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On the basis of researches of the temperature dependence of one-
particle contributions to the self-diffusion coefficient, the fitting
values of the slope parameter of the potential function have been
calculated. The theoretical values of the self-diffusion coefficient of
liquid argon coincide with both experimental data and the results
of a computer simulation obtained at certain values of the slope
parameter, with the auto-correlation function of the molecular
velocity being approximated best by a quadratic polynomial.

According to the general theory [1—5], the self-diffusion
coefficient D is presented as a sum

D =D+ D¢,

of the collective, D., and one-particle, Dy, components.
The algorithm of calculations of the collective
component was described in detail in work [6], while
some numerical estimations of this parameter for
different liquids were obtained in work [7]. At the same
time, the one-particle component of the self-diffusion
coefficient is not studied sufficiently; in fact, we know
a single work dealing with this issue [8].

An important stage in studying the diffusive
processes is a correct account of intermolecular
interactions, based on the proper choice of an adequate
model form of the intermolecular potential. On the
other hand, the potential function can be reproduced
making use of the self-diffusion experimental data and
comparing them with theoretical calculations, as it is
done, for example, when calculating the effective pair
potential from the known radial distribution function [9]
or when constructing an authentic potential curve of
intermolecular interactions on the basis of the method
of inverse scattering transform [10].

In this work, we have studied the correlation
between the one-particle component of the self-
diffusion coefficient and the repulsive part of a model
intermolecular potential and, by fitting the theoretical
value of a certain parameter to the corresponding
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experimental data, the value of this parameter has been
determined.

The character of the decrease of the one-particle
contribution to the molecule-velocity autocorrelation
function (MVACF) at small times is governed by the
behavior of repulsive forces at distances shorter than the
molecule diameter. Really, at small times, the MVACF
is determined by the expansion series

£2

(@(#)o(0)) = (7 (0))) + (3"(0)5(0)) 5 +.-., (1)

where v(t) is the velocity of a selected liquid molecule. In
agreement with the results of work [11], the expression
for the autocorrelation function at small ¢ can be written
down as

o)) =10 =27 (137

o +> 2)

where k is the Boltzmann constant, T is the absolute
temperature, M is the molecule mass, and

, (AU (7))
T = e (3)
or, approximately,
3kT 1
N — ——— . 4
pi(t) = 7 eXP( 2T3> (4)

For the numerical evaluation of 75, we use a
spherically symmetric intermolecular potential in the
form

v =[(2)"- (2)] ®

whence we obtain the following expression for AU (r):

r r

AU (1) = %[m (m + 1) (f)m+2 s (5)8]. (6)
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Fig. 1. Dependence of 79 on the slope parameter m

Using expressions (3) and (6) and the mean field
approximation, where

(@)= ()" = oo™ m

we obtain
_ 4e (m+2)/3 8/3
= 312 [m (m + 1) (no®) — 42 (no®) ] .

(8)

Fig. 1 shows the dependence of 73 on the slope
parameter of repulsive forces m at the temperature T =
100 K. For example, at m = 12 which corresponds to the
Lennard—Jones potential, the decay time of the MVACF
turns out equal to 3.55 x 107!2 s. A comparison of the
results of computer simulation [8] with the normalized
autocorrelation functions @; (t) = ¢ (T) calculated
according to formulae (2) and (4) is presented in Fig. 2.
The calculations were carried out for the values of the
slope parameter m = 18 and 24 on the isotherm T =
100 K. As is seen from Fig. 2, the dependence of the
normalized autocorrelation function of the one-particle
contribution @4 (t), which decays by the polynomial law,
intersects the data of molecular dynamics [8] at a definite
point z. = 3t = 0.78, if the slope parameter m = 24,
where 7); is the Maxwell relaxation time of viscous
stresses in the liquid. Thus, summing up both plots, the
MVACF can be written down as

