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The paper deals with the theoretical investigation of intrasubband

plasmons in an array of quantum wires (QWs) consisting of a

finite number of QWs with the same one-dimensional density of

electrons. We consider that all QWs are arranged at an equal

distance from each other except one QW, which is displaced from

its position of periodicity. The existence of two local plasmon

modes in the plasmon spectrum is found. It is shown that,

under certain conditions, the existence of plasmon modes, whose

spectrum does not practically depend on the position of the

displaced QW in the array, is possible.

1. Introduction

Quasi-one-dimensional electron systems (1DES) or QWs
are artificial structures, in which the motion of charge
carriers is confined in two transverse directions but
is essentially free (in the effective mass sense) in the
longitudinal direction [1�3]. Usually, QWs are produced
by adding an additional one-dimensional confinement
of a two-dimensional electron system (2DES). This
additional confinement is, in general, weaker than the
strong confinement of original 2DES [4]. One of the
motivations to study QWs is the fact that the mobility
of charge carriers is higher than that in 2DES, on which
they are built. The reason for this is that the impurity
content and distribution around QWs can be selectively
controlled, producing the enhanced mobility [5].

Collective charge-density excitations or plasmons
in QWs are the objects of great physicist's interest.
Earlier, plasmons in QWs were investigated both
theoretically [5�9] and experimentally [10, 11, 13]. In
those works, it was shown that plasmons in QWs
have some new unusual dispersion properties. First, the
plasmon spectrum strongly depends on the width of
QWs. Secondly, 1D plasmons are free from the Landau
damping [6, 9] in the whole range of wavevectors.

From the point of view of practical applications, the
so-called weakly disordered arrays of low-dimensional
systems are the objects of interest. So, the plasmons

in weakly disordered superlattices formed of a finite
number of two-dimensional electron systems (2DES)
have been theoretically investigated [14�20]. The
weakly disordered superlattice is characterized by the
fact that all 2DES are arranged periodically and possess
the equal density of electrons except one 2DES, which
can possess the density of electrons different from other
2DES (�defect� 2DES) [14�17] or be displaced from
the position of periodicity (displaced 2DES) [18�20].
It was found that the plasmon spectrum of such a
superlattice contains the local plasmon mode (LPM),
whose properties differ from those of other plasmon
modes. The existence of LPM is completely analogous
to the existence of a local phonon mode, first obtained
by Lifshitz in 1947 for the problem of the phonon modes
in a regular crystal containing a single isotope impurity
[21]. In a weakly disordered superlattice containing
defect 2DES, the LPM lies in the higher- or lower-
frequency region in comparison with the other plasmon
modes depending on whether the defect 2DES have
higher or lower electron density, correspondingly. In
a weakly disordered superlattice containing displaced
2DES, the LPM lies in the lower-frequency region only in
comparison with the other plasmon modes. Notice that,
as was shown in [17,20], practically the whole flow of the
electromagnetic energy of plasmons, which correspond
to the LMP, is concentrated in the vicinity of a defect
or displaced 2DES. At the same time, works [17, 20]
indicated the opportunity to determine the parameters
of defects in the superlattice using peculiarities of the
plasmon spectrum.

Plasmons in a finite weakly disordered array of QWs
containing a defect QW have been earlier investigated
theoretically in works [22, 23]. It has been supposed
that the defect QW can occupy an arbitrary position
in the array. It was shown in works [22, 23] that the
position of the defect QW in the array does not strongly
affect the spectrum of the local plasmon mode but
it exerts an significant influence on the spectrum of
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other plasmon modes. At the same time, when the
defect QW is arranged inside the array, the plasmon
spectrum contains modes, whose dispersion properties
do not depend on the value of the electron density in
the defect QW.

