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The Hubbard model in the X-operators representation is studied
within the generating functional approach. In the boson sector,
Green's functions of two collective excitations, magnons and
doublons, are investigated. The equations for them include terms
with functional derivatives with respect to the corresponding
fluctuating fields of the normal and anomalous components of the
electron Green's function. The solution of each equation can be
presented through the self-energy and the terminal part which
can be calculated by iterations on the electron hopping matrix
element. It is shown that, at the half-filling, a Goldstone mode
with wave vector Q = (�; : : : ; �) appears. Expressions for spin and
dielectric susceptibility are obtained in the hydrodynamic regime.

1. Introduction

One of the methods in the many-body theory is the

Generating Functional Approach (GFA) applied at

first time to conventional Fermi-systems by Kadanoff

and Baym [1]. The generating functional Z[V ] is a

generalization of a partition function for the system in

an external field fluctuating in space and time. Different

Green's functions of the system can be presented as

functional derivatives over these fields of Z[V ]. It allows

to derive formally closed equations for them in terms of

functional derivatives.

Recently in [2�10], we generalized the Kadanoff-

Baym approach for strongly correlated electron systems

and spin models. A detailed description of the method

is given in a book [10] and review [11]. Spin models (like

the Heisenberg model) and electron models with strong

correlation (like the Hubbard model, tJ-model, and

periodic Anderson model) are described by operators not

commuted on a c-value, contrary to the canonical Fermi-

operators. The usual spin operators and X-operators

describing a correlated motion of electrons are such types

of operators.

Green's functions (GFs) constructed on such

operators have a more complicated structure than the

standard GFs constructed on the canonical Fermi-

operators. The last ones are determined entirely by

the self-energy introduced by the Dyson equation. For

operators noncommuting on a c-value, GFs should be

determined by one more quantity � the terminal part.

At the first time, it was formulated by Bar'yakhtar,

Krivoruchko, and Yablonsky [12] while analyzing the

diagram technique for spin models. It turns out that

this peculiarity has a general character, and one-particle

GF G in general case should have a multiplicative

representation determined by two equations

G = G�; G�1 = G�1
0 ��:

Here, the quantity G is the propagator part of the GF

G, the quantity � is the self-energy part, and � is

the terminal part. For the conventional Fermi-systems,

� � 1.

GFA allows one to derive the equation for a GF with

functional derivatives and two separate equations for �

and � following from it. It is possible to solve these

equations by iterations. For strongly correlated models

expressed in terms of X-operators, such iterations

correspond to the perturbative theory near the atomic

limit.

In this paper, we developed such an approach for

the Hubbard model with the strong one-site Coulomb

interaction U . We study a structure of GFs in both the

fermion and boson sectors. In the last case, we deal with

GFs of magnons (collective motion of a spin deviation)

and doublons (the collective motion of a pair of electrons

on a site as a complex). We do not present the details

of calculations here, but we used the equations for

electron and boson GFs derived by us earlier to find out

the structure of GFs in the fermion and boson sectors

and to determine the Goldstone magnon and doublon

excitations.

2. Introduction of the Generating Functional

Let us consider the conventional Hubbard model for

nondegenerate states. In terms of the Fermi operators,

the model Hamiltonian is

H =
X
ij�

tijc
y

i�cj� + U
X
i

ni"ni#; (1)
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STRUCTURE OF FERMION AND BOSON EXCITATIONS

where ci�(c
y

i�) is the operator of annihilation (creation)

of an electron at the site i with spin �, ni� = c
y

i�ci�
is the electron number at the same site with a given

spin. Under the condition of strong on-site Coulomb

repulsion U > zt (where t is the hopping matrix element

for the nearest neighbors and z is the coordination

number) it is useful to express Hamiltonian (1) in

terms of X-operators. The operator Xpq
i for the site i

describes the transitions between four possible states

p = j0i; j�i; j��i; j2i � without any electron, with one

electron possessing the spin projection � or �� � ��, and

a pair of electrons, respectively.