@ (t) = [p1(t) — pe(t)]B (tx — 1) + pe(t), (9)
where
{ O(t. —t)=0, t.—t<0,
O(t, —t)=1, t,—t>0,
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Fig. 2. Time dependences of the autocorrelation functions.
The solid curve corresponds to the normalized autocorrelation
function of a Lagrange particle [5], the dash-dotted curves to the
dependences ¢1(t) that decay by a polynomial law, the dashed
curves to exponential dependences, and the dotted curve to a
dependence obtained on the basis of the molecular dynamics
data [8]

@e (t) is the collective component of the MVACF, and
t, = 27y zs. In accordance with formula (9), the one-
particle contribution to the self-diffusion coefficient of a
molecule is determined by the expression

D=3 [ o1~ putolat.

0

(10)

The values of the self-diffusion coefficient D of liquid
argon, taking into account formula (10), are quoted
in the table. In this table, the notation Dp is used
for the self-diffusion coefficient calculated taking into
account the dependence @1 (t) in the form of a quadratic
polynomial, D¢ in the case of the Gaussian exponent
dependence, and Dey, for the experimental value of
the self-diffusion coefficient [12]. The best agreement
between theoretical values and experimental data takes

Self-diffusion coefficient of liquid argon at T=100 K for
various values of the slope parameter m

m tex 1013, Dgx10°, Dpx10°, Dexpx 103,
s cm?/s cm?/s cm?/s

28 3.44 2.54 2.395

24 3.47 2.61 2.416 2.47

18 3.81 2.72 2.61

12 5.03 3.17 3.298
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Fig. 3. Comparison of theoretical and experimental [12]

temperature dependences of the self-diffusion coefficient of liquid
argon. Ty, is the melting temperature

place for the slope parameter values m = 24
and 28. A comparison of the theoretically calculated
temperature dependence of the self-diffusion coefficient
with experimental data [12] is presented in Fig. 3.

We note that the computer simulation of the
MVACEF, carried out making use of the Lennard—
Jones potential (12:6), resulted in a more abrupt decay
of this function in comparison with the polynomial
dependence (4). Moreover, formula (4) reproduces the
results of computer simulation [12], obtained for the
slope parameter values of 24 and 28, with quite a good
accuracy, which is in a qualitative agreement with the
results obtained in work [13], where the slope parameter
values were obtained on the basis of the analysis of the
statistically substantiated equation of state.

Summarizing the results reported in this work and
taking into account the results of works [13, 14], we
may say that the slope of the potential function is
an individual characteristic of the specific substance
considered in the framework of the power-law model of
intermolecular potential, and the value of this parameter
depends on the aggregate state of the substance (for
example, for gaseous argon, m = 15 [14]). Thus, all those
circumstances evidence for an effective character of the
functional form of the repulsive potential.
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JIOCJIJI>KEHHSA OYHKITOHAJIBHOT ®OPMUI
MI2KMOJIEKYJIIPHOI'O IIOTEHITIAJTY

HA OCHOBI CAMOIN®Y3Ii

MOJIEKYJI PIJIUHUI

B.IO.Bapoux, K.C.Hlaxyw
Pesmowme

Ha ocuoBi mociigkeHHsT TeMIepaTypHOI 3aJI€2KHOCTI OJHOYACTHH-
KOBHX BHECKIB y koedinient camonudysil o6unciaeno miarinai 3ua-
YeHHs [apaMeTpa KPYTH3HH mOoTeHHiasbHOI dyHKIii. Teoperuuni
3HadeHHs KoedilienTa camogudy3il ajs piaKoro aprony 36irarorTb-
Cs 3 eKCIEePUMEHTAJIbHAMH JAHUMU T Pe3YJbTaTAMU MAIIHHHOTO
MOZIEIIOBAHHSA IIPU IEBHUX 3HAYEHHSAX IMapaMerpa KpyTu3nu. llpn
IIbOMY aBTOKODeJsIiiiHa MYHKIiA MBUIKOCTI MOTEKYIN HaAUOImbIT
BJaJIO AlIPDOKCUMYETHCA KBaJPATUIHUM HO.T[iHOMOM.
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