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The Hubbard model in the X-operators representation is studied
within the generating functional approach. In the boson sector,
Green’s functions of two collective excitations, magnons and
doublons, are investigated. The equations for them include terms
with functional derivatives with respect to the corresponding
fluctuating fields of the normal and anomalous components of the
electron Green’s function. The solution of each equation can be
presented through the self-energy and the terminal part which
can be calculated by iterations on the electron hopping matrix
element. It is shown that, at the half-filling, a Goldstone mode
with wave vector Q@ = (m, ..., m) appears. Expressions for spin and
dielectric susceptibility are obtained in the hydrodynamic regime.

1. Introduction

One of the methods in the many-body theory is the
Generating Functional Approach (GFA) applied at
first time to conventional Fermi-systems by Kadanoff
and Baym [1]. The generating functional Z[V] is a
generalization of a partition function for the system in
an external field fluctuating in space and time. Different
Green’s functions of the system can be presented as
functional derivatives over these fields of Z[V]. It allows
to derive formally closed equations for them in terms of
functional derivatives.

Recently in [2-10], we generalized the Kadanoff-
Baym approach for strongly correlated electron systems
and spin models. A detailed description of the method
is given in a book [10] and review [11]. Spin models (like
the Heisenberg model) and electron models with strong
correlation (like the Hubbard model, ¢J-model, and
periodic Anderson model) are described by operators not
commuted on a c-value, contrary to the canonical Fermi-
operators. The usual spin operators and X-operators
describing a correlated motion of electrons are such types
of operators.

Green’s functions (GFs) constructed on such
operators have a more complicated structure than the
standard GFs constructed on the canonical Fermi-
operators. The last ones are determined entirely by
the self-energy introduced by the Dyson equation. For

786

operators noncommuting on a c-value, GFs should be
determined by one more quantity — the terminal part.
At the first time, it was formulated by Bar’yakhtar,
Krivoruchko, and Yablonsky [12] while analyzing the
diagram technique for spin models. It turns out that
this peculiarity has a general character, and one-particle
GF G in general case should have a multiplicative
representation determined by two equations

G=GA, G l=G;l-x.

Here, the quantity G is the propagator part of the GF
G, the quantity X is the self-energy part, and A is
the terminal part. For the conventional Fermi-systems,
A=1.

GFA allows one to derive the equation for a GF with
functional derivatives and two separate equations for X
and A following from it. It is possible to solve these
equations by iterations. For strongly correlated models
expressed in terms of X-operators, such iterations
correspond to the perturbative theory near the atomic
limit.

In this paper, we developed such an approach for
the Hubbard model with the strong one-site Coulomb
interaction U. We study a structure of GF's in both the
fermion and boson sectors. In the last case, we deal with
GFs of magnons (collective motion of a spin deviation)
and doublons (the collective motion of a pair of electrons
on a site as a complex). We do not present the details
of calculations here, but we used the equations for
electron and boson GFs derived by us earlier to find out
the structure of GFs in the fermion and boson sectors
and to determine the Goldstone magnon and doublon
excitations.

2. Introduction of the Generating Functional

Let us consider the conventional Hubbard model for
nondegenerate states. In terms of the Fermi operators,
the model Hamiltonian is

H = Z tijCIang +U Z M), (1)
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where ci(,(c;fa) is the operator of annihilation (creation)
of an electron at the site i with spin o, n;,, = c;faci(,
is the electron number at the same site with a given
spin. Under the condition of strong on-site Coulomb
repulsion U > zt (where ¢ is the hopping matrix element
for the nearest neighbors and z is the coordination
number) it is useful to express Hamiltonian (1) in
terms of X-operators. The operator X7 for the site i
describes the transitions between four possible states
p = |0),|0),|7),|2) — without any electron, with one
electron possessing the spin projection o or —o = 7, and
a pair of electrons, respectively.

