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The unusual magnetic properties and a recently discovered giant

magnetically induced deformation of Ni�Mn�Ga shape-memory

alloys have been considered. A magnetostrictive mechanism of

the magnetic and magnetomechanical effects observed in Ni�

Mn�Ga alloys has been substantiated, and a consistent theory of

these effects has been developed starting from the fundamental

conception of magnetoelasticity and commonly known principles of

the theory of ferromagnetism. A quantitative agreement between

the theoretical and experimental results has been achieved, and

a complete adequacy of the developed theory has been proved in

this way. A correspondence of the magnetostrictive mechanism

to the crystallographic features of a giant magnetically induced

deformation and the basic relationships of thermodynamics of

solids has been discussed.

1. Introduction

The present paper is devoted to the application of

the consistent theory of magnetoelasticity developed

by Bar'yakhtar et al. [1�5] to ferromagnetic Ni�Mn�

Ga alloys. It will be shown below that these alloys

belong to the family of various magnetic solids whose

properties are not only dependent but also originated

and strictly controlled by magnetoelastic interaction (for

more examples of this kind, see [6]).

Ferromagnetic Ni�Mn�Ga shape-memory alloys are

intensively studied now due to the recent observation of

the record-breaking magnetically induced deformation

" � 5%, which exceeds the deformation of industrial

magnetostrictive materials by two orders of magnitude

[7�9]. A considerable deformation of a Ni�Mn�Ga

single crystal under the action of an applied magnetic

field is known as the magnetostrain effect (MSE) or

magnetic shape memory (MSM). The first observation

of MSE [10] initiated an avalanche-like increase of the

number of papers dealing with the Ni�Mn�Ga alloys

and the formulation of a few different theoretical models

of giant magnetically induced deformation (see [11] and

references therein).

The MSE essentially is a transformation of the

microstructure of an alloy specimen in an increasing

magnetic field. The microstructure arises on the

cooling of Ni�Mn�Ga alloys as a result of the first-

order phase transition from the high-temperature cubic

(austenitic) phase to the low-temperature tetragonal

(martensitic) one. This phase transition is commonly

known as the martensitic transformation (MT) of

a crystal lattice. In accordance with the existing

experimental data, the microstructure of specimens

exhibiting MSE can be modeled by the alternating

domains (variants) of a tetragonal crystal lattice which

form the quasiperiodic sequence of crystallographic twins

(Fig. 1). Let the axes of coordinate frame be aligned

with h100i crystallographic directions and the magnetic

field be applied in the y direction. The field application

breaks the equivalency of twin components, initiates

the growth of the volume fraction of the y-variant of

martensite, and, hence, induces a deformation of the

alloy specimen. An absolute value of the appropriate

strain tensor component may be estimated as " � (1 �
c=a)=2. Moreover, the magnetic field application to the

specimen, which was preliminary brought to the one-

variant state, results in its twinning and subsequent

detwinning. In this case, the observed deformation may

be close to the theoretical limit 1� c=a.

In this paper, a magnetoelastic theory of MSE will

be substantiated and its quantitative agreement with the

existing experimental data will be demonstrated. It will

be argued that the models of MSE, which disregard the

basic principles of magnetoelasticity formulated in the

fundamental monograph by Bar'yakhtar et al. [3], are

incompatible with the fundamental principles of linear

elasticity of solids and/or internally contradictory.

2. Magnetoelastic Model of Magnetostrain

Effect

2.1. Preliminary considerations

A large value of the magnetostriction constant � � 1:3�
10�4 was reported, and the reversible magnetostrictive

deformation "(me) � �0:01% was observed for the cubic

(austenitic) phase of Ni�Mn�Ga alloy in the saturating

magnetic field [10]. On the other hand, the compressive
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Fig. 1. Schematic representation of a twinned ferromagnetic single

crystal

axial stress � � 2 MPa applied to the single-variant

martensitic state along one of the h100i crystallographic
directions is sufficient for the accomplishment of the

twinning-detwinning cycle [12]. The abnormally low

values of the shear elastic modulus C 0 < 10 GPa

reported for the number of Ni�Mn�Ga alloys [13] result

in the following estimation of the elastic strain needed for

the accomplishment of the twinning-detwinning process:

"(f) = �=2C 0 > �10�4 = �0:01%. The estimated value

is equal to the magnetostrictive deformation of the cubic

phase.

