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We study the kinetics of compaction and segregation of granular

materials in the field of vibroaccelerations or in contact with other

external sources of energy. In the vicinity of quasistationary states,

the relaxation of the field of the order parameter is described with

the use of simple obvious models of inelastically colliding particles,

the kinetic model of free volume, and the Landau�Ginzburg

and Cahn�Hilliard approaches. The obtained results are in good

agreement with experimental data.

1. Introduction

Granular materials are of a great scientific and

technological relevance and display the properties

intermediate to those of solids, liquids and gases

[1�3]. Because granular materials dissipate energy

on collision, they exhibit the interesting, sometimes

even intriguing dynamical properties under conditions

when the collisional energy loss is compensated by a

continuous input of energy. In the initial stages of the

dynamical evolution of a freely evolving homogeneous

system of inelastic granular particles, the system

continuously loses energy in a so-called homogeneous

cooling state, where the density field is approximately

uniform. This state is unstable to density fluctuations,

and the system evolves into an inhomogeneous cooling

state, where particle-rich clusters are formed and grow.

In contrast to a good understanding of the homogeneous

cooling state, there is a limited understanding of the

nonlinear domain growth processes depending on the

granular density and velocity. In particular, the question

about the physical reasons of similarities between freely

evolving granular materials and the phase-ordering

dynamics involving the relevant morphologies in the

inhomogeneous cooling state presents a challenge for the

statistical physics of complex systems.

In [4], it has been shown that, in terms of the

relevantly defined order parameter, the kinetics of

clusterization like those of compaction or segregation

should obey the Landau�Ginzburg-like scenario of the

phase ordering dynamics with a nonconserved order

parameter field.

However, it is not clear in advance why the Landau�

Ginzburg scenario of the phase-ordering kinetics occurs,

but not, for instance, a Cahn�Hilliard dynamics which

describes the relaxation of a conserved order parameter

field [5].

Consider the nondiffusive dynamics of granular

particles which move along straight lines, until they

collide with other particles. In this scenario, the density

and momentum are conserved quantities. Depending on

the density of the fluid, the distance traveled by particles

prior to a collision may be considerable. Therefore,

the relevant variables (e.g., the order parameter) are

conserved on the macroscopic length scale of the mean-

free path and not on the microscopic length scale.

Typically, the conservation length scale is comparable to

the length scale of coarsening clusters which grows with

time. Therefore, the density (the order parameter) field

are globally conserved, rather than locally conserved.

2. Free Volume Dynamics

If we describe a compaction induced by the weak tapping

of a granular system, as the process, where a grain can

jump into a hole of the appropriate size under the given

distribution of hole sizes, the free volume dynamics obeys

the simple kinetic scenario

d�

dt
= kF; (1)

where F is the distribution function of hole sizes and k

is the kinetic coefficient, � = �! is the compactivity, �

is the density of grains (the number of grains per unit

volume, each with a volume !).

Taking F to be the Poisson type

F = exp
�
�!




�
; (2)
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Fig. 1. Density curve for the free-volume kinetics

which describe the probability for any volume to be

larger than the volume of a typical grain !. Here,


 =
1

�
� 1

�m
= !

�
1

�
� 1

�m

�
=

!

��m
(�m � �) ; (3)

�m and �m are the maximal values of the density and

compactivity (which are approached asymptotically),

respectively.

Writing the kinetic equation in terms of

compactivities, we get

d�

dt
= k exp

�
� ��m

�m � �

�
: (4)

Integrating (4) from the initial value �1, we obtain

the functional

exp (�m) kt = (�m � �1) exp

�
�2m

�m � �1

�
�

� (�m � �) exp

�
�2m

�m � �

�
+

+�2m

�
E1

�
� �2m
�m � �1

�
�E1

�
� �2m
�m � �

��
; (5)

where E1 (z) is the exponential integral.