The X-operators can be represented through the
conventional Fermi-operators by means of the relations

XZ‘»T0 = c;[a(l — Niz), Xf" = Uc;f&nig, (2)
qua- = CIO_CZ'&, Xl20 = UCI&CIaa

oo __ 22 __
X7 =ni(1 —niz),  X;7 = nieniz,

XZQO = (]. — nw)(l — ni(—,).

Operators X7° and X727 describe the creation of a
correlated electron and are Fermi-like f-operators; X7
and X?° describe the flip of a spin at a site and
the creation of a pair; they are Bose-like b-operators,
respectively. The remaining X’s are called diagonal. We
note that there are the Hermitian-conjugate operators
(XPNt = X7, Sixteen X-operators comprise thus the
whole set forming the algebra with the corresponding
property of the product

XX = 05p X1 (3)

and the permutation relations of the anticommuting
type for the f-operators and the commuting one for
the b-operators. We note that the conventional Fermi
operators are expressed through the linear combinations
of X-operators of the f-type

=X 60X iy =X —0 X7 (4)
These relations express the motion of correlated
electrons in two Hubbard subbands.

It is convenient to introduce two-component spinors
for the f-operators:

B(io) = (U);?JZ) ’ (5)
o(io) = (X7°, 5X77).
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Then Hamiltonian (1) is represented as H = Ho + H1,
where

Ho = Z (Z e X7 + 52Xi22> , (6)

i o

Hi=2 Y W (i0)taas(if)¥as(j0)- (7)

ija’ 102
Here, we added the term (—p — aﬁ)nw to
- 2
10
Hamiltonian (1), where p is the chemical potential and

h is the external magnetic field. That is why a new
notation appears:

€ =—0=— W, €e3=U—2pu.

2

In the quadratic form (7), ¥,(ioc) represents the
component of the spinor ¥(ic), (@ = 1,2); in addition,
we have introduced the matrix

toalid) = 1903, 9= (1 1) ®)

Note that the index @ numerates the Hubbard subbands.
With the help of the rule of multiplication (3) for X-
operators, one can write the permutation relations of
the spinor f-operators:

[0 (io) @ P1(jo)], = 6iFY
(@ (io) ® &I'IT(j'ﬁ)]+ =0 X771 o, 9)
[@(io) @ ¥(j7)], = dijo X]*(ir¥)

where 7%, 7Y, 77 are the Pauli matrices, and F7 isa 2x2
matrix composed of X-operators:

o (XX4XP7 0
Fi - ( 0 X{’r& +Xi22 . (10)
The permutation relations between f- and b-

operators have a commutator character:
[W(ial), X;Tz&z] = (51'.]'(50102?(2'0_1) }

[W(ial),XfO]i :(Sijﬁ'lWT(iﬁ'l)Tz (11)
In other cases of permutations, the relations of type (9)
and (11) give zero.

Thus, an anticommutator of two W-operators is
expressed either through a diagonal or a b-operator, but
the commutator of ¥- and b-operators is naturally a ¥-
operator. Note the relations

(xroh = x, (12)
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X+ X7+ X7+ X2 =1 (13)
which complete the algebra of X-operators.

Let us write the equation of motion for an f-operator.
For the thermodynamical time 7 (- <7< 8, 8=
1/kT), we start from the Heisenberg equation

U(io) = —[¥(10),H]

which can be written in the case of Hamiltonian (6)—(7)
as

W(10y) = —E'W(107) — F{ (1) P (1'0y) —

— XT 2 ()W (1ay) + 58T ()i )itV X0, (14)
Here, a double-row matrix with respect to the spinor
index was introduced:

s _ (€0 0
By = <0 e +U > )
Here and in the following, the numerical indices
indicate the four-dimensional coordinates including the
site and the time 7, i.e. 1 = (i1, 71),...; a summation
over the primed indices is understood (it is a summation

over the sites 7 and an integration over the time 7). And
finally, the value

(15)

~

t() = 0(m — 1))t S = 1) (16)
has been introduced representing the matrix over the
spinor indices (the last circumstance has been specified
by the symbol ¢). )

Thus, the operator ¥ represents a linear combination
of f-operators, with the bosonic b-operators as the
coefficients, and the matrices E and # as well.