It may be assumed for the estimations that the

magnetostriction of the tetragonal phase is close in

value to the magnetostriction of the cubic one. In this

case, a magnetostrictive deformation of the twinned

crystal lattice exceeds the value needed for the start

of the twining-detwinning process when the increasing

magnetic field exceeds some critical value. In other

words, the magnetostrictive deformation triggers the

twinning-detwinning process. So, the magnetoelastic

interaction is the physical origin of the magnetostrain

effect observed in Ni�Mn�Ga alloys [14 � 17].

This statement was verified by the qualitative and

quantitative comparison of the theoretical results with

experimental data [12, 17 � 19].

It can be argued, further, that the magnetoelastic

model of MSE is compatible with the fundamental

crystallographic conceptions of martensitic transformation

[20]. According to these conceptions, a spatial

orientation of twin boundaries can be definitely

calculated from the values of lattice parameters, and the

small changes in these values result in the appreciable

reorientation of the boundaries.

The magnetoelastic model is compatible with the

microscopic mechanism of MSE (see, e.g., [21]). This

statement can be explained using Fig. 1: a magnetic field

applied in the y direction rotates the magnetic moment

of the x-variant and deforms this variant while a

rotation of the magnetic moment and a magnetostrictive

deformation of the y-variant is absent; in this case,

the resultant lattice misfit between points A and B is

estimated as �(AB) � "(me)(AB) � 10�4(AB). Thus,

the lattice misfit exceeds the lattice parameter a when

AB > 104a � 5 �m. According to the microscopic model

of MSE, the ends of twin boundaries are pinned at the

cores of twinning dislocations, and the distance between

the centers of pinning may be substantially larger than

5 �m. The dimensions of cores are of the order of lattice

parameter, and therefore, the estimated lattice misfit is

sufficient for the rearrangement of twinning dislocations

and the initiation of the detwinning process.

2.2. Model formulation

The cubic-tetragonal martensitic transformation is

characterized by the diagonal components of the strain

tensor "ii, and the nondiagonal components may be

disregarded. According to the commonly recognized

theory of magnetoelasticity [3], the free energy F of

the cubic ferromagnetic phase is the sum of the elastic,

magnetic, and magnetoelastic energies denoted as Fe,

Fm, and Fme, respectively. Thus,

F ("ii;M;H) = Fe("ii) + Fm(M;H) + Fme("ii;M); (1)

where M is the magnetization vector and H is a

magnetic field applied to a specimen. The expression for

the elastic energy is

Fe = 3(C11 + 2C12)u
2
1=2 + C 0(u22 + u23)=6; (2)

where C11, C12 and C 0 = (C11 � C12)=2 are elastic

moduli,

u1 = ("xx + "yy + "zz)=3; u2 =
p
3("xx � "yy);

u3 = 2"zz � "yy � "xx: (3)

The magnetic energy is expressed as [17]

Fm = Jy2=2 +M2(m �D �m)=2�mHM; (4)

where the first, second, and third terms are the

exchange, magnetostatic, and Zeeman energies,

respectively, J is the spin exchange parameter, the

dimensionless variables y = M(T )=M(0) and m =

M(T )=M(T ) characterize the absolute value and

direction of the magnetization vector, respectively. The

expression for the magnetoelastic energy has the form

[22,23]

Fme = �Æ0y2u1 � Æ1[
p
3(m2

x �m2
y)u2+

+(2m2
z �m2

y �m2
x)u3]; (5)
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where Æ0 and Æ1 are the magnetoelastic energy

parameters characterizing the isotropic and anisotropic

parts of the spin-lattice interaction. The energy terms of

the fourth order in the magnetic vector and of the second

order in strain tensor components are comparatively

small and therefore are omitted in Eqs. (4) and (5).