The X-operators can be represented through the

conventional Fermi-operators by means of the relations

X�0
i = c

y

i�(1� ni��); X2�
i = �c

y

i��ni� ; (2)

X���
i = c

y

i�ci�� ; X20
i = �c

y

i��c
y

i� ;

X��
i = ni�(1� ni��); X22

i = ni�ni�� ;

X00
i = (1� ni�)(1� ni��):

Operators X�0
i and X2�

i describe the creation of a

correlated electron and are Fermi-like f -operators; X���
i

and X20
i describe the flip of a spin at a site and

the creation of a pair; they are Bose-like b-operators,

respectively. The remaining X 's are called diagonal. We

note that there are the Hermitian-conjugate operators

(X
pq
i )y = X

qp
i . Sixteen X-operators comprise thus the

whole set forming the algebra with the corresponding

property of the product

Xrs
i Xpq

i = ÆspX
rq
i : (3)

and the permutation relations of the anticommuting

type for the f -operators and the commuting one for

the b-operators. We note that the conventional Fermi

operators are expressed through the linear combinations

of X-operators of the f -type

c
y

i� = X�0
i � �X2��

i ; ci� = X0�
i � �X ��2

i : (4)

These relations express the motion of correlated

electrons in two Hubbard subbands.

It is convenient to introduce two-component spinors

for the f -operators:

	(i�) =

�
X0�

i

��X ��2
i

�
; (5)

	 y(i�) =
�
X�0

i ; ��X2��
i

�
:

Then Hamiltonian (1) is represented as H = H0 +H1,

where

H0 =
X
i

 X
�

"�X
��
i + "2X

22
i

!
; (6)

H1 =
X
ij�

X
�1�2

	y�1(i�)t�1�2(ij)	�2(j�): (7)

Here, we added the term
X
i�

(�� � �
h

2
)ni� to

Hamiltonian (1), where � is the chemical potential and

h is the external magnetic field. That is why a new

notation appears:

"� = ��
h

2
� �; "2 = U � 2�:

In the quadratic form (7), 	�(i�) represents the

component of the spinor 	(i�); (� = 1; 2); in addition,

we have introduced the matrix

t��(ij) = tij=�� ; ==

�
1 1

1 1

�
: (8)

Note that the index � numerates the Hubbard subbands.

With the help of the rule of multiplication (3) for X-

operators, one can write the permutation relations of

the spinor f -operators:�
	(i�)
 	 y(j�)

�
+
= ÆijF

�
i�

	(i�)
 	 y(j��)
�
+
= ÆijX

���
i �z

[	(i�)
 	(j��)]+ = Æij�X
02
i (i�y)

9>>=
>>; ; (9)

where �x; �y ; �z are the Pauli matrices, and F �
i is a 2�2

matrix composed of X-operators:

F �
i =

�
X00

i +X��
i 0

0 X ����
i +X22

i

�
: (10)

The permutation relations between f - and b-

operators have a commutator character:�
	(i�1); X

�2��2
j

�
�
= ÆijÆ�1�2	(i ��1)�

	(i�1); X
20
j

�
�
= Æij��1	

y(i��1)�
x

)
: (11)

In other cases of permutations, the relations of type (9)

and (11) give zero.

Thus, an anticommutator of two 	 -operators is

expressed either through a diagonal or a b-operator, but

the commutator of 	 - and b-operators is naturally a 	 -

operator. Note the relations

(X
pq
i )

y
= X

qp
i ; (12)
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X00
i +X��

i +X ����
i +X22

i = 1 (13)

which complete the algebra of X-operators.

Let us write the equation of motion for an f -operator.

For the thermodynamical time � (�� 6 � 6 �; � =

1=kT ), we start from the Heisenberg equation

_	(1�) = �[	(1�);H]

which can be written in the case of Hamiltonian (6)�(7)

as

_	(1�1) = �E�1
1 	(1�1)� F �1

1 t̂(110)	(10�1)�

�X ��1�1
1 �z t̂(110)	(10 ��1) + ��1	

y(10 ��1)t̂(101)i�yX02
1 : (14)

Here, a double-row matrix with respect to the spinor

index was introduced:

E�
1 =

�
"� 0

0 "� + U

�
: (15)

Here and in the following, the numerical indices

indicate the four-dimensional coordinates including the

site and the time � , i.e. 1 = (i1; �1); :::; a summation

over the primed indices is understood (it is a summation

over the sites i and an integration over the time �). And

finally, the value

t̂(110) = Æ(�1 � � 01)ti1i10= � t(110)= (16)

has been introduced representing the matrix over the

spinor indices (the last circumstance has been specified

by the symbol t̂ ).

Thus, the operator _	 represents a linear combination

of f -operators, with the bosonic b-operators as the

coefficients, and the matrices E and t̂ as well.

Following the method we have applied many times

to different quantum models [2�11], we introduce the

generating functional

Z[V ] = Tr
�
e��HT e�V

�
� e�[V ]; (17)

where T is the symbol of the chronological product and

the trace is taken over the whole set of variables of the

system.

