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The unusual magnetic properties and a recently discovered giant
magnetically induced deformation of Ni—Mn—Ga shape-memory
alloys have been considered. A magnetostrictive mechanism of
the magnetic and magnetomechanical effects observed in Ni—
Mn—Ga alloys has been substantiated, and a consistent theory of
these effects has been developed starting from the fundamental
conception of magnetoelasticity and commonly known principles of
the theory of ferromagnetism. A quantitative agreement between
the theoretical and experimental results has been achieved, and
a complete adequacy of the developed theory has been proved in
this way. A correspondence of the magnetostrictive mechanism
to the crystallographic features of a giant magnetically induced
deformation and the basic relationships of thermodynamics of
solids has been discussed.

1. Introduction

The present paper is devoted to the application of
the consistent theory of magnetoelasticity developed
by Bar’yakhtar et al. [1—5] to ferromagnetic Ni—Mn—
Ga alloys. It will be shown below that these alloys
belong to the family of various magnetic solids whose
properties are not only dependent but also originated
and strictly controlled by magnetoelastic interaction (for
more examples of this kind, see [6]).

Ferromagnetic Ni—Mn—Ga shape-memory alloys are
intensively studied now due to the recent observation of
the record-breaking magnetically induced deformation
€ ~ 5%, which exceeds the deformation of industrial
magnetostrictive materials by two orders of magnitude
[7—9]. A considerable deformation of a Ni—Mn—Ga
single crystal under the action of an applied magnetic
field is known as the magnetostrain effect (MSE) or
magnetic shape memory (MSM). The first observation
of MSE [10] initiated an avalanche-like increase of the
number of papers dealing with the Ni—Mn—Ga alloys
and the formulation of a few different theoretical models
of giant magnetically induced deformation (see [11] and
references therein).

The MSE essentially is a transformation of the
microstructure of an alloy specimen in an increasing
magnetic field. The microstructure arises on the
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cooling of Ni—Mn—Ga alloys as a result of the first-
order phase transition from the high-temperature cubic
(austenitic) phase to the low-temperature tetragonal
(martensitic) one. This phase transition is commonly
known as the martensitic transformation (MT) of
a crystal lattice. In accordance with the existing
experimental data, the microstructure of specimens
exhibiting MSE can be modeled by the alternating
domains (variants) of a tetragonal crystal lattice which
form the quasiperiodic sequence of crystallographic twins
(Fig. 1). Let the axes of coordinate frame be aligned
with (100) crystallographic directions and the magnetic
field be applied in the y direction. The field application
breaks the equivalency of twin components, initiates
the growth of the volume fraction of the y-variant of
martensite, and, hence, induces a deformation of the
alloy specimen. An absolute value of the appropriate
strain tensor component may be estimated as € ~ (1 —
¢/a)/2. Moreover, the magnetic field application to the
specimen, which was preliminary brought to the one-
variant state, results in its twinning and subsequent
detwinning. In this case, the observed deformation may
be close to the theoretical limit 1 — ¢/a.

In this paper, a magnetoelastic theory of MSE will
be substantiated and its quantitative agreement with the
existing experimental data will be demonstrated. It will
be argued that the models of MSE, which disregard the
basic principles of magnetoelasticity formulated in the
fundamental monograph by Bar’yakhtar et al. [3], are
incompatible with the fundamental principles of linear
elasticity of solids and/or internally contradictory.

2. Magnetoelastic Model of Magnetostrain
Effect

2.1. Preliminary considerations

A large value of the magnetostriction constant A =~ 1.3 x
10~* was reported, and the reversible magnetostrictive
deformation (™€) x~ —0.01% was observed for the cubic
(austenitic) phase of Ni—Mn—Ga alloy in the saturating
magnetic field [10]. On the other hand, the compressive
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axial stress o 2 MPa applied to the single-variant
martensitic state along one of the (100) crystallographic
directions is sufficient for the accomplishment of the
twinning-detwinning cycle [12]. The abnormally low
values of the shear elastic modulus C' < 10 GPa
reported for the number of Ni—Mn—Ga alloys [13] result
in the following estimation of the elastic strain needed for
the accomplishment of the twinning-detwinning process:
) = 0/2C" > —107* = —0.01%. The estimated value
is equal to the magnetostrictive deformation of the cubic
phase.