This paper deals with the theoretical investigation
of plasmons in a finite weakly disordered array of
QWs containing one QW displaced from the position of
periodicity. It is found that the two LPMs exist in the
plasmon spectrum: one of the LPMs lies in the higher-
frequency region in comparison with the other plasmon
modes and another LPM lies in the lower-frequency
region. This situation is distinct from the case of an
array of QWs with one defect QW, where only one LPM
exists [22]. It is shown that, under certain conditions,
the existence of plasmon modes, whose spectrum does
not practically depend on the position of the displaced
QW, is possible.

2. Dispersion Relation

We consider the weakly disordered array of QWs
consisting of a finite number M of QWs arranged at
planes z = zl (l = 0; :::;M � 1 is the number of
QWs). The 1D density of electrons, N , is supposed to
be equal in all QWs. We consider that all QWs in the
array are arranged periodically with period d except one
interior QW (with the number p = 1; :::;M � 2) which
is displaced relative to the position of periodicity by the
distance �. So, the z-coordinate of the l-th QW can be
expressed as zl = ld + Æpl�. Here, Æpl is the Kronecker
delta. QWs are considered to be placed into the uniform
dielectric medium with the dielectric constant ". We
consider the movement of electrons is free in the x-
direction and is considerably confined in the directions
y and z. At the same time we suppose that the width of
all QWs is equal to a in the y-direction and is equal to
zero in the z-direction.

In other words, each QW can be represented as
a square quantum well with infinite barriers at y =
�a=2 and y = a=2 and a zero thickness in the z-
direction. Meanwhile, we take into account only the
lowest subband in each QW. In this case, the single-
particle wave function of an electron can be written as

 kx;l(r) = jkx; li =
eikxxp
2�
'(y) [Æ(z � zl)]

1=2
; (1)

where '(y) =

r
2

a
cos

�y

a
, and kx is the one-dimensional

wave vector describing the motion in the x-direction. In

this case, the single-particle energy Ekx;l = E0 +
~
2k2

x

2m�
:

Here, E0 is the energy of the subband bottom (for
simplicity, we can put E0 = 0), and m� is the effective
mass of an electron.

To obtain the spectrum of collective excitations,
we start with a standard linear-response theory in the
random phase approximation. We consider Æn(r) which
is a deviation of the electron density from its equilibrium
value. After using the standard linear-response theory
and the random phase approximation, Æn(r) can be
related to the perturbation by

Æn(r) =
X
�;�0

f�0 � f�

E�0 �E� + ~!
V��0 ��0(r) �(r); (2)

where � = (kx; l) is a composite index which is defined
by (1) f� is the Fermi distribution function, V�;�0 =
h�jV j�0i are the matrix elements of the perturbing
potential V = V ex + V H, and V ex and V H are the
external and Hartree potentials, respectively.

Note that the matrix elements of the Hartree
potential can be expressed through the perturbation [6]
as

V H
��0 =

e2

"

Z
dr ��(r) �0 (r)

Z
dr1

jr� r1j
Æn(r1): (3)

Here, � = (k1x; n). Substituting (2) in (3), we get

V H
��0 =

X
��0

W��0��0

f�0 � f�

E�0 �E� + ~!

�
V ex
��0 + V H

��0

�
; (4)

where

W��0��0 =
e2

"

Z
dr ��(r) �0(r)�

�
Z

dr1

jr� r1j
 ��0(r1) �(r1) =

=
Æ(kx + q � k0x)

2�
Æn;n0Æl;l0Un;l; (5)

Un;l =
8e2

"a2

a=2Z
�a=2

dy1 cos
2
��y1
a

� a=2Z
�a=2

dy cos2
��y
a

�
�

�K0

�
q
�
(y � y1)

2 + (zn � zl)
2
�1=2�

; (6)

q = k01x � k1x, K0(x) is the zero-order modified
Bessel function of the second kind. After some algebra,
expression (4) can be rewritten as

V H
n = 2

X
l

1

2�

1Z
�1

dkx
fkx+q;l � fkx;l

Ekx+q;l �Ekx;l + ~!
�
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�
�
V ex
l + V H

l

�
Un;l; (7)

where V H
n � hk1x; njV Hjk1x+ q; ni, V H

l � hkx; ljV Hjkx+
q; li, V ex

l � hkx; ljV exjkx + q; li. The factor 2 before
the summation symbol in (7) comes from the spin
degeneracy.