Solving (5) with respect to � (because of �1 < � <

�m) in the asymptotic limit and neglecting the vanishing

terms, we arrive at

� = �m

�
1� �m�

1 + � ln (1 + t=t0)

�
; (6)

where

t0 =
1

k

�
�m � �1

�m

�2
exp

�
�1�m

�m � �1

�
;

� =
�m � �1

�2m
: (7)

The behavior of � given by (6) as a function of t is

plotted in Fig. 1.

Thus, from the simple free volume dynamics, we

have obtained the logarithmic law of compaction, which

have been revealed in [6]. The time given by (7) tells us

roughly how many time we need for compaction.

Note that when the initial state of a granular system

is prepared so that �1 is close to �m, the slow logarithmic

evolution should be observed during a long time.

The model described above can be also expanded on a

two-component granular mixture. Introducing the ratio

� = �L=�S , where �L and �S are the compactivities of

large and small fractions, respectively, we note that, for

such a system, one can expect two types of the dynamics

which correspond to two different states of the system:

with � > ��, where the large grains are rather compact,

and � < �� with raisins floating in the dense matrix

of flour. Here, �� is some typical value for � on the

imaginary phase diagram for a two-component granular

system. One can expect along this line that we will

get again logarithmic relaxation laws, but with different

rates for both states. Also, we expect that the slower

mode will dominate the compaction. The cross-over

between the two relaxations will give the information

about details of the compaction (or segregation).

As follows from the results of the performed analysis

and the data of direct physical experiments, the

evolution of the density (compactivity) field is analogous

to the phase ordering dynamics in the Landau�

Ginzburg and Cahn�Hilliard scenarios [7].

3. The Kinetics of Granular Segregation

It is known from numerous experiments [8�13] that,

when granular materials are placed in a rotating

bed, a different flow dynamics is observed. Generally

speaking, many parameters are involved in the process of

segregation, such as the size ratio, shape, mass, friction

forces, rotating velocity, filling of a drum, etc. The

question naturally arises: what is the simplest model

representing the essential physics?

One can say that the size segregation mechanism can

be seen as a more pronounced influence of one attractor

as compared to the other. This is a reminiscence of

non-equilibrium phase transitions, the control parameter
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being the size ratio (nevertheless, the non-trivial point is

the importance of fluctuations which are of the size of the

system). If we accept this, we may describe the evolution

of such a kind of systems by some displacement field

� (~r; t). Clearly, we may define deformations ~r� (~r; t)
inside the frozen phase. To describe the phenomena of

segregation more precisely, the order parameter field

should be introduced as follows. From experimental

data, let us define the region of a drum statistically

occupied by the cluster of small particles in the final

segregated state. When the process becomes stationary,

one can take pictures, and, after developing, the

segregated zone will be defined. The kinetic study will

be reduced, afterwards, to counting the number of

particles which belong to this segregated zone. From

these operations, one can deduce the area 
 (t) occupied

by small particles in the segregated zone defined above.

The connected mass created in this way is called the

reference mass (a mass is said to be �connected� when

its particles actually touch each other). Its volume or

surface area reached in principle after an infinite time is

denoted by 
 (1). Clearly, 
 (t) � 
 (1). At this point,

it is natural to introduce the average ordering parameter

P (t) that can vary between 0 (for completely random

and homogenous mixtures) and 1 (for the fully developed

reference mass). This parameter is defined in terms of


 (t) by

P (t) =


(t)


(1)
� 
(0)


(1)

1� 
(0)


(1)

: (8)

As follows from experimental data [13�18], the

relevant order parameter P (t) defined by Eq. (8) shows

a global trend of increasing in time and saturating

asymptotically (on the long run after the cylinder or

2D drum rotation has been started). A typical time

evolution of the average order parameter P (t) is well

enough approximated by an exponential law of the form

P (t) = P (1)

�
1� exp

�
� t

�c

��
(9)

with a characteristic segregation time �c. Note that, from

the point of view of the general theory, it is not possible

to generate an exact steady-state trajectory in the phase

space. This is because the measure of any dissipative

non-equilibrium steady state within the phase space is

zero [19, 20], as well as the probability of selecting the

initial phase points that lie exactly in an equilibrium

steady state. For such purposes, one can use the

equilibrium (relaxation) method of approaching a steady

state. This picture can be expressed mathematically

in the (~r; t) space by definition of the relevant order

parameter which demonstrates the system evolution

starting from the initial state, passing the intermediate

heterogeneous state, and finishing with the asymptotic

non-equilibrium stationary state (local equilibrium or

steady state).