For Hamiltonian (6) � (7), it is convenient to choose

the operator V in the form

V = v0010 X00
10 + v2210 X22

10 + v�
0�0

10 X�0�0

10 + v�
0��0

10 X ��0�0

10 +

+ v0210 X20
10 + v2010 X02

10 : (18)

It represents the linear combination of the whole

diagonal and b-operators with the single point fields v.

Thus, differentiating the equation Z[V ](or �[V ]) with

respect to the different v's, we can express the different

GFs through the functional derivatives with respect to

the corresponding fields. For instance, for the single-

particle Bose-like GFs of magnons and doublons, we

have the expressions

D
���(12) = �hTX���

1 X ���
2 iV = �

Æ2�[V ]

Æv���1 Æv���2
; (19)

D
02(12) = �hTX02

1 X20
2 iV = �

Æ2�[V ]

Æv021 Æv202
: (20)

Here and further, the symbol h: : : iV � h: : : e
�V
i, where

h: : : i means averaging over the Gibbs ensemble with

Hamiltonian H. Having been introduced in such a

way, the GFs are functionals of the fluctuating fields.

Directing these fields to zero after taking the functional

derivatives, we obtain the actual GFs describing our

system. The fermionic GF cannot be obtained by the

differentiation of Z[V ](or �[V]) with respect to the

single-point fields, and it is necessary to determine the

equation of motion for them.

3. Equations of Motion for Electron Green's

Function

We see that the equation for the GF hT		yiV contains

the anomalous GF hT	y	 yiV . Then, it is necessary to

write the equation for it as well.

Let us introduce the matrix GF:

L(1 2 ) =

= �

�
hT	(1�1)	

y(2�2)iV hT	(1�1)	(2�2)iV
hT	y(1�1)	

y(2�2)iV hT	y(1�1)	(2�2)iV

�
:

(21)

The underlined numerical index 1 in the left part

represents the cumulative index containing the space-

time point 1 , the spin �1, the spinor index �1 and

one more index �1, accepting two values, specifying

the matrix elements (21), so that 1 = f1�1�1�1g. The

matrix L(1 2 ) is an 8 � 8 matrix with respect to the

collection of discrete indices. A matrix of such a rank

appears automatically in the Hubbard model. Its arising

is described not only by the states with Cooper's pairs

but also with normal states because Eq. (14) for the

operator 	 contains also the operator 	y. The equation

for GFs in (21) has been derived earlier [8], and here we

only reproduce the final result.
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The set of four equations for the GFs in (21) can be

written as a single matrix equation:h
L�1
0V � (Â�Y )� (ÂY )

i
(1 1 0 )L(1 02 ) = (Â�)(1 2 ): (22)

Here, we introduced the operator matrix

Â(1 2 ) =

= Æ12

0
B@ â1(�1�2) ��1Æ ��1�2 i�

y Æ
Æv021

��1Æ ��1�2 i�
y Æ
Æv201

â1(�2�1)

1
CA ; (23)

where each element represents the 2 � 2 matrix with

respect to the spinor indices hidden in the Pauli matrices

and the matrix â1 having the functional derivatives

with respect to the fluctuating fields as its elements. In

addition, Eq. (22) contains the matrices

â(�1; �2) = �Æ�1;�2

0
B@

Æ
Æv001

+ Æ
Æv��1

0

0 Æ
Æv����1

+ Æ
Æv221

1
CA�

�Æ��1�2�
z Æ

Æv��1�11

; (24)

Y (1 2 ) =

 
t̂(12) 0

0 �~̂t(12)

!
: (25)

The value L�1
0V represents the double-row matrix

L�1
0V (1 2 ) =

=

�
G�1
0V (1�1; 2�2) �1Æ ��1�2Æ12�

xv021
��1Æ ��1�2Æ12�

xv201
eG�1
0V (1�1; 2�2)

�
; (26)

where G�1
0V is given by the expression

G�1
0V (1�1; 2�2) = �

��
@

@�1
+E�1

1

�
Æ�1�2+

+W �1
1 Æ�1�2 + v ��1�1

1 �0Æ ��1�2

�
Æ12 (27)

and eG�1
0V by its transposition. Here, we use the 2 � 2

matrix

W �
1 =

�
�v001 + v��1 0

0 v221 � v����1

�
: (28)

Equation (22) is of the same type as the equation for

a single-particle GF that we derived for the Hubbard

model in the limit U = 1 and for the Heisenberg

model as well [2�6,9]. In the above models, the matrix Â

degenerates into a scalar, but now it is a matrix with

respect to the discrete indices � and �, likewise the

other values in (22). The physical sense of this equation

is compatible with that of equations derived in [13].