Collective excitations of the array of QWs exist when
Eq. (7) has a nonzero solution V H in the case where the
external perturbation V ex = 0. Hence, the intrasubband
plasmon dispersion relation takes the form

det
��Æn;l ��lUn;l

�� = 0; (8)

where �l =
1

�

Z
1

�1

dkx
fkx+q;l � fkx;l

Ekx+q;l �Ekx;l + ~!
is the

noninteracting 1D polarizability (�bare bubble�)
function. At the zero temperature, the function �l can
be written as

�l =
m�

q�~2
ln
!2 �

�
~qkF=m

� � ~q2=2m�
�2

!2 �
�
~qkF=m

� + ~q2=2m�
�2 : (9)

Here, kF =
�N

2
is the Fermi wavenumber in a QW. In

the long-wavelength limit (where q ! 0), the function

�l can be written as �l =
N

m�

q2

!2
.

It should be noted that, for M = 2, the dispersion
relation (8) coincides with that for plasmons in a double-
layer system of QWs [6].

3. Numerical Results

Fig. 1 shows the intrasubband plasmon spectrum (solid
lines) in the array of QWs with parameters M = 5,
d = 15a�, a = 20a� (a� = "~2=m�e2 is the effective Bohr
radius), p = 2 and for the value of the QW displacement
� = 0:5d. The y-axis gives the dimensionless frequency
!=!0 (!

2
0 = 2Ne2="m�a2 is the plasma frequency), and

the x-axis gives the dimensionless wavevector qa�. For
comparison, we present in Fig. 1 (by dashed curves 1

and 2) also the dispersion curves for the intrasubband
plasmons in a QWs array consisting of two QWs with
the same parameters as was described above except the
distance between QWs which is supposed to be equal to
d ��, i.e. the distance between the displaced QW and
adjacent QW closest to it.

As seen from Fig. 1, the intrasubband plasmon
spectrum in the finite array of QWs contains M modes.
Thus, the number of modes in the spectrum is equal
to the number of QWs in the array [14]. The plasmon
frequency ! increases with the wavenumber q. At the
same time the propagation of plasmons in the array of

Fig. 1. Spectrum of intrasubband plasmons (solid curves) in the

array of QWs with parameters M = 5, d = 15a�, a = 20a�, p = 2

and for the value of the QW displacement � = 0:5d

QWs with one displaced QW is characterized by the
presence of two LPM, one of which (LPM1) lies in the
lower-frequency region in comparison with the other
plasmon modes and the other one (LMP2) lies in the
higher-frequency region. It should be emphasized that, at
large values of q when the Coulomb interaction between
electrons in adjacent QWs is negligible, the LPM
dispersion curves are close to those for the plasmons in
the array consisting of two QWs, the distance between
which is equal to d��.

Let us consider now the dependence of the
intrasubband plasmon spectrum on the value of the QW
displacement. This dependence is depicted in Fig. 2 for
the fixed value of the wavenumber qa� = 0:05 and for
different numbers of the displaced QW in the array:
p = 1 (Fig. 2,a), p = 2 (Fig. 2,b) and p = 3 (Fig. 2,c).
The y-axis gives the dimensionless frequency !=!0 and
the x-axis gives the dimensionless displacement �=d. As
seen from Fig. 2, the LPM1 frequency monotonically
decreases when the displaced QW is moved away from
the position of periodicity (when the value of j�j
increases). In addition, the LPM1 spectrum is weakly
dependent on the number of the displaced QW in the
array: at a fixed value of �, changing the number
of the displaced QW in the array does not affect
significantly the LPM1 frequency (this fact is evident
from the comparison of Figs. 2,a,b,c). However, the other
plasmon mode spectra depend strongly on the number
of the displaced QW in the array. We note that the
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Fig. 2. Dependence of the intrasubband plasmon spectrum upon

the value of the QW displacement forM = 5, d = 15a�, a = 20a�,

qa� = 0:05 and for different numbers of the displaced QW in the

array: p = 1 (a), p = 2 (b) and p = 3 (c)