Consider the kinetic theory of non-equilibrium

phase transitions (which is based on the Landau

theory of phase transitions [7]) as an instrument for

the investigation of the fragmentation within open

dissipative systems (with an example of a driven dry

granular system in the segregation state) close to the

critical region of a metastable stationary state (steady

state).The existence of this state follows definitively

from experiments. On that way, considering the final

non-equilibrium asymptotic state, when the segregation

is reached, as a steady state, one can describe

the phenomenon of fragmentation (segregation) as a

relaxation with a relevantly determined order parameter

field.

Considering the radial segregation as a weakly non-

equilibrium relaxation process in terms of a relevant

parameter of ordering ' (~r; t) we focus on the evolution

of ' (~r; t) in the vicinity of the steady state. We assume

that the evolution of ' (~r; t) can be described with a

master dynamic equation of the Landau�Ginzburg type

for a non-conservative field ' (~r; t):

@'

@t
= ��ÆH

Æ'
(10)

or with the Cahn�Hilliard-type equation in the case of

a conservative field of ordering:

@'

@t
=��

�
��ÆH

Æ'

�
: (11)

Here, � is a kinetic coefficient, and H (') is the non-

equilibrium potential functional which can be taken as

H (') =

Z �
c

2

�
~r'
�2
� a

2
'2 � b

4
'4
�
d~r: (12)

Substituting functional (12) into (10), (11), we

obtain (in dimensionless variables) the following

equations of motion for ~' (~r; t):

@ ~'

@�
= �0 ~'+ ~'� ~'3 (13)

and

@ ~'

@� 0
= ��0

�
�0 ~'+ ~'� ~'3

	
; (14)
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respectively. Here, we define the dimensionless variables

� � �at ; � 0 � �ct ; ~r 0 �
r

a

c
~r (15)

and measure the field ' (~r; t) in units of
p
a=b:

~! (~r; t) �
r

a

b
~' (~r 0; �) : (16)

The nonlinear partial differential equations (13), (14)

cannot be integrated in quadratures in general. But, in

the vicinity of the imaginary point of a transition to the

steady state, we can use the quasilinearization scheme

[21�22]

'3 (~r; t) =


'2 (t)

�
' (~r; t) ; (17)

by neglecting the fluctuations of ~' (~r; t). Here, the

angular brackets denote the procedure of averaging

over all initial states. It is possible to show that

approximation (17) is more adequate in the limit when

the fluctuations of the order parameter field ~' (~r; t)

are negligible in comparison with the quasiequilibrium

value of the order parameter. We consider first the field

equation of motion in the case of a non-conservative

order parameter in more detail. Substituting (17) into

(13), we obtain

@ ~'

@�
= �0 ~'+

�
1�



~'2 (�)

��
~': (18)

Equation (18) seems open-circuited because of the

presence of the second moment term


~'2 (�)

�
. But the

rigorous solution of Eq.(18) can be obtained, as we are

going to show, in terms of


~'2 (�)

�
, i.e. of the second

moment of ~' (~r; t). In terms of the Fourier transforms

of the order parameter denoted as ~'~k (�), Eq. (18) takes

the form

@ ~'~k (�)

@�
=
�
�k2 + 1�



~'2 (�)

��
~'~k (�) ; (19)

where

~'~k (�) =
1

(2�)

Z
e�i

~k~r 0 ~' (~r 0; �) d~r 0:

The solution of (19) has been obtained rigorously in

[21, 22]. The different scenario of relaxation for


~'2 (�)

�
can be realized asymptotically under certain conditions.