By virtue of the noted similarity of Eq. (22) with the

respective equations of the models considered before, we

could expect the same structure in the solutions of these

equations, in particular the multiplicative character of

electron GFs. Let us represent them as a product of

the propagator L and the terminal � part, respectively,

namely:

L(1 2 ) = L(1 1 0)�(1 02 ): (29)

The propagator part satisfies the Dyson equation

L�1(1 2 ) = L�1
0V (1 2 )��(1 2 ): (30)

Thus, the electron GF of the model is characterized by

two quantities: the self-energy � and the terminal part

�. From Eq. (22), one can derive two equations for

� and � [10,11]. The iteration of these equations on

powers of the hopping matrix element generates a series

of perturbation theory near the atomic limit [10,11].

One comment should be done as for Eq. (22) with

functional derivatives. In this equation, the normal

components of the matrix GF (21) are coupled with

perturbation anomalous ones. However, the last ones

stand only under functional derivatives with respect to

the fields v02 and v20. In the normal phase, anomalous

FGs equal zero, but the derivatives do not vanish. That

is why we deal with the total matrix GF with anomalous

components even for the normal phase.

4. Boson Green's Functions

The complete system of 16 X operators contains two

Bose-like operators X���
1 and X02

1 (and their conjugates

X ���
1 and X20

1 ) which determine two Bose-like GFs (19)

and (20).

They describe the propagation of a spin-flip

(magnon) and a dyad (doublon) representing two

types of Bose-like collective modes. These GFs can be

represented as the variational derivatives of � with

respect to the fluctuating fields, see Eq. (19) and Eq.

(20).

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 8 789



Yu.A. IZYUMOV, N.I. CHASCHIN

To write the equations of motion for the GFs D���

and D02, we need the equations of motion for the Bose-

like operators:

_X���
1 = �("�� � "�)X

���
1 � 	

y

�0(1�)=�0�0t(110)	�0(10��)+

+	
y

�0(10�)t(101)=�0�0	�0(1��); (31)

_X02
1 = �(U � 2�)X02

1 +

+�0(�x	)�0(1��0)=�0�0t(110)	�0(10�0): (32)

We see that, on the right hand sides of these relations,

	 -operators are present; therefore in the corresponding

equations of motions for the magnon and doublon GFs,

the T -mixed product of f - and b-operators will appear.

They can be represented as the variational derivative

of the electron GF with respect to the fluctuating field

v��� in the first case and v02 in the second. One of the

important features of the doublon GF is that it includes

the "anomalous"electron GF composed of the operators

	(1�) and 	(2��), whereas the equation for the magnon

GF should include the normal electron GF composed

of the operators 	(1�) and 	y(2��). These anomalous

GFs by themselves are equal to zero when the fields are

absent. However, their derivatives with respect to the

fields v��� and v02 are not equal to zero and determine

the contribution in the equation of motion caused by

the interactions of the electron and boson degrees of

freedom.

By the method developed in [2�8], we come to the

equation for the magnon GF

(K���
0V )

�1(1 10)D���(10 2) = (n�1 � n��1 )Æ12+

+
Æ

Æv���2
tr
�
=
�
(tL11)(1��;1�) � (L11t)(1��;1�)

��
; (33)

where L11 is a matrix element of the electron GF (21)

(normal component). Here,

(K���
0V )

�1(12) = �

�
@

@�1
+ �h+ v����1 � v��1

�
Æ12 (34)

is a spin GF of the zero approximation in the fluctuating

fields.