Following the method we have applied many times
to different quantum models [2-11], we introduce the
generating functional
ZIV] =Tr (e P1Te V) = V], (17)
where T is the symbol of the chronological product and
the trace is taken over the whole set of variables of the
system.

For Hamiltonian (6) — (7), it is convenient to choose
the operator V' in the form
V=0l X{P + o2 XP 4 of 7 X7 ol X7+
+ o2 X7 + o X2 (18)

It represents the linear combination of the whole
diagonal and b-operators with the single point fields v.
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Thus, differentiating the equation Z[V](or ®[V]) with
respect to the different v’s, we can express the different
GFs through the functional derivatives with respect to
the corresponding fields. For instance, for the single-
particle Bose-like GFs of magnons and doublons, we
have the expressions

> 5 5°d[V]
Doe = (TX0XI0\y, = —— " - 19
(12) ( 1 2 >V 6,05'0'6,05'0’ ( )
§20[V]
o2 = (TX02X20y, = 1 20
(12) ( 1 A2 W 61}?261)30 (20)

Here and further, the symbol {...)y = (...e~"), where
(...) means averaging over the Gibbs ensemble with
Hamiltonian #. Having been introduced in such a
way, the GFs are functionals of the fluctuating fields.
Directing these fields to zero after taking the functional
derivatives, we obtain the actual GFs describing our
system. The fermionic GF cannot be obtained by the
differentiation of Z[V](or ®[V]) with respect to the
single-point fields, and it is necessary to determine the
equation of motion for them.

3. Equations of Motion for Electron Green’s
Function

We see that the equation for the GF (TW%¥T)y contains
the anomalous GF (TW!¥T)y. Then, it is necessary to
write the equation for it as well.

Let us introduce the matrix GF:

L(12) =

(21)

The underlined numerical index 1 in the left part
represents the cumulative index containing the space-
time point 1, the spin oy, the spinor index a; and
one more index vy, accepting two values, specifying
the matrix elements (21), so that 1 = {10111 }. The
matrix £(12) is an 8 x 8 matrix with respect to the
collection of discrete indices. A matrix of such a rank
appears automatically in the Hubbard model. Its arising
is described not only by the states with Cooper’s pairs
but also with normal states because Eq. (14) for the
operator ¥ contains also the operator ¥'. The equation
for GFs in (21) has been derived earlier [8], and here we
only reproduce the final result.
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The set of four equations for the GFs in (21) can be
written as a single matrix equation:

Lot = (A9Y) - (AV)] (117)£('2) = (4®)(12). (22)

Here, we introduced the operator matrix

~

Al2) =

R . )
a1(o102) —0105, 0,077 5002
1

—Ul(sglaleyﬁ (11(020’1) ’
U1
where each element represents the 2 x 2 matrix with
respect to the spinor indices hidden in the Pauli matrices
and the matrix a; having the functional derivatives
with respect to the fluctuating fields as its elements. In
addition, Eq. (22) contains the matrices
0, 0
6’1}?0 + (51)(170 0

0 )

oo
ovy

d(o'l,O'Q) = _60'1,0'2 6 -

v
ov;

_|_

ZL (24)

—65— T =
102 g101”
ovy

_ t(12) 0
Y(z)= ( 0 —f(12)> '

The value Lg‘} represents the double-row matrix

Loy(12) =

(25)

—1 02
o < GOV(101,202) 0'160-1026127'95111 )
- -~ )