It may be assumed for the estimations that the
magnetostriction of the tetragonal phase is close in
value to the magnetostriction of the cubic one. In this
case, a magnetostrictive deformation of the twinned
crystal lattice exceeds the value needed for the start
of the twining-detwinning process when the increasing
magnetic field exceeds some critical value. In other
words, the magnetostrictive deformation triggers the
twinning-detwinning process. So, the magnetoelastic
interaction is the physical origin of the magnetostrain
effect observed in Ni—Mn—Ga alloys [14 - 17].
This statement was verified by the qualitative and
quantitative comparison of the theoretical results with
experimental data [12, 17 — 19].

It can be argued, further, that the magnetoelastic
model of MSE is compatible with the fundamental
crystallographic conceptions of martensitic transformation
[20]. According to these conceptions, a spatial
orientation of twin boundaries can be definitely
calculated from the values of lattice parameters, and the
small changes in these values result in the appreciable
reorientation of the boundaries.

The magnetoelastic model is compatible with the
microscopic mechanism of MSE (see, e.g., [21]). This
statement can be explained using Fig. 1: a magnetic field
applied in the y direction rotates the magnetic moment
of the x-variant and deforms this variant while a
rotation of the magnetic moment and a magnetostrictive
deformation of the y-variant is absent; in this case,
the resultant lattice misfit between points A and B is
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estimated as A(AB) ~ (™) (AB) ~ 10~*(AB). Thus,
the lattice misfit exceeds the lattice parameter a when
AB > 10*a ~ 5 pm. According to the microscopic model
of MSE, the ends of twin boundaries are pinned at the
cores of twinning dislocations, and the distance between
the centers of pinning may be substantially larger than
5 pm. The dimensions of cores are of the order of lattice
parameter, and therefore, the estimated lattice misfit is
sufficient for the rearrangement of twinning dislocations
and the initiation of the detwinning process.

2.2. Model formulation

The cubic-tetragonal martensitic transformation is
characterized by the diagonal components of the strain
tensor €;;, and the nondiagonal components may be
disregarded. According to the commonly recognized
theory of magnetoelasticity [3], the free energy F' of
the cubic ferromagnetic phase is the sum of the elastic,
magnetic, and magnetoelastic energies denoted as Fp,
F,., and F,,., respectively. Thus,

F(giiy M;H) = Fe(sii) + Fm(My H) + Fme(sii;M)> (1)
where M is the magnetization vector and H is a
magnetic field applied to a specimen. The expression for
the elastic energy is

F, =3(Cy1 4+ 2C12)ui/2 + C'(u3 + u3) /6, (2)
where Ci1, C12 and C' = (C11 — C12)/2 are elastic
moduli,

Uz = \/§(5m — Eyy)s

U1 = (€z0 +Eyy +€22)/3,

Us = 26,; — Eyy — Eqa- (3)

The magnetic energy is expressed as [17]

Fo=Jy?/2+ M*(m-D-m)/2 - mHM, (4)
where the first, second, and third terms are the
exchange, magnetostatic, and Zeeman energies,
respectively, J is the spin exchange parameter, the
dimensionless variables y M(T)/M(0) and m
M(T)/M(T) characterize the absolute value and
direction of the magnetization vector, respectively. The
expression for the magnetoelastic energy has the form
[22,23]

Fe = —00y%u; — 61 [\/g(mi — m;‘;)uﬁ—

2

+(2m? — m, — m2)us],

(5)
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where d9 and §; are the magnetoelastic energy
parameters characterizing the isotropic and anisotropic
parts of the spin-lattice interaction. The energy terms of
the fourth order in the magnetic vector and of the second
order in strain tensor components are comparatively
small and therefore are omitted in Egs. (4) and (5).
The cubic-tetragonal transformation of a NioMnGa
single crystal results in a spontaneous deformation of the
cubic lattice, which is characterized by strains ué‘g ~
c/a — 1 ~ —0.05. Let a deformation of the stressed
tetragonal lattice be counted off the spontaneous value,
ie. ug — uM + uy, @ = 1,2,3. In view of the rather
small values of spontaneous strains, Eq. (2) for the
elastic energy is approximately valid for a tetragonal
lattice, i.e. Fe(t) ~ const + F, as long as ug/[ values
are constant. The magnetic energy is independent from
strains, and therefore F,(,f) = F,,. Finally, using the
condition m? = 1, the magnetoelastic energy of the j-
variant of the tetragonal phase can be expressed as [22]

F{) = =00(AV/V)y?/3 = Kym? + Fpe, (6)

where AV/V is the rational change of the volume of
a specimen, the magnetic anisotropy constant K, =
601(c — a)/a is positive for Ni—Mn—Ga alloys with
¢ < a, because the fourfold symmetry axis is parallel
to the direction of easy magnetization. Hence, the
magnetoelastic parameter J; is negative. Rigorously
speaking, the tetragonal phase is characterized by two
magnetoelastic parameters, but the difference in these
parameters is of the order of §;(1 — ¢/a) << d;.

