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Using the method of collective variables (MCV), we calculate

the logarithm of the ground-state wave function of He-II, ln	0,

to an accuracy of the first correction to the Jastrow function,

and also we calculate the wave function 	k of the first excited

state and the quasiparticle spectrum of He-II, in the second-

order approximation. The functions 	0 and 	k were found as
the eigenfunctions of the N-particle Schr �odinger equation, and

the function 	0 was connected to the structure factor of He-

II, using the Vakarchuk equation. The model does not contain

any fitting parameter or function. The quasiparticle spectrum

calculated numerically agrees well with the experiment. Our

solution improves the result obtained early by Yukhnovskyi and

Vakarchuk.

1. Introduction

The structures of the N -particle wave functions of the
ground and weakly excited states of helium-II are known
in the main [1�12], and the solutions which take into
account several first corrections have been obtained. In
our opinion, the main unresolved problems concerning
the microscopic physics of He-II are the structure of a
composed condensate, nature of the �-transition, and
role of microscopic vortex rings.

The form of the He-II quasiparticle spectrum has

been forecasted by Landau for the first time [12].
In Feynman's known works [1�3], an opportunity to
determine this spectrum making use of the structure
factor has been demonstrated. Feynman intuitively
found the structure of the 	k wave function for the
state of He-II with a single phonon and approximately
deduced the He-II quasiparticle spectrum. According to
Feynman and Cohen,

	k(r1; : : : ; rN ) =  k(r1; : : : ; rN )	0(r1; : : : ; rN ); (1)

 k = ��k +

k1 6=0;kX
k1

A
k1k

k2
1

�k1�k��k1 ; (2)

where 	0 is the wave function of the ground state,

�k =
1p
N

NX
j=1

e�ikrj (k 6= 0) (3)

are collective variables [13], and N is the total number
of He atoms. However, it has not been shown in
Feynman's works that function (2) is an eigenfunction
of the N -particle Schr�odinger equation. Feynman's ideas
have been developed in a great number of works (see,
e.g., [14�20]). The Feynman�Cohen function has been
specified in works [5], where the analysis of the total
Hamiltonian of the system has been carried out. A more
accurate form of the function  k and the structure of the
function 	0 have been found in works [6�11], where 	0

and  k were sought as eigenfunctions of the Schr�odinger
equation.

The idea of the MCV has been proposed in work
[13]. This method has been substantiated and developed
in works [7�10, 21, 22]. In work [11], taking advantage
of the MCV, the 	0 and 	k functions of helium-II
have been calculated making use of the model potential
of interaction between He4 atoms with one fitting
parameter. Nevertheless, as was indicated in [9�11], the
derivation of the 	0 and 	k wave functions and the
He-II quasiparticle spectrum by starting from the He-
II structure factor known from the experiment, rather
than from a model potential, has significant advantages.
In this case, the problem does not contain fitting
parameters, and one can avoid the task of the description
of atomic interaction at small distances, which arises
because of atoms' extension [9�11].

Just this approach has been considered in work [8],
where ln	0 was found in the zero-order approximation,
while  k and the He-II quasiparticle spectrum in the
first-order one. The obtained spectrum E(k) agreed well
with the experiment. In this work, we calculated 	0,  k,
and E(k) more accurately. Namely, we found the first
correction to ln	0 and the second ones to  k and E(k).
In doing so, we used the equation for 	0 derived in work
[22] (below, we name it as the Vakarchuk equation).
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Actually, the expansion parameter of the problem was
the function 2�(k)k=k0 (see Fig. 1), the average value of
which within the interval k = 0�k0 was about �1=2; i.e.
the parameter is not small. Therefore, the corrections to
ln	0 and E(k) were not, generally speaking, small, and
their calculation was of interest.

2. The Ground State of Helium-II

A more detailed analysis of the equations and the
method of determining 	0 were exposed in works [9�11].
The necessary equations for 	0 and  k were found by
Yukhnovskyi and Vakarchuk [8�10,21]. We use different
notations and different forms of the equations for 	0

and  k [11] (the latter is partially caused by our desire
to reduce the error of the numerical solution of the
equations [11]).