Namely, when


̂ (A;�;C)
1p
�
> ~
 (A;�;C) exp (�2�) ; (20)

we have



~'2 (�)

�
' 1

1 + 
̂p
�

� 1� 
̂p
�
: (21)

Respectively, in the case of the inequality opposite

to (20), we have



~'2 (�)

�
' 1

1� ~
 exp (�2�)
�

� 1 + ~
 exp (�2�) : (22)

Here, the values of 
̂ (A;�;C) and ~
 (A;�;C) have

been determined in [4, 21, 22].

Thus, within the presented model, the initial

conditions influence the character of the asymptotic

behavior of the order parameter field, providing long-

time memory effects.

Consider now the behavior of the parameter of

ordering in the case of conservative fields given by Eq.

(14). Using the quasilinearization procedure defined by

Eq. (17) and repeating the scheme developed for a non-

conservative field, we obtain



~'2 (� 0)

�
=

Z
d~k~g

�
~k
�
exp

�
�2� 0k4+

+2k2
� 0Z
0



~'2 (s)

�
ds

3
5 ; (23)

where ~g
�
~k
�

is the Fourier component of the static

structure factor which given in [4], and � 0 is the

dimensionless time of (15). After some calculations,

relation (23) yields



~'2 (� 0)

�
=

2�p
2� 0

Z
��(� 0)

p
2� 0

d� exp
�
�2
�
�

�

s
2
p
2� 0� + 2� (� 0)

4� 0
� ~g

2
4
s

2
p
2� 0� + 2� (� 0)

4� 0

3
5 ;(24)

where � (� 0) � � 0 �
� 0R
0



~'2 (s)

�
ds.

The integral in (24) is rapidly (namely exponentially)

convergent and furthermore can be well estimated by the

expression



~'2 (� 0)

�
=

�
p
�

2

p
� (� 0)

� 0
exp

�
�2 (� 0)

2� 0

�
�
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�erfc2
�
�� (� 0)p

2� 0

�
~g

"r
� (� 0)

2� 0

#
: (25)

We are now going to simplify the rigorous

functional (25). Since the function exp
�
�2(� 0)=(2� 0)

�
�

�erfc2
h
��(� 0)=

p
2� 0
i
behaves exponentially, and the

function ~g
hp

� (� 0) =(2� 0)
i

shows limited variations

within the interval
h
~g [0] ; ~g

h
1p
2

ii
, without losing the

general features, functional (25) can be represented as

y (� 0) = 
� (� 0)

� 0
exp (� 0) ; (26)

where

y (� 0) �


~'2 (� 0)

�
;  � �3

4
~g2
�

1p
2

�
:

Expression (26) produces a differential equation for

the definition of y (� 0) of the Abelian type, namely

du

d� 0
= f3u

3 + f2u
2 + f1u ; (27)

where

f3 � �2�2� 02 exp (� 0) ; f2 � �2 exp (� 0) ;

f1 � �; u (� 0) � 1=2� 02y (� 0) ; (28)

� =

�
4; � 0 !1
1; � 0 ! 0

;

� =

� � 1
� 0 ; � 0 ! 0

1
2
� 1

� 0 ; � 0 !1 : (29)

Equation (27) cannot be integrated in quadratures,

except for a few particular cases [23�25]. But, to

conclude the qualitative analysis, it is enough to show in

our case that the exponentially relaxing functions belong

to the class of asymptotic solutions of Eq. (27). In fact,

it is simple to show that functions of the type

u (� 0) = [1 + " (� 0)] =2� 02; (30)

where

" (� 0) =

���� ! 0;

� 0 !1;
lim

� 0!1
" (� 0) = 0;

Fig. 2. Granular segregation curve (dots are the data of experiment

[10], the solid line is theoretical results)

satisfy Eq. (27) if " (� 0) tends to zero more rapidly than

any power law (in principle, this strong condition is even

not required). Equation (30) perfectly satisfies Eq. (27)

for any " (� 0) = �̂ (� 0) e��̂�
0

(where �̂ (� 0) belongs to
the class of functions of limited variations). Thus, the

exponential relaxation law


~'2 (� 0)

�
= 1� exp (�� 0=� 00)

definitively follows from the scenario given above. Note

that, strictly speaking, the observable experimental data

on the behavior of the order parameter under segregation

show weakly non-monotonic behavior superposed on the

general saturation tendency (see Fig. 2) [10].