It follows from definition (19) that the magnon GF

has a symmetry:

D
���(12) = D

���(21); D
���(q) = D

���(�q): (35)

The solution of the obtained equation can be written as

D
���(q) =

n� � n�� + P���(q)

i!n � �h�M���(q)
; (36)

where the self-energy M��� and the terminal part P���

obey the symmetry relations

M
���(q) = �M

���(�q); P
���(q) = �P

���(�q): (37)

We see that the crucial term in Eq. (33) for the magnon

GF contains a term which is a derivative of the normal

component of the electron GF. By iteration of the

equation for it to the second order in the hopping, we

get the self-energy of the magnon GF as

M
���(q) =

1

2

X
k

�
"(k)� "(k� q)

�
�

�

X
��

���
G��(k)�G�(k)

�
�z
�
��
+

+"(k� q)
�
G��(k)�+

�
��

X
�0�0

G
�
�0�0(k � q)+

+"(k)
�
G�(k)�+

�
��

X
�0�0

G
��
�0�0(k � q)

�
: (38)

Here, G� � L
11 and G� is the propagator part, �� =

�x�i�y; and "(k) is the Fourier transform of the hopping

matrix element tij . A similar equation can be obtained

for the terminal part P���(q) [8]. Finally, we present the

self-energy part in the mean field approximation for the

electron GF G�� as

M
���(q) = �

U

2N

X
k

�
"(k)� "(k� q)

�
�

�

X
�

�
f [E�

1 (k)]� f [E�
2 (k)]

E�
1 (k)�E�

2 (k)
+

+
U

2N

X
k

�
"(k)� "(k� q)

�X
��

(�1)�+�C���
�� (k; k� q)�

�
f [E�

� (k)]� f [E��
�(k)]

i!n +E�
� (k)� E��

�(k)
: (39)
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Here, E�
� (k) is the quasiparticle energy, the index

� = 1; 2 numerates two Hubbard subbands, f [E] is

the Fermi-function, and C���
�� are some dimensionless

coefficients [8].

For the doublon GF (20), we can derive the equation

[8]

�
K02

0V

��1
(110)D02(102) = (1� n1)Æ12�

��0
Æ

Æv202
Tr
�
=
�
tL12

�
(1�0;1��0)

�
; (40)

where K02
0V is a propagator in the zero approximation

but with the corresponding fluctuating fields:

�
K02

0V

��1
(12) = �

�
@

@�1
+ U � 2�+ v221 � v001

�
Æ12:

(41)

A solution of Eq. (40) is sought in the form where

the self-energy M02 and the terminal part P02 can be

obtained by iterations of the GF, similarly to the case of

the magnon GF.

D
02(q) =

(1� n) + P02(q)

i!n � (U � 2�)�M02(q)
: (42)

In the same way, we can calculate the conjugated

doublon GF D
20
12 . It is possible to represent the result

of computations in the form

D
20(q) =

�(1� n) + P20(q)

i!n + (U � 2�)�M20(q)
; (43)

where the values P20(q) andM20(q) are connected with

P
02(q) and M02(q) by the relations

P
20(q) = �P

02(�q); M
20(q) = �M

02(�q): (44)

Thus, we see that the condition of symmetry

D
20(q) = D

02(�q) (45)

is fulfilled, or D20
12 = D

02
21 in the coordinate space, which

follows directly from the definition of a doublon GF.

In the mean field approximation for the electron GF,

we can obtain the doublon self-energy up to the second

order in the hopping:

M
02(q) =M02

1 (q) +M02
2 (q);

M
02
1 (q) = �

U

2

X
k�

"(k) + "(k� q)

2Q�(k)
�

�

�
f [E�

1
(k)]� f [E�

2
(k)]

�
; (46)

M
02
2 (q) = �

1

2

X
k�

"(k� q)
"(k) + "(k� q)

2Q�(k)
�

�

X
��

C�
��(k;k� q)�

�
1� f

�
E�

�
(k)
�
� f

�
E��

�
(k� q)

�
i!n �E�

�
(k)�E��

�
(k� q)

: (47)

Here, C�
�� is some dimensionless coefficients, and

2Q�(k) = E�
2 (k)�E�

1 (k).

Let us now compare the equations of motion and

their solutions for the magnon and doublon GFs. Eq.

(36) and Eq. (42) have a common structure, and the

interaction of the corresponding boson modes with

the electron system is described by a term with the

functional derivative with respect to the corresponding

fields of the electron GF. For magnons, such a field is

v��� coupled with the operatorX��� of a spin deviation at

the site; for doublons, it is the field v20 coupled with the

operator X02 creating an electron pair at an unoccupied

site. In the first or second case, the equation includes,

respectively, the normal component L11 of the electron

GF or the anomalous one L12.

Solutions (36) for magnons and (42) for doublons

express the fact that the boson GFs as well as electron

ones have the self-energy and the terminal part which

can be calculated by iterations on the electron hopping.

In the zero approximation, the nominator of the magnon

GF is just equal to magnetization, while that of the

doublon GF is equal to a deviation from the half-filling

(n = 1). In the denominators of both GFs, the quantity

�h or U�2� stands which vanishes in the paramagnetic

phase in the case of magnons and at the half-filling,

whereas U � 2� = 0 in the case of doublons.