The wave function of the ground state of He-II is
sought in the form [11,13]

	0 = eS0 ; (4)

S0 =
X
k6=0

�(k)�k��k+

+

k1+k2 6=0X
k1;k2 6=0

f(k1;k2)p
N

�k1+k2��k1��k2 : (5)

The corrections of higher orders to S0 [Eq. (5)] are
neglected. In this approximation, the relation

f(k1;k2) = � 2�(k1)2�(k2)k1k2
e(k1 + k2) + e(k1) + e(k2)

; (6)

where

e(k) = k2(1� 4�(k)); (7)

is valid [11]. In works [21,22], an equation that connects

	0 [Eqs. (4) and (5)] with the He-II structure factor
S(k) was derived. We write down this equation in
approximation (5) for 	0 by using the notations of work
[11] as follows:

4�(q) = 1� 1

S(q)
��(q); (8)

�(q) =
1

N

X
k6=0

8�(k)�(k + q) +R(k;q)

[1� 4�(k)][1� 4�(k+ q)]
; (9)

where

R(k;q) = 4fs(k;q) [1 + 2fs(k;q)] ; (10)

fs(k;q) = f(k;q) + f(�k� q;k) + f(�k� q;q): (11)

Equations (8) and (9) were derived in work [21] from the
known equation which connects S(k) with the binary
distribution function F2(r):

S(k) = 1 + n

Z
(F2(r) � 1) e�ikrdr; (12)

where n is the concentration of helium atoms.
We note that the interaction between He4 atoms

does not present explicitly in Eqs. (8) and (9), and
	0 is connected with the He-II structure factor only.
Therefore, such a way of finding 	0 allows one to
partially avoid the description of this interaction at
small distances [9, 11]: upon a strong overlapping of
He4 atoms, the description of the atomic interaction
using a potential becomes inaccurate, because the atomic
structure becomes important under such conditions, and
it is necessary, generally speaking, to solve the quantum-
mechanical problem of the interaction of two nuclei and
four electrons. The function 	0 [Eqs. (4) and (5)] found
from Eqs. (6)�(11) takes short-range correlations into
account more correctly than that found from a model
potential [11]. For a quite correct account of the atomic
structure, one should determine the function 	0 for
a system of nuclei and electrons, rather than for N

structureless particles. It is a hopeless task. Nevertheless,
as one can see below, configurations with the overlapping
of atoms are very improbable. So, from the physical
point of view, it is quite reasonable to consider atoms
as structureless particles.

A single shortcoming made in the course of the
derivation of 	0 from Eqs. (4)�(11) was the truncation
of series (5). But, since the model contains no fitting
parameters, the accuracy of approximation (5) can be
estimated by comparing both the theoretical spectrum
of He-II quasiparticles and the theoretical interaction
potential between He4 atoms with experimental ones.

In order to find the wave function of the ground state,
one has to know S(k) at the temperature T = 0 K. As
far as we know, the most exact measurements of S(k)
were carried out in work [23]. We used the smoothed
data on S(k) obtained at T = 1 K in [23] and calculated
the dependences S(k; T = 0) by the formula [24]

S(k; T = 0) = S(k; T ) tanh
E(k)

2kBT
: (13)

At k � 0:2 �A�1, we supposed that S(k; T = 0) � k

(because S(k = 0; T = 0) = 0 [25] and E(k ! 0) = ck in
Eq. (13)). In works [8,22], the integral equations (8) and
(9) were not solved and the zero-order approximation

4�(q) = 1� 1

S(q)
(14)
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Fig. 1. Dependence of the quantity �(k) on k, k being in units of

k0 = 2�=d = 1:756 �A�1 and d is the average distance between He-

II atoms. Squares mark the zero-order approximation [Eq. (14)]

for �(k); pluses the first-order approximation, and triangles the

second-order approximation calculated from a model �elliptic�

potential with U(0) = 60 K [11]

Fig. 2. Function S1(r=a) [Eq. (15)], where a = 2:64 �A is the

�diameter� [32] of a He4 atom. The notations correspond to the

same approximations for �(k) as in Fig. 1

was used to determine 	0.
Below, Eqs. (6)�(11) will be solved numerically,

and the solution �(k), which includes a first
correction to the zero-order approximation (14), will be
obtained. Therefore, we call this solution as the first
approximation to �(k). The solution of the integral
equation (8) cannot be found by the iteration method,
so that we used the Newton one [26] for this purpose.
As a result, two solutions were obtained, one of which,
with a smaller energy per atom E0 = �1:4 K (E0 =
0:1 K in the zero-order approximation and �7:16 K in
the experiment), being taken as the ground state. This
solution for �(k) is shown in Fig. 1.