LPM2 frequency increases when the central (p = 2) QW
in the array is displaced from its position of periodicity
(with an increase of the value of j�j) (Fig. 2,b). At the
same time, the dependence of the LPM2 frequency on the
displacement � in the case where p = 1 has a minimum
at �=d � �0:2 (Fig. 2,a). Likewise, when p = 3, the
dependence of the LPM2 frequency on the value of �
has the minimum at �=d � 0:2 (Fig. 2,c). It should be

noted that the intrasubband plasmon spectrum in the
array of QWs with one displaced QW contains modes,
the frequency of which does not practically vary with a
variation of the �. In the case where p = 1 (Fig. 2,a) or
p = 3 (Fig. 2,c), modes 1 and 2 have this property (at
p = 1, mode 2 has this property only when � < 0, but
mode 2 has this property at p = 3 only when � > 0).
At the same time, when the central QW in the array
(p = 2) is displaced from its position of periodicity (Fig.
2,b), the frequencies of all plasmon modes except LPM1,
LPM2 almost do not change. Summing up, it should be
emphasized that at any number of displaced QW in the
array the frequency of plasmon mode 1 (Fig. 2,a�c) is
weakly sensitive to the value of the QW displacement �.

The reason for the weak sensitivity of the frequency
of some plasmon modes to the QW displacement
is evident from Fig. 3 which presents the spatial
distribution of the Hartree potential for different
plasmon modes and for different numbers of the
displaced QW in the array: p = 1, plasmon mode 1
(Fig. 3,a); p = 2, plasmon mode 1 (Fig. 3,b); p = 3,
plasmon mode 1 (Fig. 3,c) and plasmon mode 2 (Fig.
3,d). All depicted Hartree potential distributions are
calculated in the case where�=d = 0:5. The vertical axis
in Figs. 3,a�d gives the dimensionless Hartee potential
V H(q; y; z)=V H(q; 0; 0), and the horizontal axes give
the dimensionless coordinates z=d and y=a. Positions
of QWs in the array are depicted in Figs. 3,a�d by
vertical rectangles. As can be seen from Fig. 3, the
spatial distributions of Hartree potentials for the chosen
plasmon modes are characterized by the fact that the
absolute values of the Hartree potential in the vicinity
of the displaced QW are much less than ones in the
other part of the array. So, the electromagnetic field of
plasmons, corresponding to that modes, is concentrated
for the most part outside the defect region, and this fact
gives rise to a weak dependence of this mode frequency
on the QW displacement �.

The spatial distribution of the Hartree potential
of the LMPs is depicted in Fig. 4. These spatial
distributions are calculated for LPM1 (Fig. 4,a) and for
LPM2 (Fig. 4,b) in the case where p = 2, �=d = 0:5.
As seen from Fig. 4, the particularity of the Hartree
potential spatial distribution of the LMPs is the fact that
the LPM electromagnetic field is localized mainly inside
the narrow interval between the displaced QW and
the adjacent QW closest to it. It should be emphasized
that the signs of the Hartree potentials of LPM1 in the
vicinity of the displaced QW and in the vicinity of the
adjacent QW closest to it are opposite. So, the LPM1
Hartree potential spatial distribution is similar to the
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Fig. 3. Spatial distribution of the Hartree potential for different plasmon modes and for different numbers of the displaced QW in the

array with parameters M = 5, d = 15a�, a = 20a�, � = 0:5d: (a) p = 1, plasmon mode 1; (b) p = 2, plasmon mode 1; (c) p = 3,

plasmon mode 1; (d) p = 3, plasmon mode 2

antisymmetric plasmon mode in the array consisting of
two QWs (see Fig. 1). At the same time, the signs of
the Hartree potentials of LPM2 in the vicinity of the
displaced QW and in the vicinity of the adjacent QW
closest to it are the same (Fig. 4,b), and that mode is
similar to the symmetric mode in the array consisting of
two QWs.