The cubic-tetragonal transformation of a Ni2MnGa

single crystal results in a spontaneous deformation of the

cubic lattice, which is characterized by strains uM2;3 �
c=a � 1 � �0:05. Let a deformation of the stressed

tetragonal lattice be counted off the spontaneous value,

i.e. u� ! uM� + u�, � = 1; 2; 3. In view of the rather

small values of spontaneous strains, Eq. (2) for the

elastic energy is approximately valid for a tetragonal

lattice, i.e. F
(t)
e � const + Fe as long as uM� values

are constant. The magnetic energy is independent from

strains, and therefore F
(t)
m = Fm. Finally, using the

condition m2 = 1, the magnetoelastic energy of the j-

variant of the tetragonal phase can be expressed as [22]

F (t)
me = �Æ0(�V=V )y2=3�Kum

2
j + Fme; (6)

where �V=V is the rational change of the volume of

a specimen, the magnetic anisotropy constant Ku =

6Æ1(c � a)=a is positive for Ni�Mn�Ga alloys with

c < a, because the fourfold symmetry axis is parallel

to the direction of easy magnetization. Hence, the

magnetoelastic parameter Æ1 is negative. Rigorously

speaking, the tetragonal phase is characterized by two

magnetoelastic parameters, but the difference in these

parameters is of the order of Æ1(1� c=a) << Æ1:

According to the fundamental principle of

thermodynamics of solids, the equilibrium values of

elastic strains correspond to a minimum of the Gibbs

potential

G = F � (�1u1 + �2u2 + �3u3)=6; (7)

where

�1 = (�xx + �yy + �zz)=3; �2 =
p
3(�xx � �yy);

�3 = 2�zz � �yy � �xx:
(8)

Hence, the equilibrium values of strain tensor

components satisfy the conditions

@ G=@u� = 0: (9)

Conditions (9) result in the Hooke's law establishing

a direct proportionality between strains and stresses. It

means that every stressed state of solid is elastically

deformed and every elastically deformed state is stressed.

In particular, for � = 2, Eq. (9) results in the

relationship

u2 =
�
�
(me)
2 + �2

�
=2C 0; (10)

where C 0 = (C11 � C12)=2 is the shear modulus and

�
(me)
2 = 6

p
3Æ1(m

2
x �m2

y) (11)

must be interpreted as a magnetomechanical stress

which is linearly related to a magnetostrictive

deformation u
(me)
2 = �

(me)
2 =2C 0.

It should be clearly emphasized now that the

magnetic anisotropy energy Kum
2
j and Zeeman energy

mHM cannot be the sources of a magnetomechanical

stress, because both energies are not the explicit

functions of strains and their partial derivatives with

respect to u� are equal to zero. This means that

these energies do not contribute to Eq. (9) and

Hooke's law (10). Therefore, all theoretical models,

which disregard magnetostrictive strains and derive a

magnetomechanical stress from the anisotropy energy

or Zeeman energy, are incompatible with the minimum

principle for the Gibbs potential and the Hooke's law.