A significant body of information concerning the
properties of 	0 is included into the function

S1(r) =
1

N

X
k

�(k)eikr; (15)

whereX
k6=0

�(k)�k��k =
X
i;j

S1(ri � rj): (16)

The behavior of S1(r) at r ! 0 shows how quickly
the function 	0 decays if the atoms overlap. Fig. 2
represents the function S1(r) for the zero-order (14) and
first-order approximations for �(k) and for �(k) found
in the second-order approximation starting from a model
potential [11]. One can see that S1(0) � �1:7 in all those
cases. One can separate a two-particle term of the formP
k6=0

~�(k)�k��k from the second term on the r.h.s. of (5),

see [11]. But a calculation shows that the account of
~�(k) renormalizes S1(r) very slightly, by a few percents
only. Thus, provided that two He4 atoms overlap, the
wave function of the ground state diminishes by a factor
of e3:4 � 30, so that a sharp reduction does not occur,
although the probability density j	0j2 decreases rather
strongly, by a factor of 1000. This means that the
He4 atom possesses properties which are intermediate
between �soft�- and �hard�-core ones. In the case, for
example, where 10 pairs of atoms overlap, 	0 decreases
by a factor of e34 � 1014 as compared to its value for
a uniform distribution of atoms without overlapping.
Therefore, configurations where many atoms overlap are
extremely improbable.

3. Calculation of the He-II Quasiparticle

Spectrum

Knowing	0, one can find the wave function	k =  k	0,
which describes the state of the system with a single
quasiparticle of the phonon type, and the quasiparticle
spectrum E(k) from the following equations [11]:

 k = ��k +

k1 6=0;kX
k1

P (k;k1)p
N

�k1�k��k1+

+

k1+k2 6=kX
k1;k2 6=0

Q(k;k1;k2)

N
�k1+k2�k��k1��k2 + : : : : (17)
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~E(k) = e(k) +

Z
dk1P (k;k1)2k1(k� k1)+

+

Z
dk1(�2k21) [Q(k;k1;�k1) + 2Q(k;k;k1)] ; (18)

P (k;k1)
h
e(k1) + e(k� k1)� ~E(k)

i
+

+

Z
dk2F (k;k1;k2) = 4�(k1)kk1+2k

2fs(k1;k�k1);(19)

F (k;k1;k2) = 4k2(k� k1 � k2)Q(k;k1;k2)+

+2k2(k1 � k2)Q(k;k1 � k2;k2); (20)

Q(k;k1;k2)
h
e(k1) + e(k2) + e(k� k1 � k2)� ~E(k)

i
=

= Ps(k;k1 + k2) �G(k1;k2) + L(k;k1;k2); (21)

Ps(k1;k2) = P (k1;k2) + P (k1;k1 � k2); (22)

G(k1;k2) = [2�(k1)k1 + 2�(k2)k2] (k1 + k2)+

+2(k1 + k2)
2fs(k1;k2); (23)

L(k;k1;k2) = 2k(k1 + k2)fs(k1;k2): (24)

In (17), the corrections of higher orders to  k

are neglected. In Eqs. (18)�(24), we passed to the

dimensionless variables k0 = k=k0 and ~E(k0) = E(k)2m

~2k2
0

,

where k0 = 2�=d and d = 3:578 �A is the average
interatomic distance. The primes will be omitted below.

The quasiparticle spectrum calculated using 	0 and
 k in the zero-order approximation (i.e. f(k1;k2) = 0,
Eq. (14), and  k = ��k) has the form of Feynman's
known formula [1] which describes the spectrum of a
slightly nonideal Bose gas [13],

E(k) =
~
2k2

2mS(k)
: (25)

This spectrum is represented by pluses in Fig. 3.
To find  k in the first approximation, we should

assume that Q(k;k1;k2) = 0. From Eq. (19), we have

P (k;k1) =
4�(k1)kk1 + 2k2fs(k1;k� k1)

e(k1) + e(k� k1)� ~E(k)
: (26)

The system of equations (18) and (26) was solved
by the iteration method. The obtained quasiparticle
spectrum, for �(k) in the zero-order approximation, is
shown in Fig. 3. The spectrum of He-II in the indicated
approximations has been found earlier in work [8].

We note that the relation P (k;k1) � k1k

k2
1

at k ! 0

and small k1 is valid for  k in the first approximation,
which corresponds to the Feynman-Cohen formula (2).

Fig. 3. Theoretical He-II quasiparticle spectrum. Pluses correspond

to the zero-order approximation (25) for 	0 and  k, triangles to

the zero-order approximation for 	0 and the first-order one for  k,

circles to the first-order approximation for	0 and the second-order

one for  k; the solid curve is drawn using the spline method; and

the dotted curve corresponds to the experimental spectrum [27]

In the second-order approximation, it is necessary
to solve the complete system of equations (18)�(24).
Similarly to work [11], we solved these equations
numerically. The system of equations (18), (19) as
a whole was solved by the iteration method, while
Eq. (19) by the method of quadratures [28]. In so
doing, we used the values of �(k) obtained in the
first-order approximation. The error of the numerical
determination of E(k) was about �10 %; another error
of about �6 % stemmed from measuring S(k) in [23]
with an accuracy of �2 %. The obtained spectrum E(k)
is shown in Fig. 3.