This behavior can be simply described with the

help of the factor �̂ (� 0) which could behave also

non-monotonically (within a limited variation in the

given interval). Note that solutions of the type

�̂ (� 0) exp
�
��̂� 0

�
also asymptotically satisfy (27).

When the Abelian equation (27) with the enough degree

of accuracy is reduced to the Riccati-type differential

equation

du

d� 0
= 2u2 � u

� 0
(31)

which has the simple integral [23�25]

u (� 0) =
1

c� 0 � 2� 0 ln � 0
: (32)

Expression (32) produces the relevant function

y (� 0) =


~'2 (� 0)

�
=

c1

2� 0
� 2

2

ln � 0

� 0
; (33)

where c1 is a certain constant. As follows from (33)

for the relevant dimensionless times � 0, the order

parameter can behave nonexponentially slowly (we call

this behavior as a metastable �heterogeneous state�).

Such a critical dynamic decay belongs, of course, to the
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specific character of the considered model. But, at the

same time, it is known from the experiments with driven

granular materials [10] that a typical relaxation time of

a segregation cluster remains almost unchanged as the

rotation velocity increases by one order of magnitude.

This behavior can reflect the existence of a critical

slow dynamic regime (in terms of the order parameter

field description � the slow relaxation metastable state

regime). It is clear that, in the framework of the

considered model, the relaxation picture cannot depend

qualitatively on parameters like, e.g., the ratio of the

diameters of particles in a (binary) mixture because,

by the naked eye, the definition of the order parameter

for growing segregated phases is not influenced by such

parameters.

Our results demonstrate that, while the proposed

model qualitatively behaves in agreement with the

observed scenarios, the phenomenon of segregation in

terms of order parameter fields still offers surprises.

A full and detailed description of this effect (among

many other intriguing properties of granular materials)

continues to be an interesting challenge to theoretical

and experimental physics.

4. Stationary States in a Model 1D System

with Dissipative Interactions

The theoretical model is sufficiently simple to allowa

rigorous analytic analysis to be performed, but it

contains, at the same time, some features relevant to the

theory of granular flows. The preliminary developments

given above motivate us to proceed the analysis of the

effects of dissipative interactions on the structure of

stationary states. We will present the description of the

coupling to a vibrating base via stochastic boundary

conditions or dissipative binary collisions, being the

ingredients of the model. In the search for understanding

the new features induced by dissipation, it is interesting

to compare the situations with and without dissipative

coupling. The simplest model allows us to pursue this

idea, as well as to examine the details in constructive

properties of the asymptotic stationary state (steady

state).

Consider a 1D model with dissipative collisions

balanced by a single rebound velocity. Our object will

be to study the effects of inelastic binary collisions

taking place within the one-dimensional N -particle

system, first vertically and then horizontally moving

and forming a column or a cluster of identical masses

falling with acceleration (�g) in an external field and

colliding with the base or moving between the hot

and rebound walls. Model with horizontal distribution

of inelastically colliding particles will be considered

elswhere. Note that the contest of maded conclusion also

qualitively conserved in this case. The energy losses due

to binary collisions between the particles are balanced

by encounters with the base or energy input from the

hot wall, playing the role of the energy source. The

question is to study the possibility and features of the

resulting stationary state or the kinetics of a relevant

clusterization. Note that the mentioned problem is

connected with the famous problem concerning the

dynamics of a fluidized granular matter. Such a system

with the base represented by a vibrating plate has been

the object of intensive studies [26,27].

Choose first the simplest vertical system with N = 2

and denote the relevant states of two particles by (z1; v1)

and (z2; v2), respectively. Putting particle 1 being close

to the base, we note that the linear ordering 0 � z1 � z2
is preserved by the dynamics.

