of this field may range from

�Æ in the antiferromagnetic state (all mj = �1) to +Æ

in the ferromagnetic one (mj = +1 for all j). he right-

hand side of the equality includes the summation only

over k or (n�k) sublattices with reversed or unreversed

magnetization.

For positive 
ij , the overturn of the j-th sublattice

suppresses the effective magnetic field at the sites of the

other. This is why their reorientation in the increasing

external magnetic field occurs not at once but gradually

one by one.
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Therefore, the result describing a continuous change

of the longitudinal magnetization may be agreed

with the experimental finding of the absence of

transverse magnetization components, in assumption of

the splitting of individual sublattices into a large number

of subsublattices with the period much larger than that

of the initially chosen unit cell. Thus, the magnetic state

of the crystal may be considered as inhomogeneous in the

field range h1 < h < h2. Its periodicity is determined

by that of subsublattices and may change in a variable

magnetic field.

5.3. Phase transitions and short-range order in

the vicinity of the critical fields h1 and h2

It is impossible to calculate the total magnetization

curve M(H) in terms of the multisublattice model

since the molecular field coefficients 
ij are unknown.

Nevertheless, it is possible to show that most of them

are about zero. Then the part of the magnetization

curve in the vicinity of the critical fields h1 and h2 can

be described together with the corresponding magnetic

structures.

The exchange interaction is known to rapidly decay

at distances r0 in a crystal on the scale of several atomic

spacings. In the multisublattice model, the sublattice

period d is large enough (d � r0), and the exchange

field at a given point is absent when all ions of the

sublattice are far from the point or is produced by a

nearest-neighbor ion. In other words, the coefficients 
ij
are zero or turn out to be dependent on the spacing

rij between a nearest-neighbor ion belonging to the j-th

sublattice and the i-th point. Hence, in the expression

for the net field at a site pertained to the i-th sublattice,

it is possible to take on summing over ions nearby this

site.

Assume that the orientation of ions belonging to the

i-th sublattice reverses at such a critical value of the

external field hi that the net effective field at them

vanishes:

hi = � (
 � Æ) + 2

kX
j=1


ij(rij):

Here, the summing is performed over ions near by the

i-th site which have already reversed their orientation. If

all 
ij coefficients are positive, the magnetization process

starts in the field h1 = �(
 � Æ) with the orientation

reversal for the spins at the individual sites spaced a

distance r0 apart.

For r0 ! 1, the second-order phase transition

should occur in the field h = h1 as is stated by the

phenomenological analysis. The interaction between the

reversed spins gives gain in the total energy if 
ij > 0,

which is virtually their repulsion. Consequently, the

energy of ions with reversed spins is minimum when they

form a regular close-packed structure1. In the increasing

magnetic field, the parameter of such a lattice should

smoothly decrease.

The crystal magnetization value is available in the

estimation of the average spacing between reversed

spins. Therefore, the measured M(H) curve allows

one, in principle, to find the important dependence

He�(r) of the effective exchange field on the spacing

between interacting spins. The measured magnetization

curve (Fig. 2) reveals a sharp decrease near H1. Such

measurements are not secure against the effect of

their mean errors on a curve shape. This is why the

aforementioned dependence He�(r) was not worked out.

In estimation of true errors of the curve measurements

nearH1, we juxtapose this area with the model of infinite

abrupt jump, that is the first-order phase transition.

This jump is easy to be justified.

If the interaction radius of reversed spins r0 is finite,

a fair amount of spins reverses in the field H1. They

should be arranged in a regular lattice with the spacing

equal to the exchange interaction radius r0. Here, r0
has the meaning of a minimal distance, at which the

magnetization curve shape remains within the prescribed

error, as yet unaffected by this interaction. Using the

measured value of the magnetization change in the

vicinity of H1, the fraction of jump-likely reversed spins

can be estimated as � 12:5%, in agreement with their

average spacing in plane (111) r0 = 9:4 �A. To discuss

the jump of magnetization observed at H2, critical field

at the site is expressed as:

hi = � (
 + Æ)� 2

nX
j=k+1


ij(rij);

where the summing is performed over ions with still

unreversed spins. The analysis similar to the above-

presented one suggests the presence of a magnetization

jump and the occurrence of a magnetic structure near

the critical field h2 = � (
 + Æ) similar to that close to

the field h1.

The arrangement of reversed spins in the crystal at

h = h1 may be represented by isolated threads aligned

1This structure, similar to the mixed state of superconducors, represents a triangular lattice in (111) plane.
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with the external magnetic field. They carry a quantum

of the additional magnetic flux:

��0 = 4��B
4S

d
� 0:2� 10

�10
Oe � cm

2;

where �B is the Bohr magneton, S is the spin of a

Fe2+ ion equal to 4=2, and d is the distance between

the nearest overturned spins along [111] direction equal

to 5 � 10
�8 cm. This flux value turns out to be by

four orders of magnitude smaller than the magnetic flux

quantum in conventional type 2 superconductors.