From Fig. 3, one can see that if the number of
corrections which are taken into account increases, the
agreement between the theoretical and experimental
spectra improves. For 	0 and  k determined in the first-
and second-order approximations, respectively, we have
a good agreement between E(k) and the experiment.
The �shoulder� E(k) � 17 K in the experimental
spectrum at k > 2:5 �A�1 is connected, in our opinion,
with the hybridization of the spectrum that describes a
single quasiparticle with a two-roton level [29].

Knowing the structure factor, one can restore the
interaction potential between He4 atoms by finding �(k)
and f(k1;k2) from Eqs. (6)�(11) with known S(k) and
substituting the obtained solutions into the following
equation for the Fourier transform �(k) of the potential
[11]:

1

2
�(k1)k

2

1 +
n�(k1)m

4~2
� �2(k1)k

2

1 =
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Fig. 4. Interaction potential U(r) between He4 atoms restored from

the structure factor. The solid curve corresponds to the zero-order

approximation for �(k), and the circles to the first one

Fig. 5. Fourier image V (k) = n�(k) for the potentials U(r)

shown in Fig. 4, k0 = 2�=d. The curves correspond to the same

approximations for �(k) as in Fig. 4

=
1

N

X
k2 6=0;�k1

fs(k1;k2)0:5(k
2

2
+ k1k2): (27)

The potential

U(r) =
1

(2�)3

Z
�(k)eikrdk; (28)

where �(k) (Fig. 5) can be found from (27), is shown
in Fig. 4 for �(k) taken in the zero-order and first
approximations. The potential U(r) in the zero-order
approximation was obtained earlier in [23]. The potential
calculated by us agrees approximately with those
obtained in works [5, 11, 30, 31], but not with Aziz's
potential [33], which possesses a very high barrier of
repulsion U(r = 0) � 106 K. This discrepancy is
probably conditioned by the efficiency of the potential
that describes the interaction between He4 atoms at
small distances, as well as by different modeling of such
an interaction. It is not improbable that some processes
(e.g., the scattering of He4 atoms) are well described by
Aziz's potential. But the certain calculations, e.g. those
of	0,  k, and the E(k) spectrum, are successful with the
use of a potential with a much smaller effective barrier
U(0) � 100 K. One can see from Fig. 4 that the found
potential has a minimum at rmin = 3 �A with the depth
Umin = �7:7 K, which approximately corresponds to the
Lennard�Jones experimental �pit� with rmin = 2:97 �A
and Umin = �10:8 K [33].

Fig. 4 also testifies to that U(r) with �(k) in
the first approximation differs appreciably from that
with �(k) in the zero-order one. The potential varies
appreciably even if Eqs. (8) and (9) are rewritten in
another but equivalent form. The inaccuracy of the

U(r) determination stems from the fact that, according
to Eqs. (27) and (28), the potential U(r) depends
strongly on the values of �(k) at k which are not small,
k = 2k0 � 4k0, because the term

R
�(k)k4dk makes

a contribution to U(r). The values of �(k) are small
at such k, but the corrections to �(k) turn out to be
of about �(k) itself. That is, �(k) is not determined
exactly at considerable k, which has almost no influence
on the resulting quasiparticle spectrum, but induces
a significant error while finding U(r). Thus, we can
only estimate the potential U(r). In order to calculate
U(r) with a higher accuracy, one must determine the
next approximations for �(k) and measure S(k) more
precisely.

4. Comparison of Different Models of He-II

Below, we present a short schematic comparison of
various methods which are applied in order to explain
the microstructure of He-II. In so doing, we do not
pretend that our analysis is complete or perfect.

There is a plenty of works dealing with the
microscopic description of He-II. Some analysis can be
found in reviews [19, 33]. The main approaches are as
follows:

(i) Semiphenomenological methods, where certain
equations (like the Gross�Pitaevskii one [34] or
that of the model of a �continuous medium� [35])
are postulated and used as a start point to derive
the quasiparticle spectrum. In this case, several
fitting parameters (FPs) are used. The main
shortcoming of these methods is related to that
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it is not clear how precisely the initial postulates
correspond to the He-II microstructure.