2.3. Model results

2.3.1. Effects of the isotropic spin-lattice interaction

The isotropic part of the spin-lattice interaction

expresses itself in an appreciable shift of the Curie

temperature under the action of hydrostatic pressure;

the experimental value of the shift results in the

estimation (dTC=dP ) = 8 K=GPa. The shift is caused

by the magnetoelastic renormalization of the spin

exchange parameter J(T ) ! J�(T ) � 2Æ0(�V=V )=3

(see Eqs. (4) and (6)). The volume change accompanies

not only the compression, but also the martensitic

transformation (MT) of the alloy. Due to this, the

exchange parameter jumps when the temperature

of a cooled/heated specimen reaches the martensitic

transformation temperature TM . This jump results in

the jump of a magnetization in the saturating magnetic

field. The magnetoelastic model involves the orthodox

temperature dependence of the exchange parameter

J(T ) = �(T �TCA)=TCA and standard equations for the

magnetization in the austenitic and martensitic phases

y(T ) = tanh [(TCA=T )y(T )];

y(T ) = tanh [(TCM=T )y(T )]: (12)

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 8 765



V.A. L'VOV

Fig. 2. Experimental (circles) and theoretical (solid line)

temperature dependences of the saturation magnetization obtained

for Ni�Mn�Ga alloy with c=a = 0:94, TC = 375 K, and TM = 285

K (the dotted and dashed lines show the magnetization curves

computed for the labile phases)

For the alloys with c < a, the ferromagnetic ordering

temperature exceeds the MT temperature, and therefore,

TCA is the Curie temperature which can be determined

in experimental way. The temperature

TCM = TCA[1 + 2(Æ0=�)(�V=V )3] (13)

is a characteristic parameter which prescribes the

temperature dependence of a magnetization below the

MT temperature.

The experimental value dTCA=dP (see above) and

the relationship � = nkBTCA (n is the number of

magnetic atoms in the unit volume) result in the

estimations � � 0:1 GPa and Æ0 � �0:4 GPa. Moreover,

the value �V=V = �3 � 10�2 can be accepted [24]. In

this case, TCM � TCA + 30 K.

The theoretical temperature dependence of the

magnetization computed from Eqs. (12),(13) is

presented in Fig. 2 (upper branch) together with

experimental values measured in the saturating

magnetic field. The computations were carried out

with account of a statistical spread of �local� Curie

temperatures in the spatially inhomogeneous martensitic

state (for more details, see [24]). Figure 2 demonstrates

an excellent agreement between the model results and

experimental data.

2.3.2. Effects of the anisotropic spin-lattice interaction

An abrupt drop of the magnetization measured in the

external magnetic field of about 1 kOe accompanies the

martensitic transformation in Ni2MnGa alloy [25] (see

the lower branch in Fig. 2). The magnetoelastic model

relates this effect to the first term in energy (6) and

explains as follows: i) the martensitic transformation

results in a tetragonal deformation of the cubic crystal

lattice and the appearance of an internal anisotropy

field HA = 6ÆM(c � a)=a � 10 kOe [22,24] (the

dimensionless magnetoelastic constant Æ = Æ1=M
2 �

�23 is introduced here for the sake of convenience); ii)

for the x- and z�variants of martensite, the anisotropy

field is transversally directed to the external field Hy,

and the magnetic moments of these variants are almost

perpendicular to the magnetic vector of the y-variant if

H � HA; iii) the magnetic anisotropy of the cubic phase

is small, and, therefore, the direction of the magnetic

vector of a whole specimen is close to the direction of an

external field, and the magnetization is approximately 3

times larger than that of the tetragonal phase.

If the experimental specimen is not magnetically

saturated, the model expression for the magnetization

is

M(H;T ) =M0y(T; s)[(1=3)(H=HD)+(2=3)(H=HS)];(14)

where HD � 1 kOe is the demagnetization field and

HS � HA = 10 kOe is the field of magnetic saturation

(for more details, see [17,22,24]). The theoretical

dependence M(T ) computed from Eq. (14) for H =

0:82 kOe agrees with the experimental one (see Fig. 2).