20 -1
—0’1(5510—26127'm’l)1 GOV(101,202)

where Gg‘} is given by the expression

0

Ga‘}(la'l,QO'Q) = — |:<6_7' + Ef1>60'10'2+
1

b -

and é’g‘} by its transposition. Here, we use the 2 x 2
matrix

00 oo
—vi” + v 0
Wy = < ! ! 22 > -

0 v —of’ (28)
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Equation (22) is of the same type as the equation for
a single-particle GF that we derived for the Hubbard
model in the limit U = oo and for the Heisenberg
model as well [2-6,9]. In the above models, the matrix A
degenerates into a scalar, but now it is a matrix with
respect to the discrete indices o and v, likewise the
other values in (22). The physical sense of this equation
is compatible with that of equations derived in [13].
By virtue of the noted similarity of Eq. (22) with the
respective equations of the models considered before, we
could expect the same structure in the solutions of these
equations, in particular the multiplicative character of
electron GFs. Let us represent them as a product of
the propagator L and the terminal II part, respectively,
namely:

L(12) = L(21)I(1'2) (29)
The propagator part satisfies the Dyson equation
L7 (12) = Loy (12) — B(12) (30)

Thus, the electron GF of the model is characterized by
two quantities: the self-energy ¥ and the terminal part
II. From Eq. (22), one can derive two equations for
¥ and II [10,11]. The iteration of these equations on
powers of the hopping matrix element generates a series
of perturbation theory near the atomic limit [10,11].

One comment should be done as for Eq. (22) with
functional derivatives. In this equation, the normal
components of the matrix GF (21) are coupled with
perturbation anomalous ones. However, the last ones
stand only under functional derivatives with respect to
the fields v and v?°. In the normal phase, anomalous
FGs equal zero, but the derivatives do not vanish. That
is why we deal with the total matrix GF with anomalous
components even for the normal phase.

4. Boson Green’s Functions

The complete system of 16 X operators contains two
Bose-like operators X7 and X92 (and their conjugates
X77 and X?°) which determine two Bose-like GFs (19)
and (20).

They describe the propagation of a spin-flip
(magnon) and a dyad (doublon) representing two
types of Bose-like collective modes. These GFs can be
represented as the variational derivatives of ® with
respect to the fluctuating fields, see Eq. (19) and Eq.
(20).
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To write the equations of motion for the GFs D7?
and D2, we need the equations of motion for the Bose-
like operators:

K77 = ~(es = e0) X7 = 0}, (10) 3 t(11) T (15)+

+0! (1)t (1) S s W (15), (31)
XP? = —(U - 2u) X%+
+0' (T°W) o (16") S prt (1) s (10"). (32)

We see that, on the right hand sides of these relations,
U-operators are present; therefore in the corresponding
equations of motions for the magnon and doublon GFs,
the T-mixed product of f- and b-operators will appear.
They can be represented as the variational derivative
of the electron GF with respect to the fluctuating field
v in the first case and v°? in the second. One of the
important features of the doublon GF is that it includes
the "anomalous"electron GF composed of the operators
¥ (10) and ¥(25), whereas the equation for the magnon
GF should include the normal electron GF composed
of the operators ¥(10) and ¥!(25). These anomalous
GF's by themselves are equal to zero when the fields are
absent. However, their derivatives with respect to the
fields v?? and v°2 are not equal to zero and determine
the contribution in the equation of motion caused by
the interactions of the electron and boson degrees of
freedom.

By the method developed in [2—8], we come to the
equation for the magnon GF

(Kgv) " (1)D77(1'2) = (n] — n{)d12+

+ tr(S[L)(15,10) — (L£'1) (15 10)]),

_ 33
where £1! is a matrix element of the electron GF (21)
(normal component). Here,

_ 0 -
(K{)’{})’l(lz) = — (8_7-1 +oh+v7% — Uf") 012 (34)

is a spin GF of the zero approximation in the fluctuating
fields.

It follows from definition (19) that the magnon GF
has a symmetry:

D77 (12) =D (21), D7 (q) =D’ (—q). (35)
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The solution of the obtained equation can be written as

n’ — n& + fPa&(q)
iwn, —oh — M?7(q)’

D77 (q) = (36)
where the self-energy M?? and the terminal part P7°
obey the symmetry relations

M7 (q) = =M (=q), P7(q) =-P7(-q).  (37)
We see that the crucial term in Eq. (33) for the magnon
GF contains a term which is a derivative of the normal
component of the electron GF. By iteration of the
equation for it to the second order in the hopping, we
get the self-energy of the magnon GF as

M7 () = 5 3 [2(k) — ek — q)] x

k

<3 (106 W) - 67 ) ]+
ap

+e(k — @) [G7(R)TT] 5> Goa (b —a)+
o' B!