(ii) Microscopical approaches which are based on the
calculation of 	0 and  k:

a) �Straightforward� solution of the N -particle
Schr�odinger equation in the r- [6] or k-space (the
MCV, see [8�11]). Here, both 	0 and  k can be
determined without introducing FPs.

b) �Indirect� methods for solving the Schr�odinger
equation, e.g., the �correlated basis function� [16]
and �hypernetted chain� [36, 37] approaches.

c) Variational methods [1�4,38].

d) A new �shadow wave function� approach [17�20].
At first, the authors hoped that the whole series
of correlation corrections to ln	0 and  k can be
convolved into separate simple �shadow� factors.
This was explained by the fact that the correlation
corrections resulted from the delocalization of
atoms (for some reasons, the role of the interaction
was not taken into account). However, the further
analysis [17, 20] demonstrated that such a simple
solution was only the first iteration of a solution of
the Schr�odinger equation written down in the form
of a continual integral, whereas the exact solution
is an infinite series for ln	0 and  k (analogously
as it was in cases a�c).

In approaches (ii) b�d, several FPs are used. The
main shortcoming of all microscopical methods of
type (ii) is that their solutions are given by the
series, whose expansion parameters are not small
enough.

(iii) Field-theoretic models.

a) Studies of the total Hamiltonian Ĥ in the k-space
[5, 13�15, 39, 40]. To a certain extent, this case is
rather close to item (ii,a). The condensates do not
appear explicitly in the equations;

b) Studies of the Hamiltonian Ĥ in the k-space in
the representation of the operators â+

k
and âk for

quasiparticles [41�43]. In this case, the condensates
are explicitly separated;

c) Solution of equations similar to the Belyaev�
Dyson ones [30, 31].

Models b and c involve FPs.

In our opinion, most perspective may be the field-
theoretic approaches. There is a hope that an �ideal�
microscopic model of He-II (which will start from exact
microscopic equations, will not use fitting parameters,
and where the expansions are carried out in small
parameters only) can be developed in future just in the
field-theoretic approach. At the same time, approach (ii)
forms a necessary complement to (iii).

5. Conclusions

To summarize, we have approximately obtained, by
using the MCV, the spectrum of He-II quasiparticles and
the wave functions of the ground and first excited states
of helium-II without introducing any fitting parameter
into the model. In this case, we have solved the equations
that had been deduced from the exact microscopic
equations. A single inaccuracy of the method consists
in the truncation of the series for 	0,  k and S(k).
The obtained quasiparticle spectrum of He-II agrees well
with the experimental one. Therefore, we believe that
the found solution reflects the microstructure of He-II.
This result refines the solution found earlier in work [8].

The author is grateful to V.E. Kireev for the
discussion of numerical methods and to E.A. Pashytskyi
for the discussion of the work and the useful criticism of
the previous results.
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ÎÁ×ÈÑËÅÍÍß ÑÏÅÊÒÐÀ ÊÂÀÇI×ÀÑÒÈÍÎÊ He-II

ÌÅÒÎÄÎÌ ÊÎËÅÊÒÈÂÍÈÕ ÇÌIÍÍÈÕ

Ì.Ä. Òîì÷åíêî

Ð å ç þ ì å

Ìåòîäîì êîëåêòèâíèõ çìiííèõ (ÌÊÇ) îá÷èñëåíî ëîãàðèôì

õâèëüîâî¨ ôóíêöi¨ îñíîâíîãî ñòàíó He-II, ln	0, ç òî÷íiñòþ äî

ïåðøî¨ ïîïðàâêè äî ôóíêöi¨ Äæàñòðîâà, à òàêîæ ó äðóãîìó íà-

áëèæåííi çíàéäåíî õâèëüîâó ôóíêöiþ 	k ïåðøîãî çáóäæåíîãî

ñòàíó He-II i ñïåêòð êâàçi÷àñòèíîê He-II. 	0 òà 	k çíàéäåíî ÿê
âëàñíi ôóíêöi¨ N-÷àñòèíêîâîãî ðiâíÿííÿ Øðåäiíãåðà, êðiì òî-

ãî, 	0 ïîâ'ÿçó¹òüñÿ çi ñòðóêòóðíèì ôàêòîðîì He-II çà äîïîìî-

ãîþ ðiâíÿííÿ Âàêàð÷óêà. Ìîäåëü íå ìiñòèòü âiëüíèõ ïàðàìåò-

ðiâ àáî ôóíêöié. Îòðèìàíèé ÷èñåëüíî ñïåêòð êâàçi÷àñòèíîê

ãåëiþ-II äîáðå óçãîäæó¹òüñÿ ç åêñïåðèìåíòàëüíèì. Çíàéäåíèé

ðîçâ'ÿçîê óòî÷íþ¹ ðåçóëüòàò, îòðèìàíèé ðàíiøå Þõíîâñüêèì

òà Âàêàð÷óêîì.
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