Under a binary collision between masses 1 and 2,

their initial velocities (v1; v2) take instantaneously the

post-collisional values

v01 = v1 �
1 + "

2
v12;

v02 = v2 +
1 + "

2
v12; (34)

where v12 = v1 � v2 and " is the restitution coefficient.

When " = 1, the particles just exchange their

velocities, and the total kinetic energy is conserved. For

" < 1, the dissipation occurs.

By Eu
1 , we denote the energy of particle 1 in

its ascending motion after a collision with the base.

Consider the case where the rebound velocity at the

base has a singular distribution represented by the Dirac

Æ-function. Introducing the rebound probability density

' (v), one can write

' (v) = Æ (v � v0) ; (35)

where v0 is some fixed characteristic value of the rebound

velocity.

In accordance with (34), we have

Eu
1 =

mv21
2

: (36)

Supposing that particle 2 is falling then with energy

Ed
2 and using the collision law (34), we obtain the

dissipated kinetic energy

�
Ed
1 +Eu

2

�
�
�
Eu
1 +Ed

2

�
= �1� "2

4
mv212: (37)
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We try to construct the stationary state of our

system along the following line. In case where the energy

of particle 2 (upper particle) is conserved and Eu
2 = Ed

2 ,

the collision with particle 1 just reverses its velocity.

From (34) and (37), we have

v1 = v2
"� 3

"+ 1
: (38)

Let us introduce the time �u, for which particle 1

attains the initial velocity v1 as

�u =
v0 � v1

g
: (39)

To fall back to the base, the particle requires the time

�d = T � �u; (40)

where

T = �2v2

g
(41)

is the period of the expected collision.

We give v2 now in terms of v0 and ". For that,

we introduce the distance z which satisfies the classical

dynamics

z = v0�
u � g

2
[�u]

2
(42)

or, in terms of v
0

1 and �d,

z = �v01�d +
g

2

�
�d
�2
: (43)

From (42), (43), and (34), we obtain

v2 = �v0
"+ 1

"+ 3
: (44)

With the help of Eq. (41), (44), in the case of a system

which includes two colliding particles, we get the period

of oscillations in the considered stationary regime as

T2 =
2v0

g

"+ 1

"+ 3
: (45)

In case of a system of three colliding particles, we

obtain

T3 =
6v0

g

1 + "

19� "
: (46)

The interval �z1 where the collision of the lower

outmost particle occurs in a stationary regime is

�z1 =
10v20
g

(4"� 1) (4� ")

(19� ")
2

: (47)

Because of the obviously positive character of �z1, it is

follows from (47) that, under the condition

" < "c =
1

4
; (48)

the colliding regime fails.

The stationary regime can occur also in the case of

an N -particle system. The relevant expression for the

period of stationary motion has the form

TN =
v0

g

2N (1 + ")

N2 (1 + ") + 2 (1� ")
N�1P
i=1

(N � i)
2

: (49)

Note that, under the condition

" < "c =
N � 2

N + 1
; (50)

the stationary regime will fail. Putting, for instance

N = 99, we have "c = 0:97 which is close to the elastic

limit (" = 1).

Consider now the behavior of the density of particles

in the stationary state. For that reason, we introduce the

ratio of the intervals of a periodic motion for the higher

outmost particle �zN and lower outmost particle �z1:

�z1

�zN
= (2N � 1)

"
1�

�
1� "

1 + "

2N � 1

3

�2#
: (51)

The function �z1=�zN is plotted in Fig. 3 as a function

of the total number of particles, N .

As follows from the data presented in Fig. 3,

the dependence of �z1=�zN on N (contrary to the

Boltzmann picture) mimics the nonmonotonic behavior.

We also note that Fig. 3 shows the existence of the size

of a system, for which the dynamic compaction has a

maximal value (under the given restitution coefficient

" = 0:97). When the size of a system approaches the

value N = 99, the stationarity of the system fails in

accordance with criteria (50).