Thus, the calculated magnitude of the field produced

at a site by individual ions together with the distance

dependence explain the observed jump-like changes of

the magnetization at h = h1 and h = h2. As a result

of the first-order phase transition, the reversed spins

are arranged in a close-packed structure with the period

r0 � 10
�7 cm.

5.4. Energy of phase boundary and comparison

with transition of destroying the type-2

superconductivity by a magnetic field

The examined earlier transition from the

antiferromagnetic to ferromagnetic state has much

in common with the destroying of superconductivity

by a magnetic field. Transitions in superconductors

are assorted in consideration of the interfacial energy

at the phase boundary dividing the normal and

superconducting phases. If the interfacial energy �

is positive (type-1 superconductors) in the infinite

medium, the magnetization changes abruptly at h = h1,

while the susceptibility is infinite, i.e. the first-order

phase transition occurs. If the sign of � is negative

(type-2 superconductor), the transition smoothly starts

and terminates in second-order phase transitions. In

the infinite medium, the mixed inhomogeneous state

emerges in the field range h1 < h < h2.

The magnetization curves for type-1 and type-2

superconductors are identical with those derived in

the phenomenological analysis of type-1 and type-2

transitions from the antiferromagnetic state into the

ferromagnetic one. To extend this correspondence, we

indicate that the interface energy of the phase boundary

dividing the antiferromagnetic and ferromagnetic phases

in the above-presented model is positive for the type-1

transition, while it is negative for that of type 2.

It was shown earlier that, apparently, individual

spins in FeCO3 align only in opposite directions, the

intermediate orientations being forbidden. So we start

immediately with the sharp phase boundary of a definite

shape, within which a phase transition occurs over the

atomic spacing.

Assume for simplicity that each ion interacts with the

neighbors belonging to the first and second coordination

spheres. In the former, a Fe2+ ion in FeCO3 has six

nearest neighbors spaced in adjacent layers (111) at a

distance of 3.7 �A. J12 labels the interaction energy for

each pair with parallel spins. The second coordination

sphere retains six ions in a plane layer (111) spaced

out at a distance of 4.7 �A. J11 labels the appropriate

interaction energy. Then the interaction energies per one

magnetic ion in the antiferromagnetic and ferromagnetic

phases and at the phase boundary are, respectively:

EA = +6J12 � 6J11;

EP = �6J12 � 6J11 � �0H;

EB = �4J11 �
�0H

2
:

In the absence of a magnetic field, the minimal energy

of the antiferromagnetic phase with the considered

distribution of ions over sublattices corresponds to

J12 < 0 and jJ12j > jJ11j. If h � �
, the ferromagnetic

phase is thermodynamically stable. In the external

magnetic field H1 = �12J12=�0, both phases possess

equal energies. The extra energy attributed to the phase

boundary in the field H1 is:

EAP = EB �EA = q2J11;

where q labels the number of ions per unit area of

the boundary. Consequently, the interfacial energy in

this model can have any sign regulated by that of the

intrasublattice exchange interaction energy.

Hence, the sign of the interface energy

unambiguously coupled with the sign of the

intrasublattice exchange interaction immediately

indicates the type of the antiferromagnet�ferromagnetic

transition in an applied field.

The traditional description of antiferromagnets

operates in terms of magnetic sublattices. To explain

even the magnitude of spikes on the magnetization

curve at H1 and H2, the amount of sublattices should

far exceed two. As is indicated earlier, a periodic

inhomogeneous state appears in an antiferromagnet in

the critical magnetic field range if its interfacial energy

is negative. As in type-2 superconductors, its formation

is governed by the decay law of interaction described

by the correlation radius. Unlike conventional type-

2 superconductors with the correlation radius � 10
�5

cm, that of antiferromagnets equals � 10
�7 cm akin
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to uniaxial 2H-NbSe2 superconductor in the utilized

experimental configuration.

Thus, the considered magnetization curves of

antiferromagnetic FeCO3 and a type-2 uniaxial

superconductor have much in common. In both cases,

the phase transition in a magnetic field is spread over a

finite field range. The onset of transitions is accompanied

by the magnetization jump with a spike on the magnetic

susceptibility curve. And, finally, magnetization curves

possess a noticeable hysteresis. These formal attributes

indicate the analogy of transitions in physical objects of

different nature. The type of transition is determined by

the sign of the interfacial energy at the phase boundary

dividing two co-existent states in a crystal.

A certain similarity is also observed in physical

processes in the critical magnetic field interval. Let

us consider these processes in a plane being normal

to the external magnetic field. At first, a transition

into the emergent state occurs at isolated points. At

the moment of nucleation, they are spaced infinitely

apart. A magnetic flux quantum is coupled with

each isolated point. Because of the repulsion, they

form a regular periodic structure in the plane being

perpendicular to field direction. The interaction of the

points decays exponentially so that they are rapidly

brought closer by the increasing field. This process leads

to the infinite slope of the magnetization curve. If the

interaction vanishes at r > r0, the magnetization first

changes jump-likely. This gives rise to an inhomogeneous

structure with period r0. A further increase of the field

is bringing the points closer more smoothly due to their

considerable interaction. Then the magnetization curve

possesses a finite slope, and the magnetization increases

as long as the sample completely transforms to a fresh

homogeneous state.