According to the fundamental principle of
thermodynamics of solids, the equilibrium values of
elastic strains correspond to a minimum of the Gibbs
potential

G = F — (o1u1 + o2us + o3u3)/6, (7)
where

01 = (Opa + 0yy +0:2)/3,
03 =20, — Oyy — Oge-

02 = \/g(gzz - Uyy)a (8)

Hence, the equilibrium values of strain tensor
components satisfy the conditions

dG/0ua = 0. 9)

Conditions (9) result in the Hooke’s law establishing
a direct proportionality between strains and stresses. It
means that every stressed state of solid is elastically
deformed and every elastically deformed state is stressed.
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In particular, for a@ =
relationship

wr = (ol

where C' = (C1; — C12)/2 is the shear modulus and

2, Eq. (9) results in the

) 4 02) /2C", (10)

agme) = 636, (m2 — m;‘j)

(11)

must be interpreted as a magnetomechanical stress
which is linearly related to a magnetostrictive
deformation u;me) = agme)/QC”.

It should be clearly emphasized now that the
magnetic anisotropy energy K,ﬂn? and Zeeman energy
mHM cannot be the sources of a magnetomechanical
stress, because both energies are not the explicit
functions of strains and their partial derivatives with
respect to wu, are equal to zero. This means that
these energies do not contribute to Eq. (9) and
Hooke’s law (10). Therefore, all theoretical models,
which disregard magnetostrictive strains and derive a
magnetomechanical stress from the anisotropy energy
or Zeeman energy, are incompatible with the minimum
principle for the Gibbs potential and the Hooke’s law.

2.3. Model results
2.3.1. Effects of the isotropic spin-lattice interaction

The isotropic part of the spin-lattice interaction
expresses itself in an appreciable shift of the Curie
temperature under the action of hydrostatic pressure;
the experimental value of the shift results in the
estimation (d7¢/dP) = 8 K/GPa. The shift is caused
by the magnetoelastic renormalization of the spin
exchange parameter J(T) — J*(T) — 200(AV/V)/3
(see Egs. (4) and (6)). The volume change accompanies
not only the compression, but also the martensitic
transformation (MT) of the alloy. Due to this, the
exchange parameter jumps when the temperature
of a cooled/heated specimen reaches the martensitic
transformation temperature Th;. This jump results in
the jump of a magnetization in the saturating magnetic
field. The magnetoelastic model involves the orthodox
temperature dependence of the exchange parameter
J(T) = ((T —Tca)/Tca and standard equations for the
magnetization in the austenitic and martensitic phases

y(T') = tanh [(Toa/T)y(T)],

y(T) = tanh [(Ton /T)y(T)]. (12)
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Fig. 2. Experimental (circles) and theoretical (solid line)

temperature dependences of the saturation magnetization obtained
for Ni—Mn—Ga alloy with ¢/a = 0.94, Tc = 375 K, and Ty = 285
K (the dotted and dashed lines show the magnetization curves
computed for the labile phases)

For the alloys with ¢ < a, the ferromagnetic ordering
temperature exceeds the MT temperature, and therefore,
Tc 4 is the Curie temperature which can be determined
in experimental way. The temperature
Tem = Toall +2(30/C)(AV/V)3] (13)
is a characteristic parameter which prescribes the
temperature dependence of a magnetization below the
MT temperature.

The experimental value dTc4/dP (see above) and
the relationship { = nkgTca (n is the number of
magnetic atoms in the unit volume) result in the
estimations ¢ & 0.1 GPa and &g ~ —0.4 GPa. Moreover,
the value AV/V = —3 x 1072 can be accepted [24]. In
this case, Tcy ~ Tca + 30 K.

The theoretical temperature dependence of the
magnetization computed from Eqs. (12),(13) is
presented in Fig. 2 (upper branch) together with
experimental values measured in the saturating
magnetic field. The computations were carried out
with account of a statistical spread of “local” Curie
temperatures in the spatially inhomogeneous martensitic
state (for more details, see [24]). Figure 2 demonstrates
an excellent agreement between the model results and
experimental data.