+e)[G7 (1], D G 0)).

D(’B’

(38)

Here, G° = £'' and G7 is the propagator part, 7 =
7% +i7Y; and e(k) is the Fourier transform of the hopping
matrix element ¢;;. A similar equation can be obtained
for the terminal part P77 (q) [8]. Finally, we present the
self-energy part in the mean field approximation for the

electron GF G7 as

toN > lelk) —e(k — )] D ()" Co7 (ky k — q)x

k viL

SED (K] — FIE] (R)]

oo + B2 () — 7 (k) (39)
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Here, EJ(k) is the quasiparticle energy, the index
v = 1,2 numerates two Hubbard subbands, f[E] is
the Fermi-function, and C77 are some dimensionless
coefficients [§].

For the doublon GF (20), we can derive the equation

18]

(K32) ™

(11D (172) = (1 — ny1)612—

12 ~
-0’ 61;%0Tr [S(tL7) (10',16")], (40)
where K% is a propagator in the zero approximation
but with the corresponding fluctuating fields:

- (12) = - (i +U - 2H+U%2 — U?()) 612.

(1%%) N

(41)
A solution of Eq. (40) is sought in the form where
the self-energy M°2 and the terminal part P°2 can be
obtained by iterations of the GF, similarly to the case of
the magnon GF.

(1—n) +P"(q)
iwn — (U = 2p) = M™(q)’

D*(q) = (42)

In the same way, we can calculate the conjugated
doublon GF D). It is possible to represent the result
of computations in the form

~(1-n) + P*(q)
i + (U = 2) = M(g)’

D*(q) = (43)

where the values P?°(q) and M?°(q) are connected with
P22 (q) and M°%(q) by the relations

P?(q) = =P%(~q), M>(g) = -M"(—q). (44)
Thus, we see that the condition of symmetry
D*(q) = D*(~q) (45)

is fulfilled, or D39 = DY? in the coordinate space, which
follows directly from the definition of a doublon GF.
In the mean field approximation for the electron GF,
we can obtain the doublon self-energy up to the second
order in the hopping:

M (q) = MP(q) + MP*(q),

2y Uxek)+elk—q)
M?(Q)——gzwx

ko

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 8

x|t 000 - 1z 0, (46)
MP() = 5 S et — g L)
ko
x Y Cr, (k. k — q)x
1 F[EI)] - BTk~ q) )

iwn — E7 (k) — EZ (k — q)

Here, C}, is some dimensionless coefficients, and
2Q° (k) = B3 (k) — E (k).

Let us now compare the equations of motion and
their solutions for the magnon and doublon GFs. Eq.
(36) and Eq. (42) have a common structure, and the
interaction of the corresponding boson modes with
the electron system is described by a term with the
functional derivative with respect to the corresponding
fields of the electron GF. For magnons, such a field is
v?7 coupled with the operator X7 of a spin deviation at
the site; for doublons, it is the field v2° coupled with the
operator X2 creating an electron pair at an unoccupied
site. In the first or second case, the equation includes,
respectively, the normal component £'' of the electron
GF or the anomalous one £'2,

Solutions (36) for magnons and (42) for doublons
express the fact that the boson GFs as well as electron
ones have the self-energy and the terminal part which
can be calculated by iterations on the electron hopping.
In the zero approximation, the nominator of the magnon
GF is just equal to magnetization, while that of the
doublon GF is equal to a deviation from the half-filling
(n =1). In the denominators of both GFs, the quantity
oh or U —2u stands which vanishes in the paramagnetic
phase in the case of magnons and at the half-filling,
whereas U — 2u = 0 in the case of doublons.