Now we return to expressions (38) and (46)�(47) for

the self-energy of magnons and doublons. It is explicitly

seen that M���(q) vanishes when q = 0 and M02(q)

vanishes when q = Q = (�; : : : ; �). Thus, similarly to

the fact that a magnon with the momentum q = 0 is a

Goldstone mode, a doublon is a Goldstone mode as well,

only with the momentum q = Q. Moreover, similarly

to the fact that a magnetic field creates a gap h in

the magnon spectrum, a deviation from the half-filling

produces a gap U � 2� in the doublon spectrum. When

a Goldstone mode is condensed, a homogeneous ordered
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phase (ferromagnetic) or two-subband (dielectric) phase

can appear.

We see that the half-filling (n = 1) for doublons is a

peculiar point, and strong dielectric fluctuations should

exist in a vicinity of the wave vector Q. We will study

them now in the hydrodynamic regime.

5. Dynamical Fluctuations in the

Hydrodynamic Regime

It is well known that collective modes in a disordered

(symmetric) phase in the hydrodynamic regime are ruled

by the conservation laws [14]. Thus, the spin GF D
���

should be determined by the total spin conservation

law, while the pseudospin GF D
02 is determined by

the pseudospin conservation law [16�18]. The three

pseudospin components

P+ =
X
i

eiQ�Ric
y

i"c
y

i#;

P� =
X
i

e�iQ�Rici"ci#;

P z =
X
i

1

2
(ni � 1) (48)

with Q = (� � : : : ) obey the permutation relations

[P+;H] = (2�� U)P+;

[P�;H] = �(2�� U)P�;

[P z;H] = 0; (49)

from which it is clear that, at the half-filling (n = 1),

all pseudospin components are conserved. This leads

to the diffusion form of the pseudospin (doublon)

susceptibility, which is the retarded doublon GF

�02(q; !). According to the Kubo�Mori theory, this

susceptibility is expressed through the memory function

M
02(q; !) by the relation

�02(q; !) = hhX02
i

��X20
j iiq;! =

M02(q; !)

! �
M02(q; !)

�02q

; (50)

where we introduce the notation for static susceptibility:

�02q � �02(q; 0).

On the other hand, the memory function is expressed

through the irreducible retarded GF of pseudospin

currents (see [19]):

M02(q; !) = �
X
ij

e�iqRij�

�

+1Z
�1

d!0

�

Imhhi _X02
i

���i _X20
j ii

irr
!0

!0(! � !0 + iÆ)
: (51)

Here, _X02
i means the real time derivative of the operator

X02
i :

i _X02
i = [X02

i ;H] =

= (U � 2�)X02
i � �0(�x	)�0(i��0)(t̂	)�0(i�0): (52)

Further, we consider the half-filling case where U �

2� = 0. Then

hhi _X02
i (t)

���i _X20
j (0)iiirr =

= hh(�x	)�0(i��0; t)(t̂	)�0(i�0; t)
���

�(	+t̂)�0(j�0)(	+�x)�0(j��0)iiirr�

�hh(�x	)�0(i��0; t)(t̂	)�0(i�0; t)
���

�(	+t̂)�0(j��0)(	+�x)�0(j�0)iiirr: (53)

Now we use the approximation of interacting modes well

known in the relaxation theory [17, 18]: the two-particle

electron correlations in expression (53) are decomposed

into pair correlators and then expressed through the

imaginary parts of retarded electron GFs. As a result,

we come to the following expression determining the

memory function:

M02(q; !) = 2
X
k

�
"(k) + "(k � q)

�2
�

�

Z
d!0

Z
d!1

f(!1 � !0)� f(!1)

!0(! � !0 + iÆ)
�

�tr
��
ImG��0

(q � k; !0 � !1)
��
Im(=GT�

0

=)(k; !1)
��
:

(54)
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Here, GT� is the transposed matrix G� . The quantity

G
�(k; !) is the retarded electron GF. It can be obtained

from the Matsubara GFs by analytical continuation

from discrete imaginary frequencies into real ones:

i!n ! ! + iÆ.

Expression (54) is similar to those obtained in the

interacting modes approximation for other dynamical

susceptibilities. For example, the spin susceptibility is

����(q; !) = hhX���
i

��X ���
j iiq;! = �

M���(q; !)