2.3.2. Effects of the anisotropic spin-lattice interaction

An abrupt drop of the magnetization measured in the
external magnetic field of about 1 kOe accompanies the
martensitic transformation in Ni;MnGa alloy [25] (see
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the lower branch in Fig. 2). The magnetoelastic model
relates this effect to the first term in energy (6) and
explains as follows: i) the martensitic transformation
results in a tetragonal deformation of the cubic crystal
lattice and the appearance of an internal anisotropy
field Hy = 66M(c — a)/a ~ 10 kOe [22,24] (the
dimensionless magnetoelastic constant § = &;/M? ~
—23 is introduced here for the sake of convenience); ii)
for the z- and z—variants of martensite, the anisotropy
field is transversally directed to the external field H,,
and the magnetic moments of these variants are almost
perpendicular to the magnetic vector of the y-variant if
H < H 4;iii) the magnetic anisotropy of the cubic phase
is small, and, therefore, the direction of the magnetic
vector of a whole specimen is close to the direction of an
external field, and the magnetization is approximately 3
times larger than that of the tetragonal phase.

If the experimental specimen is not magnetically
saturated, the model expression for the magnetization
is

M(H,T) = Moy(T, s)[(1/3) (H/Hp)+(2/3)(H/Hs)],(14)

where Hp =~ 1 kOe is the demagnetization field and
Hs ~ Hq = 10 kOe is the field of magnetic saturation
(for more details, see [17,22,24]). The theoretical
dependence M(T) computed from Eq. (14) for H =
0.82 kOe agrees with the experimental one (see Fig. 2).

The magnetoelastic model relates a giant field-
induced deformation of Ni—Mn—Ga alloy to the field-
induced stress defined as the difference azme)(H) -
Uéme) (0). As it was proved in [12], the application of a
field H||y to the martensitic structure depicted in Fig. 1
is physically equivalent to an axial compression in the y
direction when the compressive stress is equal to
oy (H) = |03 (H) = 0" (0)] /2V3. (15)

The equivalent stress may be computed from
Egs. (4), (6), (11), and (15). Equations (4) and (6)
result in the linear dependence m,(H) = H/Hg, where
Hs = (2K./M) + (Dyy — Dy2)M, and the theoretical
field dependence of the stress is quadratic. The quadratic
dependence which was computed for M(Hg) = 0.59T
and pupHs = 5T is presented in Fig. 3. In the field
range poHs < 3T, this dependence agrees with the
experimental equivalent stress determined from the
stress—strain loops taken in an external magnetic field
(details of the experimental procedure are described in
[12]).

However, the experimental dependences M, (H)
show that the function m,(H) is not linear as a rule
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Fig. 3. Equivalent stress found from the experimental stress-strain
loops [12] (open circles), Eq. (15) and linear field dependence
(solid (15)
magnetization curves [26] (triangles). The magnetization curves

of magnetization line), Eq. and experimental
measured in the increasing field (the right branches of the loops

presented in the inset) were used for computation

(see the inset in Fig. 3). To account this fact,
the equivalent stresses were computed also from the
experimental magnetization curves (measured in [26])
on the assumption that m,(H) = M,(H)/M,(Hg).
The magnetization branches obtained in the increasing
field were used in computations. The resultant field
dependences of the equivalent stress reasonably agree
with experimental values (see Fig. 3) despite the fact
that the measurements of stress and magnetization
were carried out for different alloys, and hence, the
comparison has the illustrative (nonrigorous) character.

When the model function of the equivalent stress
fitted to experimental values is known, a sufficiency of
the magnetostrictive deformation for the transformation
of twinned martensite and triggering of MSE can be
proved. To this end, the experimental strain—stress and
strain—field dependences would be used. The strain—
stress dependence shows that the transformation starts
at the stress value ¢(*) ~ 0.9 MPa and finishes at o(/) ~
1.75 MPa (see Fig. 4). Moreover, the final segment of
a stress—strain loop enables the evaluation of the elastic
stiffness of a martensitic specimen S =~ 1.9 GPa (see
the inset in Fig. 4) and the extraction of the elastic
part of the total deformation. The elastic deformation
which was found in such a way is shown in Fig. 5 by a
straight line. The elastic strains ¢(®) ~ 4.5 x 10~* and
e) & 9.2x10~4, corresponding to the start and finish of
the detwinning process are shown by horizontal dashed
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Fig. 5. Elastic part of the strain obtained from the final segment
of the stress-strain loop (straight solid line), stresses, and elastic
strains corresponding to the start and finish of detwinning
process (down arrows and horizontal dashed lines, respectively),
magnetostrictive strain (curve) and magnetic field values (up
arrows) corresponding to the start and finish of a magnetically
induced deformation