Now we return to expressions (38) and (46)—(47) for
the self-energy of magnons and doublons. It is explicitly
seen that M?%(q) vanishes when ¢ = 0 and M°(q)
vanishes when ¢ = Q = (m,...,m). Thus, similarly to
the fact that a magnon with the momentum q =0 is a
Goldstone mode, a doublon is a Goldstone mode as well,
only with the momentum q = Q. Moreover, similarly
to the fact that a magnetic field creates a gap h in
the magnon spectrum, a deviation from the half-filling
produces a gap U — 2u in the doublon spectrum. When
a Goldstone mode is condensed, a homogeneous ordered
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phase (ferromagnetic) or two-subband (dielectric) phase
can appear.

We see that the half-filling (n = 1) for doublons is a
peculiar point, and strong dielectric fluctuations should
exist in a vicinity of the wave vector Q. We will study
them now in the hydrodynamic regime.

5. Dynamical Fluctuations in the
Hydrodynamic Regime

It is well known that collective modes in a disordered
(symmetric) phase in the hydrodynamic regime are ruled
by the conservation laws [14]. Thus, the spin GF D77
should be determined by the total spin conservation
law, while the pseudospin GF D2 is determined by

the pseudospin conservation law [16-18]. The three
pseudospin components
+ Q-R: .t .t
P = Zel CirCiy>
Ze iQ Cchll)
. 1
=Y 5 (i —1) (48)

with Q@ = (w7 ...) obey the permutation relations
[P+, H] = (20— U)P*

[P~ H] = —(2u— U)P

[P, H] =0, (49)

from which it is clear that, at the half-filling (n = 1),
all pseudospin components are conserved. This leads
to the diffusion form of the pseudospin (doublon)
susceptibility, which is the retarded doublon GF
x%?(q,w). According to the Kubo—Mori theory, this
susceptlblhty is expressed through the memory function
M"2(q,w) by the relation

M"™(q,w)

= M%(q.w)’
i
Xq

(50)

X (g, w) = (X*| X7 Vg

where We introduce the notation for static susceptibility:

X' = x"(q,0).
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On the other hand, the memory function is expressed
through the irreducible retarded GF of pseudospin
currents (see [19]):

ge’ Z%

M02 q’

+oo - = .
y / d_o.;’ Im((zX?2|—zX]20))zJ’",’”-

T w'(w —w' + i) (51)

— 00

Here, X?? means the real time derivative of the operator
X902

X02 [X02 H] —

= (U = 2u) X2 — o' (7°0) o (i5") (1) o (i0”).
Further, we consider the half-filling case where U —

2p = 0. Then

(52)

(X0 0)[-i X2 0)) " =

= (7" W) o (i0, ) (1) o (i0”, 1) | x

X (T ) g (jo' Y @H )5 (G5 )T -
—((7"®) o (i0", t) (W) o (i0”, 1) | %

x(H ) (jo") (1) (o))
Now we use the approximation of interacting modes well
known in the relaxation theory [17, 18]: the two-particle
electron correlations in expression (53) are decomposed
into pair correlators and then expressed through the
imaginary parts of retarded electron GFs. As a result,
we come to the following expression determining the
memory function:

(53)

M»(q,w _22 ) +e(k — q)] X
flwr —w') = flwr)
/dw /d w'(w —w' +1id) %

(3677 3) (k,w1)]).
(54)

xtr( [Img(’I (g —k,w' —wi)][Im
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Here, GT7 is the transposed matrix G°. The quantity
G (k,w) is the retarded electron GF. It can be obtained
from the Matsubara GFs by analytical continuation
from discrete imaginary frequencies into real ones:
Wwp — w +19.

Expression (54) is similar to those obtained in the
interacting modes approximation for other dynamical
susceptibilities. For example, the spin susceptibility is

M7 (q,w)

MU& :
A )
Xq

X7 (g, w) = (X77|XT Ngw = - (55)

By a similar decoupling of the irreducible GFs of the
currents, we obtain

M7 (q,w —42 ) —e(k — q)] X

flw)

/d” /d wl_wo)J +i9)

xtr([ImG” (k — g, w1 — w')] [Im(IG7 ) (k,w)]).