! �
M���(q; !)

����q

: (55)

By a similar decoupling of the irreducible GFs of the

currents, we obtain

M���(q; !) = 4
X
k

�
"(k)� "(k � q)

�2
�

�

Z
d!0

Z
d!1

f(!1 � !0)� f(!1)

!0(! � !0 + iÆ)
�

�tr
��
ImG�(k � q; !1 � !0)

��
Im(=G��

=)(k; !)
��
: (56)

It is remarkable that the memory GF for the spin

susceptibility vanishes at q = 0, while it vanishes at

q = Q for the doublon susceptibility. This difference

originates from the total spin conservation law (Fourier

component of the spin density at q = 0), while

the component of the pseudospin density is conserved

at q = Q and only for the half-filling. There is

another important difference in expressions (54) and

(56). Arguments of the electron GFs appear in a different

way in these expressions. This reflects the fact that the

spin collective mode is formed through excitations of a

particle and a hole, while the pseudospin collective mode

(doublon) is formed through excitations of two particles

(or two holes).

Consider now the hydrodynamic limit corresponding

to small frequencies !, a small wave point p = Q � q

(for expression (54)), and small q (for expression (56)).

In the hydrodynamic limit, ! � vp and ! � vq, where v

is a characteristic electron velocity on the Fermi surface.

Under these conditions, Eqs. (54) and (56) yield the

asymptotic expressions

ImM02(q; !) = �D02p2; ReM02(q; !) = 0; (57)

ImM���(q; !) = �D���q2; ReM���(q; !) = 0; (58)

where the coefficients of the spin and pseudospin

stiffnesses are equal to

D02 = 2�
X
k

�
v(k)e

�2 Z
d!1f

0(!1)�

�tr
��
ImG��0

(�k;�!1)
��
Im(=GT�

0

=)(k; !1)
��
; (59)

D��� = 4�
X
k

�
v(k)e

�2 Z
d!1f

0(!1)�

�tr
��
ImG�(k; !1)

��
Im(=G��

=)(k; !1)
��
: (60)

Here, e is the unit wave vector, and f 0(!) is the

derivative of the Fermi-function.

Expression (60) is valid at arbitrary U ; in the case of

U �W , it is consistent with the result for the tJ�model

[15].

Notice that if we use the electron GF in the

mean field approximation (without attenuation of

quasiparticles), both expressions (59) and (60) vanish. It

is easy to show that if the attenuation of quasiparticles


 obeys the condition 
 � vq, both expressions become

finite. In the general case, expressions (54) and (56) for

the memory function give correct asymptotic values in

the hydrodynamical limit. Therefore, the susceptibilities

have the diffusion form

1

!
Im�(q; !) = �q

eDq2
!2 +

� eDq2�2 ; (61)

where eD = D=�q.

6. Conclusions

We have applied the GFA to investigate the Hubbard

model in the X-operator representation. This means

that we discussed the case of sufficiently strong electron

correlations U > W . We have derived the exact

equation for the electron GF in terms of the functional

derivatives with respect to the fluctuating fields v��
0

,

v��� , v20 coupled with the spin and charge densities. The

electron GFs represent generally an 8 � 8 matrix with

respect to three discrete indices �, �, �. In the matrix

representation, the equation has the same structure with

the GF for the Hubbard model in the limit U !1, for

the tJ- and sd-models, and for the GFs of the transverse

spin components in the Heisenberg model as well.

The electron GF G has a multiplicative character

in the sense that it is expressed by a product of two
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quantities, G = G�, where G is the propagator satisfying

the Dyson equation with the self-energy �, and � is

the terminal part. Their iteration generates a power

series in the parameter W=U . This corresponds to the

perturbation theory close to the atomic limit.

Taking the electron GF in the mean field

approximation, we derived an equation for the doublon

GF. The properties of the poles of the doublon GF

depends substantially on the electron concentration n.