The magnetoelastic model relates a giant field-

induced deformation of Ni�Mn�Ga alloy to the field-

induced stress defined as the difference �
(me)
2 (H) �

�
(me)
2 (0). As it was proved in [12], the application of a

field H jjy to the martensitic structure depicted in Fig. 1

is physically equivalent to an axial compression in the y

direction when the compressive stress is equal to

�(eq)yy (H) =
h
�
(me)
2 (H)� �

(me)
2 (0)

i
=2
p
3: (15)

The equivalent stress may be computed from

Eqs. (4), (6), (11), and (15). Equations (4) and (6)

result in the linear dependence mx(H) = H=HS, where

HS = (2Ku=M) + (Dyy � Dxx)M , and the theoretical

field dependence of the stress is quadratic. The quadratic

dependence which was computed for M(HS) = 0:59T

and �0HS = 5T is presented in Fig. 3. In the field

range �0HS < 3T, this dependence agrees with the

experimental equivalent stress determined from the

stress�strain loops taken in an external magnetic field

(details of the experimental procedure are described in

[12]).

However, the experimental dependences Mx(H)

show that the function mx(H) is not linear as a rule
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Fig. 3. Equivalent stress found from the experimental stress-strain

loops [12] (open circles), Eq. (15) and linear field dependence

of magnetization (solid line), Eq. (15) and experimental

magnetization curves [26] (triangles). The magnetization curves

measured in the increasing field (the right branches of the loops

presented in the inset) were used for computation

(see the inset in Fig. 3). To account this fact,

the equivalent stresses were computed also from the

experimental magnetization curves (measured in [26])

on the assumption that mx(H) = Mx(H)=Mx(HS).

The magnetization branches obtained in the increasing

field were used in computations. The resultant field

dependences of the equivalent stress reasonably agree

with experimental values (see Fig. 3) despite the fact

that the measurements of stress and magnetization

were carried out for different alloys, and hence, the

comparison has the illustrative (nonrigorous) character.

When the model function of the equivalent stress

fitted to experimental values is known, a sufficiency of

the magnetostrictive deformation for the transformation

of twinned martensite and triggering of MSE can be

proved. To this end, the experimental strain�stress and

strain�field dependences would be used. The strain�

stress dependence shows that the transformation starts

at the stress value �(s) � 0:9 MPa and finishes at �(f) �
1:75 MPa (see Fig. 4). Moreover, the final segment of

a stress�strain loop enables the evaluation of the elastic

stiffness of a martensitic specimen S � 1:9 GPa (see

the inset in Fig. 4) and the extraction of the elastic

part of the total deformation. The elastic deformation

which was found in such a way is shown in Fig. 5 by a

straight line. The elastic strains "(s) � 4:5 � 10�4 and

"(f) � 9:2�10�4, corresponding to the start and finish of

the detwinning process are shown by horizontal dashed

Fig. 4. Experimental stress-strain curve taken for Ni--Mn�Ga

alloy [12] and a linear extrapolation of its final segment

Fig. 5. Elastic part of the strain obtained from the final segment

of the stress-strain loop (straight solid line), stresses, and elastic

strains corresponding to the start and finish of detwinning

process (down arrows and horizontal dashed lines, respectively),

magnetostrictive strain (curve) and magnetic field values (up

arrows) corresponding to the start and finish of a magnetically

induced deformation

lines. (These strains exceed the values mentioned in

Section 2.1 due to a very low value of the stiffness

coefficient inherent in the studied alloy specimen).

Further, the magnetoelastic strain

u(eq)(H) � �(eq)=S (16)

was computed and depicted by the curve in Fig. 5. The

cross points of this curve with the horizontal dashed lines

result in the magnetic field values H(s) = 0:27 T and
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Fig. 6. Giant magnetically induced deformation versus magnetic

field (the field values determined from the elastic and

magnetostrictive strains are shown by the arrows)

H(f) = 0:38 T, which must to coincide with the

fields of the start and finish of a magnetically induced

deformation of the specimen.

The experimental strain�field curve measured for

this specimen by P. M�ullner is shown in Fig. 6. The

estimated values H(s) and H(f) are shown by the

arrows. It is seen that these values approximately

correspond to the start and finish of a magnetically

induced deformation of the specimen.