lines. (These strains exceed the values mentioned in
Section 2.1 due to a very low value of the stiffness
coefficient inherent in the studied alloy specimen).
Further, the magnetoelastic strain
uwlD(H) = oD /8 (16)
was computed and depicted by the curve in Fig. 5. The

cross points of this curve with the horizontal dashed lines
result in the magnetic field values H®) = 0.27 T and
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Fig. 6. Giant magnetically induced deformation versus magnetic
field (the

magnetostrictive strains are shown by the arrows)

field values determined from the elastic and

H() = 0.38 T, which must to coincide with the
fields of the start and finish of a magnetically induced
deformation of the specimen.

The experimental strain—field curve measured for
this specimen by P. Miillner is shown in Fig. 6. The
estimated values H®) and H() are shown by the
arrows. It is seen that these values approximately
correspond to the start and finish of a magnetically
induced deformation of the specimen.

3. Discussion

3.1. The magnetoelastic model states that the
giant magnetically induced deformation of Ni—Mn—
Ga martensitic alloys 1is originated by a large
magnetostriction inherent in them. The model enables
the evaluation of both a magnetostrictive elastic strain
and a magnetomechanical stress which is linearly related
to the strain in accordance with the Hooke’s law.
The results presented in Figs. 4—6 prove that the
magnetostrictive deformation is sufficiently large for the
accomplishment of the twinning/detwinning cycle in the
single-variant state of the experimental specimen due to
a low value of the elastic stiffness of the alloy. It should
be emphasized that these results may be reformulated in
terms of a magnetomechanical stress using the Hooke’s
law expressed by Eq. (16). In contrast to this, the
theoretical models which disregard the magnetoelastic
interaction and deduce the magnetomechanical stress
from the difference of the magnetic anisotropy energies
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as

o) = (K,m? — K,m?2)/(1 - c/a) (17)

are internally contradictory because

i) in the absence of the magnetoelastic interaction, a
magnetoelastic strain is equal to zero and, according to
the Hooke’s law, the stiffness coefficient of an alloy must
be equal to infinity, to provide the finite stress (17);

ii) stress (17) tends to infinity when 1 —c¢/a goes to zero,
and this means, that Eq. (17) is obviously wrong in this
limiting case.

However, the magnetoelastic model “saves”
relationship (17) when it establishes a direct
proportionality between K, and 1 — ¢/a: in this case,
1 — ¢/a vanishes from the formula. That’s why this
relationship often gives rise to the reasonable results.
In particular, the form of a magnetically induced stress
function, which was determined in [27] using Eq. (17)
and experimental magnetization curves, is close enough
to the functions presented in Fig. 3.

3.2. The magnetoelastic model proves that the
magnetically induced stress is a quadratic function of the
magnetic field. This conclusion is very important in view
of the numerous publications reporting the experimental
observation or/and theoretical substantiation of the
linear stress — field or strain — field relationship. For
example, Eq. (2) in (29) yields, in the case of a rather
low magnetic field, the relationship

e(H) = MsH/(Cep), (18)

where Mg is the saturation magnetization, C' is the
elastic modulus, and &g is the MT strain.

Strain (18) obviously tends to infinity when ¢ tends
to zero. Moreover, the linear dependence of a giant
magnetostrain cannot be correct because in the reality
the experimentally measured value of deformation is
a diagonal component of the symmetric tensor. If this
component is linearly related to the magnetic field, it
must have a form ¢,, = B, H, where B, is a component
of some vector, which is independent of the field. Let
B, be positive, for the sake of definiteness. In this
case, the magnetic field applied in parallel to the y-axis
(Hy > 0) results in the expansion of the specimen in the
y-direction because £y, > 0, while a field applied in the
opposite direction (H, < 0) results in the contraction
of the specimen in the same direction, because €,, < 0
in this case. However, this cannot be true for a giant
magnetically induced deformation because, for the both
field directions, this deformation is caused by an increase
of the volume fraction of the y-variant of martensite
and contraction of the specimen in the y-direction (the

ISSN 0508-1265. Ukr. J. Phys. 2005. V. 50, N 8
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inequality K, > 0 inherent in Ni—Mn—Ga alloys with
c/a < 1is accepted).