6. Summary

In conclusion, we emphasize that a comparative

thermodynamic analysis of the magnetization processes

in a uniaxial superconductor and an antiferromagnet

over the field range of the phase transition into

the normal and ferromagnetic state, respectively, has

shown that they share some characteristics. Those are

determined for both cases by the minus sign of the

interfacial energy of the phase boundary between the

co-existent phases. The transitions develop in field

intervals extended between the lower and upper fields,

at which the onset and the end of a transition are

accompanied by jump-like changes of the magnetization.

There exist similar spatially inhomogeneous magnetic

states described just as the mixed state or else the

Shubnikov phase of type-2 superconductor. These results

confirm the general law of formation of the intrinsic

inhomogeneous magnetic states in the vicinity of phase

transitions induced by the external magnetic field in

substances of different physical nature, governed by the

sign of the interfacial energy on the phase boundary

between the co-existent states.
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ÕÀÐÀÊÒÅÐÍI ÍÅÎÄÍÎÐIÄÍÎÑÒI

Â ÀÍÒÈÔÅÐÎÌÀÃÍÅÒÈÊÀÕ ÒÀ ÍÀÄÏÐÎÂIÄÍÈÊÀÕ

Â.Â. �ðåìåíêî, Â.À. Ñiðåíêî

Ð å ç þ ì å

Äîñëiäæåíî ñïiëüíi ðèñè ôîðìóâàííÿ íåîäíîðiäíèõ ìàãíiòíèõ

ñòàíiâ â îäíîâiñíèõ àíòèôåðîìàãíåòèêàõ òà íàäïðîâiäíèêàõ ïî-

áëèçó ôàçîâèõ ïåðåòâîðåíü, ùî iíäóêóþòüñÿ çîâíiøíiì ìàã-

íiòíèì ïîëåì. Îáãîâîðþ¹òüñÿ ïîïåðå÷íå íàìàãíi÷óâàííÿ êðè-

ñòàëiâ íàäïðîâiäíî¨ ñïîëóêè äèõàëüêîãåíiäó íiîáiþ 2H-NbSe2

òà àíòèôåðîìàãíiòíîãî ñèäåðèòó FeCO3. Âèêîðèñòîâóþ÷è òåð-

ìîäèíàìi÷íèé ïiäõiä, äîâåäåíî, ùî ãîëîâíi õàðàêòåðèñòèêè ôà-

çîâîãî ïåðåòâîðåííÿ òà íåîäíîðiäíi ìàãíiòíi ñòðóêòóðè, ùî

ôîðìóþòüñÿ ïðîòÿãîì ïåðåòâîðåííÿ, çóìîâëåíi çíàêîì åíåðãi¨

ìåæi ïîäiëó ñïiâiñíóþ÷èõ ôàç íå çàëåæíî âiä ôiçè÷íî¨ ïðèðîäè

íåîäíîðiäíèõ ñòàíiâ.

ÕÀÐÀÊÒÅÐÍÛÅ ÍÅÎÄÍÎÐÎÄÍÎÑÒÈ

Â ÀÍÒÈÔÅÐÐÎÌÀÃÍÅÒÈÊÀÕ È ÑÂÅÐÕÏÐÎÂÎÄÍÈÊÀÕ

Â. Â. Åðåìåíêî, Â.À. Ñèðåíêî

Ð å ç þ ì å

Èññëåäîâàíû îáùèå ÷åðòû ôîðìèðîâàíèÿ íåîäíîðîäíûõ ìàã-

íèòíûõ ñîñòîÿíèé â îäíîîñíûõ àíòèôåððîìàãíåòèêàõ è ñâåðõ-

ïðîâîäíèêàõ âáëèçè ôàçîâûõ ïðåîáðàçîâàíèé, êîòîðûå èíäó-

öèðóþòñÿ âíåøíèì ìàãíèòíûì ïîëåì. Îáñóæäàåòñÿ ïîïåðå÷-

íîå íàìàãíè÷èâàíèå êðèñòàëëîâ ñâåðõïðîâîäÿùåãî ñîåäèíåíèÿ

äèõàëüêîãåíèäà íèîáèÿ 2H-NbSe2 è àíòèôåððîìàãíèòíîãî ñè-

äåðèòà FeCO3. Èñïîëüçóÿ òåðìîäèíàìè÷åñêèé ïîäõîä, äîêàçà-

íî, ÷òî îñíîâíûå õàðàêòåðèñòèêè ôàçîâîãî ïðåîáðàçîâàíèÿ è

íåîäíîðîäíûå ìàãíèòíûå ñòðóêòóðû, êîòîðûå ôîðìèðóþòñÿ â

ïðîöåññå ïðåîáðàçîâàíèÿ, îáóñëîâëåíû çíàêîì ýíåðãèè ãðàíè-

öû ðàçäåëà ñîñóùåñòâóþùèõ ôàç íå çàâèñèìî îò ôèçè÷åñêîé

ïðèðîäû íåîäíîðîäíûõ ñîñòîÿíèé.
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