3. Discussion

3.1. The magnetoelastic model states that the

giant magnetically induced deformation of Ni�Mn�

Ga martensitic alloys is originated by a large

magnetostriction inherent in them. The model enables

the evaluation of both a magnetostrictive elastic strain

and a magnetomechanical stress which is linearly related

to the strain in accordance with the Hooke's law.

The results presented in Figs. 4�6 prove that the

magnetostrictive deformation is sufficiently large for the

accomplishment of the twinning/detwinning cycle in the

single-variant state of the experimental specimen due to

a low value of the elastic stiffness of the alloy. It should

be emphasized that these results may be reformulated in

terms of a magnetomechanical stress using the Hooke's

law expressed by Eq. (16). In contrast to this, the

theoretical models which disregard the magnetoelastic

interaction and deduce the magnetomechanical stress

from the difference of the magnetic anisotropy energies

as

�(mi) = (Kum
2
x �Kum

2
y)=(1� c=a) (17)

are internally contradictory because

i) in the absence of the magnetoelastic interaction, a

magnetoelastic strain is equal to zero and, according to

the Hooke's law, the stiffness coefficient of an alloy must

be equal to infinity, to provide the finite stress (17);

ii) stress (17) tends to infinity when 1�c=a goes to zero,
and this means, that Eq. (17) is obviously wrong in this

limiting case.

However, the magnetoelastic model �saves�

relationship (17) when it establishes a direct

proportionality between Ku and 1 � c=a: in this case,

1 � c=a vanishes from the formula. That's why this

relationship often gives rise to the reasonable results.

In particular, the form of a magnetically induced stress

function, which was determined in [27] using Eq. (17)

and experimental magnetization curves, is close enough

to the functions presented in Fig. 3.

3.2. The magnetoelastic model proves that the

magnetically induced stress is a quadratic function of the

magnetic field. This conclusion is very important in view

of the numerous publications reporting the experimental

observation or/and theoretical substantiation of the

linear stress � field or strain � field relationship. For

example, Eq. (2) in (29) yields, in the case of a rather

low magnetic field, the relationship

"(H) =MSH=(C"0); (18)

where MS is the saturation magnetization, C is the

elastic modulus, and "0 is the MT strain.

Strain (18) obviously tends to infinity when "0 tends

to zero. Moreover, the linear dependence of a giant

magnetostrain cannot be correct because in the reality

the experimentally measured value of deformation is

a diagonal component of the symmetric tensor. If this

component is linearly related to the magnetic field, it

must have a form "yy = ByHy where By is a component

of some vector, which is independent of the field. Let

By be positive, for the sake of definiteness. In this

case, the magnetic field applied in parallel to the y-axis

(Hy > 0) results in the expansion of the specimen in the

y-direction because "yy > 0, while a field applied in the

opposite direction (Hy < 0) results in the contraction

of the specimen in the same direction, because "yy < 0

in this case. However, this cannot be true for a giant

magnetically induced deformation because, for the both

field directions, this deformation is caused by an increase

of the volume fraction of the y-variant of martensite

and contraction of the specimen in the y-direction (the
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inequality Ku > 0 inherent in Ni�Mn�Ga alloys with

c=a < 1 is accepted).

It can be concluded therefore that the development

of a consistent theory of ferromagnetic shape-memory

alloys is possible only with the proper regard of the

fundamental principles of magnetoelasticity elaborated

by Bar'yakhtar et al. [1�5].
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ÑÏIÍ-ÃÐÀÒÊÎÂI ÅÔÅÊÒÈ Ó ÑÏËÀÂÀÕ Ç ÏÀÌ'ßÒÒÞ

ÔÎÐÌÈ Ni�Mn�Ga

Â.À. Ëüâîâ

Ð å ç þ ì å

Ðîçãëÿíóòî íåçâè÷àéíi âëàñòèâîñòi òà íåùîäàâíî âiäêðèòó âå-

ëåòåíñüêó ìàãíiòîiíäóêîâàíó äåôîðìàöiþ ñïëàâiâ Ni�Mn�Ga.