It can be concluded therefore that the development
of a consistent theory of ferromagnetic shape-memory
alloys is possible only with the proper regard of the
fundamental principles of magnetoelasticity elaborated
by Bar’yakhtar et al. [1—5].

The author is grateful to N. Glavatska, I. Glavatskyi,
V. Chernenko, and P. Miillner for the presentation
of the experimental stress—strain, strain—field, and
magnetization curves theoretically treated in this paper.
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CIIH-T'PATKOBI E®EKTN VYV CIIJIABAX 3 ITAM’ATTIO
®OPMMU Ni—Mn—Ga

B.A. JIveo0s
Peswowme

Po3ryisanyTo He3BM4YaliHI BJIACTHBOCTI Ta HEIOJABHO BiIKPHUTY Be-
JIETEHCHbKY MarHiToingykoBany medopmanio cmrasis Ni—Mn—Ga.
Buxoggauu 3 GyHZAMEHTAJIHHOTO MOHSTTS MAarHITONPYKHOCTI Ta
3araJbHOBIIOMUX MOPUHIHUIOIB TEOpil MarmermsMmy, OOrpyHTOBAHO
MarHITOCTPUKIIIHHUNA MeXaHi3M MAarHITHHX Ta MarHIiTOMEXaHIIHHX
edekrTiB, cnocTepexkeHux y cmraBax Ni—Mn—Ga, ta mobymoBa-
HO MOCIiToBHY Teopiio nux edexris. Jlocarmyro kinpkicHOro y3-
TO/PKEHHSI TEOPETUIHUX PEe3YJIbTATIB 3 eKCIEePUMEHTAIbHUMHY, i ¥
TaKui Crocié JOBEIEHO IIJIKOBUTY aJ€KBATHICTb MODYJIOBAHOI Te-
opii. OGroBopeHo BiANMOBIAHICTH, MArHiTOCTPHUKIIIMHONO MeXaHi3My
KpucrasorpaditauM 0COOIHBOCTSAM BEIETEHCHKOI MArHiTOIHIYKO-
BaHOI medopmarlii Ta OCHOBHUM CITiBBiJHOIIEHHSM TEPMOIMHAMIKA
TBEPZAOrO Tisia.

CIIMH-PEHIETOYHBIE 9®®EKTHI B CIIJTABAX
C MAMSATBHIO ®OPMBI Ni—Mn—Ga

B.A. JIveos
Peswowme

PaccmoTpeHbl HEOOBIYHBIE CBONCTBA ¥ HEJABHO OTKPBHITAS THTAHT-
CKasg MArHAUTOMHIYIMpOBaHHAsg nedopmanus cmaaBoB Ni—Mn—
Ga. Ucxons u3 pyHIaMEHTAIEHOrO MIOHATHS MATHATOYIPYTOCTH U
O0IIeN3BECTHBIX MPUHIUIIOB TEOPUH MAarHETU3Ma, OOOCHOBAH Mar-
HHTOCTpHKHHOHHBIﬁ MEXaHHU3M MAI'HMTHBIX W MAlHHUTOMEXaHHu4e-
ckux 3ddekToB, HAOMIOAEHHBIX B citaBax Ni—Mn—Ga, a Takxke
IOCTPOEHA IOCJIeI0BATEIbHAS Teopus 3Tux dpdexros. JocTuray-
TO KOJTHYIECTBEHHOE COTJIACHE TEOPETUIECKUX PE3YJIbTATOB C IKCIIE-
PUMEHTAJBbHBIMHA, U TAKAM IIyTEeM JOKa3aHa IIOJIHAs aJeKBATHOCTH
nocrpoeHHoO# Teopun. OBOCYKIEHO COOTBETCTBHE MATHUTOCTPHK-
MOHHOT'O MEXaHU3MA KPHCTAJIOTPAMDUIECKUM OCOOEHHOCTSIM TH-
TaHTCKOW MarHUTOWHIYIIMPOBAHHOM AedopMaluu u OCHOBHBIM CO-
OTHOIIEHUSM TEPMOJMHAMUKHU TBEPIOTO TEJIa.
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