The expression for the total size of a system

approaching the stationary state in terms of f�zig can
be written as

L =
gT 2

8
+

N�1X
i=1

�zi; (52)

where f�zig is the set of intervals of the stationary

motion of particles included in the system:

�zi = (2 (N � i) + 1)
gt+i t

�
i

2
: (53)
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Fig. 3. Distribution f(�zi) of intervals for the periodic motion of

particles in the stationary state

Fig. 4. Velocities of inelastically colliding particles in the steady

state

Here, t
+;�
i are the times of the free motion of the i-th

particle in the stationary state in the directions up and

down, respectively.

By induction, it is easy to show that

t+i
t�i

=
(N � i+ 2) "� (N � i� 1)

(N � i+ 2)� (N � i� 1) "
: (54)

Respectively, Eq. (52) could be rewritten as

L =
gT 2

2

 
1

4
+

N�1X
i=1

(2 (N � i) + 1)
A

(1 +A)
2

!
; (55)

where A = t+i =t
�
i .

Fig. 4 shows the behavior of the velocities of

inelastically colliding particles (in the case N = 3) in

the stationary regime, the restitution coefficient being

equal to 0:9. Thus, the behavior of the velocity field is

influenced by the degree of thermalization.

Thus, we have considered an approach within

statistical mechanics to the problems of compaction

and segregation for granular materials. The possibility

to describe some general features in the physics of

a granular matter with the concepts of statistical

mechanics requires a more precise investigation of the

criteria and properties of asymptotic quasistationary

states, where statistical mechanics should be valid.

The obtained results prove that the simple kinetic

models can be effectively used along this line in

some particular cases, where such steady states

are artificially constructed or clearly observed

experimentally.
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ÊIÍÅÒÈÊÀ ÏÐÎÖÅÑIÂ Ó ÃÐÀÍÓËÜÎÂÀÍÈÕ

ÌÀÒÅÐIÀËÀÕ Ó ÏÎËI ÂIÁÐÎÏÐÈÑÊÎÐÞÂÀÍÜ

Î.I. Ãåðàñèìîâ, Ì.Ì. Õóäèíöåâ, Î.À. Êëèìåíêîâ,
À.ß. Ñïiâàê

Ð å ç þ ì å

Ìîäåëüíèé àíàëiç ïðîöåñiâ êîìïàêòèçàöi¨ òà ñåãðåãàöi¨ ãðàíó-

ëüîâàíèõ ìàòåðiàëiâ ó ïîëi âiáðîïðèñêîðþâàíü àáî ó êîíòàêòi

ç çîâíiøíèì ðåçåðâóàðîì åíåðãi¨ çäiéñíåíî çà äîïîìîãîþ ìîäå-

ëåé ñòàòèñòè÷íî¨ ìåõàíiêè ïîáëèçó êâàçiñòàöiîíàðíèõ ñòàíiâ,

ìîæëèâiñòü iñíóâàííÿ ÿêèõ âèòiêà¹ ç åêñïåðèìåíòó òà îáãðóí-

òîâó¹òüñÿ òåîðåòè÷íî çà äîïîìîãîþ ïðîñòèõ íàî÷íèõ ìîäåëåé

íåïðóæíèõ ÷àñòèíîê ó êîíòàêòi ç òåðìîñòàòîì, ùî ïðèïóñêà-

þòü ìîæëèâiñòü òåðìàëiçàöi¨. Îòðèìàíi òåîðåòè÷íi âèñíîâêè,

çðîáëåíi íà îñíîâi êiíåòè÷íî¨ ìîäåëi âiëüíîãî îá'¹ìó òà ïiäõîäó,

ÿêèé çàñòîñîâó¹òüñÿ çà ñöåíàði¹ì Ëàíäàó�Ãiíçáóðãà òà Êàíà�

Õiëëiàðäà äëÿ îïèñó ðåëàêñàöi¨ ïîëÿ âiäïîâiäíî âèçíà÷åíîãî

ïàðàìåòðà ïîðÿäêó, äîáðå óçãîäæóþòüñÿ ç ðåçóëüòàòàìè åêñ-

ïåðèìåíòàëüíèõ äîñëiäæåíü.
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