For n < 1, there is a pole which has a real part U�2� > 0

corresponding to the activated mode with the quadratic

dispersion law. For n! 1, U�2�! 0. The investigation

of the special case n = 1 reveals that a soft mode with

Q = (�; : : : ; �) may exist. However it is known that

the paramagnetic phase of the Hubbard model has an

instability to the antiferromagnetic ordering. This means

that two possible instabilities � doublon and magnon

ones � should compete, and a final result concurring

a type of ordering at the half-filling demands further

investigations.
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ÑÒÐÓÊÒÓÐÀ ÔÅÐÌIÎÍÍÈÕ I ÁÎÇÎÍÍÈÕ ÇÁÓÄÆÅÍÜ
Â ÎÄÍÎÇÎÍÍIÉ ÌÎÄÅËI ÕÀÁÁÀÐÄÀ

Þ.À. Içþìîâ, Í.I. ×àùèí

Ð å ç þ ì å

Äîñëiäæåíî ìîäåëü Õàááàðäà ó ïðåäñòàâëåííi X-îïåðàòîðiâ
ìåòîäîì ãåíåðóþ÷îãî ôóíêöiîíàëà i âèâ÷åíî äâà êîëåêòèâíi
çáóäæåííÿ, ìàãíîíiâ òà äóáëîíiâ, ó áîçîíîâîìó ñåêòîði ôóíê-
öié Ãðiíà. �õ ðiâíÿííÿ ìiñòÿòü ôóíêöiîíàëüíi ïîõiäíi ïî âiäïî-
âiäíèõ ôëóêòóàöiéíèõ ïîëÿõ íîðìàëüíî¨ òà àíîìàëüíî¨ åëåêò-
ðîííî¨ ôóíêöi¨ Ãðiíà. Ðîçâ'ÿçîê êîæíîãî ðiâíÿííÿ ìîæå áóòè
çàïèñàíèé ÷åðåç âëàñíó åíåðãiþ i òåðìiíàëüíó ÷àñòèíó, ÿêi ìî-
æóòü áóòè îá÷èñëåíi øëÿõîì iòåðàöié çà åëåêòðîííèìè ñòðèá-
êîâèìè ìàòðè÷íèìè åëåìåíòàìè. Ïîêàçàíî, ùî ãîëäñòîóíiâñü-
êà ìîäà ç õâèëüîâèì âåêòîðîì Q = (�; : : : ; �) âèíèêà¹ â ðàçi
ïîëîâèííîãî çàïîâíåííÿ. Âèðàçè äëÿ ñïiíîâî¨ òà åëåêòðîííî¨
ñïðèéíÿòëèâîñòåé îòðèìàíî ó ãiäðîäèíàìi÷íîìó íàáëèæåííi.

ÑÒÐÓÊÒÓÐÀ ÔÅÐÌÈÎÍÍÛÕ È ÁÎÇÎÍÍÛÕ
ÂÎÇÁÓÆÄÅÍÈÉ Â ÎÄÍÎÇÎÍÍÎÉ
ÌÎÄÅËÈ ÕÀÁÁÀÐÄÀ

Þ.À. Èçþìîâ, Í.È. ×àùèí

Ð å ç þ ì å

Èññëåäîâàíà ìîäåëü Õàááàðäà â ïðåäñòàâëåíèè X-îïåðàòîðîâ
ìåòîäîì ïðîèçâîäÿùåãî ôóíêöèîíàëà è ðàññìîòðåíû äâà êîë-
ëåêòèâíûå âîçáóæäåíèÿ, ìàãíîíîâ è äóáëîíîâ, â áîçîíîâñêîì
ñåêòîðå ôóíêöèé Ãðèíà. Èõ óðàâíåíèÿ âêëþ÷àþò ôóíêöè-
îíàëüíûå ïðîèçâîäíûå ïî ñîîòâåòñòâóþùèì ôëóêòóàöèîííûì
ïîëÿì íîðìàëüíîé è àíîìàëüíîé ýëåêòðîííîé ôóíêöèè Ãðè-
íà. Ðåøåíèÿ êàæäîãî óðàâíåíèÿ ìîãóò áûòü ïðåäñòàâëåíû ñ
ïîìîùüþ ñîáñòâåííîé ýíåðãèè è òåðìèíàëüíîé ÷àñòè, êîòîðûå
ìîãóò áûòü âû÷èñëåíû ïóòåì èòåðàöèé ïî ýëåêòðîííûì ïðûæ-
êîâûì ìàòðè÷íûì ýëåìåíòàì. Ïîêàçàíî, ÷òî ãîëäñòîóíîâñêàÿ
ìîäà ñ âîëíîâûì âåêòîðîì Q = (�; : : : ; �) âîçíèêàåò ïðè ïîëî-
âèííîì çàïîëíåíèè. Âûðàæåíèÿ äëÿ ñïèíîâîé è ýëåêòðîííîé
âîñïðèèì÷èâîñòåé ïîëó÷åíû â ãèäðîäèíàìè÷åñêîì ïðèáëèæå-
íèè.
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