4. Conclusion

We have calculated the plasmon spectrum of the finite
array of QWs which contains one QW, displaced from

its position of periodicity. It is found that two LPMs
whose properties differ from those of other modes exist
in the plasmon spectrum: one of the LPMs lies in the
higher-frequency region in comparison with the other
plasmon modes and another LPM lies in the lower-
frequency region. We point out that the spectrum of the
low-frequency LPM is slightly sensitive to the number of
the displaced QW in the array. It is shown that, under
certain conditions, the existence of plasmon modes,
whose spectrum does not practically depend on the
position of the displaced QW, is possible. The spatial
distribution of the Hartree potential for those modes has
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Fig. 4. Spatial distribution of the Hartree potential for LPMs in the QWs array with parameters M = 5, d = 15a�, a = 20a�, � = 0:5d,

p = 2: (a) LPM1; (b) LPM2

a peculiarity, the absolute value of the Hartree potential
in the vicinity of the defect in the array being negligible.
Therefore, the value of the QW displacement does not
exert a significant influence on the dispersion properties
of plasmon modes.

To conclude, it should be emphasized that the above-
mentioned features of plasmon spectra can be used for
the diagnostics of defects in QW structures. Hence, the
fact of the presence of two LPMs can give an information
about the type of a defect (a displacement of one of the
QWs in the array from its position of periodicity), and
the frequency of LPMs can be used for the determination
of the QW displacement.
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ÂÍÓÒÐIØÍÜÎÏIÄÇÎÍÍI ÏËÀÇÌÎÍÈ Ó ÑÊIÍ×ÅÍÍÎÌÓ

ÌÀÑÈÂI ÊÂÀÍÒÎÂÈÕ ÄÐÎÒIÂ ÇI ÇÌIÙÅÍÈÌ

ÊÂÀÍÒÎÂÈÌ ÄÐÎÒÎÌ

Þ.Â. Áëóäîâ, Î.Â. Øðàìêîâà

Ð å ç þ ì å

Òåîðåòè÷íî äîñëiäæåíî âíóòðiøíüîïiäçîííi ïëàçìîíè ó ìà-

ñèâi êâàíòîâèõ äðîòiâ, ÿêèé ìiñòèòü ñêií÷åííó êiëüêiñòü

êâàíòîâèõ äðîòiâ ç îäíàêîâîþ îäíîâèìiðíîþ êîíöåíòðàöi¹þ

åëåêòðîíiâ. Ââàæàëîñÿ, ùî óñi êâàíòîâi äðîòè ðîçòàøîâàíi

íà îäíàêîâié âiäñòàíi îäèí âiä îäíîãî çà âèíÿòêîì îäíî-

ãî, çìiùåíîãî çi ñâîãî ïîëîæåííÿ ïåðiîäè÷íîñòi. Âèÿâëå-

íî iñíóâàííÿ ó ñïåêòði ïëàçìîíiâ äâîõ ëîêàëüíèõ ïëàç-

ìîííèõ ìîä. Ïîêàçàíî, ùî çà ïåâíèõ óìîâ ìîæëèâå iñ-

íóâàííÿ ïëàçìîííèõ ìîä, ñïåêòð ÿêèõ ïðàêòè÷íî íå çà-

ëåæèòü âiä ïîëîæåííÿ çìiùåíîãî êâàíòîâîãî äðîòó ó ìà-

ñèâi.
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