(56)

It is remarkable that the memory GF for the spin
susceptibility vanishes at ¢ = 0, while it vanishes at

= @ for the doublon susceptibility. This difference
originates from the total spin conservation law (Fourier
component of the spin density at ¢ = 0), while
the component of the pseudospin density is conserved
at ¢ = Q and only for the half-filling. There is
another important difference in expressions (54) and
(56). Arguments of the electron GFs appear in a different
way in these expressions. This reflects the fact that the
spin collective mode is formed through excitations of a
particle and a hole, while the pseudospin collective mode
(doublon) is formed through excitations of two particles
(or two holes).

Consider now the hydrodynamic limit corresponding
to small frequencies w, a small wave point p = Q — q
(for expression (54)), and small g (for expression (56)).
In the hydrodynamic limit, w < vp and w < vq, where v
is a characteristic electron velocity on the Fermi surface.

Under these conditions, Egs. (54) and (56) yield the
asymptotic expressions

ImM®(gq,w) = —D*?p?, ReM®(q,w) =0, (57)
ImMJ&(‘Lw) =-D"7 2) ReMJ&(Q:w) =0, (58)
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where the coefficients of the spin and pseudospin
stiffnesses are equal to

_27rz /dw1f(w1)

xtr([ImG” (—k, —w1)] [Im(SGT7' 3) (k,w1)]), (59)
DJ& =4r e)Q/dwlf'(wl)x
xtr([ImG? (k,w1)] [Im(SG7 Q) (k, w1)]). (60)

Here, e is the unit wave vector, and f'(w) is the
derivative of the Fermi-function.

Expression (60) is valid at arbitrary U; in the case of
U > W, it is consistent with the result for the ¢.J-model
[15].

Notice that if we use the electron GF in the
mean field approximation (without attenuation of
quasiparticles), both expressions (59) and (60) vanish. It
is easy to show that if the attenuation of quasiparticles
~ obeys the condition 7 > vq, both expressions become
finite. In the general case, expressions (54) and (56) for
the memory function give correct asymptotic values in
the hydrodynamical limit. Therefore, the susceptibilities
have the diffusion form

__ D¢
w? + (§q2)2’

where D = D/xq.

1
;Imx(q, W) = Xq (61)

6. Conclusions

We have applied the GFA to investigate the Hubbard
model in the X-operator representation. This means
that we discussed the case of sufficiently strong electron
correlations U > W. We have derived the exact
equation for the electron GF in terms of the functional
derivatives with respect to the fluctuating fields v‘”’,
v7%, 20 coupled with the spin and charge densities. The
electron GFs represent generally an 8 x 8 matrix with
respect to three discrete indices o, a, v. In the matrix
representation, the equation has the same structure with
the GF for the Hubbard model in the limit U — oo, for
the t.J- and sd-models, and for the GF's of the transverse
spin components in the Heisenberg model as well.

The electron GF G has a multiplicative character
in the sense that it is expressed by a product of two
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quantities, G = GA, where G is the propagator satisfying
the Dyson equation with the self-energy ¥, and A is
the terminal part. Their iteration generates a power
series in the parameter W/U. This corresponds to the
perturbation theory close to the atomic limit.