Âèõîäÿ÷è ç ôóíäàìåíòàëüíîãî ïîíÿòòÿ ìàãíiòîïðóæíîñòi òà

çàãàëüíîâiäîìèõ ïðèíöèïiâ òåîði¨ ìàãíåòèçìó, îáãðóíòîâàíî

ìàãíiòîñòðèêöiéíèé ìåõàíiçì ìàãíiòíèõ òà ìàãíiòîìåõàíi÷íèõ

åôåêòiâ, ñïîñòåðåæåíèõ ó ñïëàâàõ Ni�Mn�Ga, òà ïîáóäîâà-

íî ïîñëiäîâíó òåîðiþ öèõ åôåêòiâ. Äîñÿãíóòî êiëüêiñíîãî óç-

ãîäæåííÿ òåîðåòè÷íèõ ðåçóëüòàòiâ ç åêñïåðèìåíòàëüíèìè, i ó

òàêèé ñïîñiá äîâåäåíî öiëêîâèòó àäåêâàòíiñòü ïîáóäîâàíî¨ òå-

îði¨. Îáãîâîðåíî âiäïîâiäíiñòü ìàãíiòîñòðèêöiéíîãî ìåõàíiçìó

êðèñòàëîãðàôi÷íèì îñîáëèâîñòÿì âåëåòåíñüêî¨ ìàãíiòîiíäóêî-

âàíî¨ äåôîðìàöi¨ òà îñíîâíèì ñïiââiäíîøåííÿì òåðìîäèíàìiêè

òâåðäîãî òiëà.

ÑÏÈÍ-ÐÅØÅÒÎ×ÍÛÅ ÝÔÔÅÊÒÛ Â ÑÏËÀÂÀÕ

Ñ ÏÀÌßÒÜÞ ÔÎÐÌÛ Ni�Mn�Ga

Â.À. Ëüâîâ

Ð å ç þ ì å

Ðàññìîòðåíû íåîáû÷íûå ñâîéñòâà è íåäàâíî îòêðûòàÿ ãèãàíò-

ñêàÿ ìàãíèòîèíäóöèðîâàííàÿ äåôîðìàöèÿ ñïëàâîâ Ni�Mn�

Ga. Èñõîäÿ èç ôóíäàìåíòàëüíîãî ïîíÿòèÿ ìàãíèòîóïðóãîñòè è

îáùåèçâåñòíûõ ïðèíöèïîâ òåîðèè ìàãíåòèçìà, îáîñíîâàí ìàã-

íèòîñòðèêöèîííûé ìåõàíèçì ìàãíèòíûõ è ìàãíèòîìåõàíè÷å-

ñêèõ ýôôåêòîâ, íàáëþäåííûõ â ñïëàâàõ Ni�Mn�Ga, à òàêæå

ïîñòðîåíà ïîñëåäîâàòåëüíàÿ òåîðèÿ ýòèõ ýôôåêòîâ. Äîñòèãíó-

òî êîëè÷åñòâåííîå ñîãëàñèå òåîðåòè÷åñêèõ ðåçóëüòàòîâ ñ ýêñïå-

ðèìåíòàëüíûìè, è òàêèì ïóòåì äîêàçàíà ïîëíàÿ àäåêâàòíîñòü

ïîñòðîåííîé òåîðèè. Îáñóæäåíî ñîîòâåòñòâèå ìàãíèòîñòðèê-

öèîííîãî ìåõàíèçìà êðèñòàëëîãðàôè÷åñêèì îñîáåííîñòÿì ãè-

ãàíòñêîé ìàãíèòîèíäóöèðîâàííîé äåôîðìàöèè è îñíîâíûì ñî-

îòíîøåíèÿì òåðìîäèíàìèêè òâåðäîãî òåëà.
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