Taking the electron GF in the mean field
approximation, we derived an equation for the doublon
GF. The properties of the poles of the doublon GF
depends substantially on the electron concentration n.
Forn < 1, there is a pole which has a real part U—2u > 0
corresponding to the activated mode with the quadratic
dispersion law. Forn — 1, U —2u — 0. The investigation
of the special case n = 1 reveals that a soft mode with
Q = (m,...,m) may exist. However it is known that
the paramagnetic phase of the Hubbard model has an
instability to the antiferromagnetic ordering. This means
that two possible instabilities — doublon and magnon
ones — should compete, and a final result concurring
a type of ordering at the half-filling demands further
investigations.
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CTPYKTYPA ®EPMIOHHHUX I BOBOHHUX 3BY/IYKEHD
B OTHO3OHHIIT MOJIEJI XABBAPIA

10.A. Iztomos, H.I. Yawun
Peswowme

Jocaimkeno monenb Xabbapga y mnpejcrasieHHi X-oneparopis
METOJIOM TeHepYIUYOro (YHKIIOHAJIA i BUBYEHO ABA KOJEKTUBHI
30yJ2KeHHsI, MArHOHIB Ta gyOsoHIB, y 6030HOBOMY CeKTODi DyHK-
miit Ipina. Ix piBHsaHHSA MicTATH GdYHKITIOHATBHI MOXigHI O Bigmo-
BigHuX GuyKTyanifHUX mOMSX HOPMAJIHHOI Ta AHOMAJBHOI €JIeKT-
pouHol dyukIil I'pina. Po3B’a30K KOKHOrO piBHAHHA MOXKe OyTH
3aIMCAHUN Yepe3 BIACHY eHepriio i TepMiHAJbHY YaCTHHY, SKi MO-
KyThb OyTn obumcaeH] muIsaxoM ireparfiif 3a eJIeKTPOHHUMHA CTPHUO-
KOBHMHU MATPUIHUMU ejeMeHTaMu. [I0Ka3aHo, IO roIACTOYHIBCh-
Ka MOJA 3 XBHJIOBUM BeKTOpOM @ = (m,...,7) BuHEKAE B pasi
[MOJIOBUHHOTO 3alOBHEHHsI. BUpa3w Jjid CHiHOBOI Ta €JIeKTPOHHOL
COpUHHATINBOCTEH OTPUMAHO ¥y TigPOAUHAMIYHOMY HAOJIHKEHHI.

CTPYKTYPA ®EPMUOHHBIX 1 BOSOHHBIX
BO3BYYK/JIEHUI B OJJTHO30HHOI
MOJIEJIA XABBAPJIA

10.A. Hszrwomos, H.U. awun
Peszmowme

UccnenoBana momens Xabbapaa B mpeacTaBieHun X -OlMepaTopoB
MEeTOZOM IPOU3BOAANIErO (PYHKI[MOHATIA U PACCMOTPEHBL Ba KOJI-
JIEKTUBHBIE BO30YKJEHUs, MArHOHOB U 1yOJI0HOB, B GHO30HOBCKOM
cektope dyuknuit 'puna. VIx ypaBHeHHs BKIIOYAIOT (DYHKIH-
OHAJIbHBIE NIPOU3BOJHBIE II0 COOTBETCTBYOMUM (DIYKTYAIHTOHHBIM
MOJSIM HOPMAJIbHOM M AHOMAJIBHOM 371eKTpOoHHON dyHKIuu ['pu-
Ha. Pemenunsi Ka)k70ro ypaBHEHHS MOTYT OBITH IIPEICTABIIEHBL C
MIOMOIIBIO COOCTBEHHON HEPTUU U TePMUHAJIbHOM 9aCTH, KOTOPBIE
MOTYyT 6LITB BBIYUCJIEHBI IIyTEeM I/ITepaHI/Iﬁ 10 JIEKTPOHHBIM IIPDBIZK-
KOBBIM MaTPHUYHBIM 3jeMeHTaM. [[0Ka3aHO, YTO IOJIICTOYHOBCKA
MO C BOJIHOBBIM BEKTOpOM Q = (7, ...,7) BO3HHKAET IIPU IIOJIO-
BHHHOM 3aII0JTHEHUU. BbIpakeHus s CIUHOBOI UM 37I€KTPOHHOMK
BOCHpI/II/IM‘{I/IBOCTeﬁ TOJIYY€HbI B THAPOJAHAMUAICCKOM HpI/I6.T[I/I)Ke—
HUMHU.
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