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The static shear viscosity � of a bimodal suspension is studied. The

value and volume fraction dependence of � is determined within

the cell approach. It is shown that the characteristic peculiarities in

the behaviour of � are connected with inhomogeneous distribution
of small disperse particles in a system. The comparison of the

obtained results with the computer simulation data is performed.

1. Introduction

The rheological properties of bimodal suspensions have

numerous technical applications [1]. This circumstance

stimulated experimental [2] theoretical [5] studies and

computer simulations [3, 4] in the last years. The

main attention of the investigators was focused on the

dependence of the shear viscosity on the volume fractions

�1 and �2 occupied by components and the ratio � = R1

R2

of their radii. In the experiments [2, 6] and computer

simulations [3] the following characteristic details of

the shear viscosity �(�; �) considered as a function of

� = �1

� at constant � = �1+�2 and � were discovered:

1) �(0; �) = �(1; �), �(�; �) < �(0; �), i.e. the shear

viscosity of a bimodal suspension is always less than �
for a one-component suspension with the same volume

fraction �; 2) the decrease of �(�; �) at � = const near
� = 0 and � = 1 is asymmetric:

���0�(0; �)�� 6= �0�(1; �);

3) the minimum value �m(�) = min �(�; �) of the shear

viscosity increases with �.

Such a behaviour of �(�; �) was an object of the

theoretical analysis in works [2,5]. In [2], the expression

�(�; �) = �0

�
1�

�

�m(�; �)

�
�0:15

was proposed. It has the heuristic character and cannot

be justifying by the hydrodynamic methods in their

applicability region.

In the present work, we study the shear viscosity

of a bimodal suspension in terms of the cell approach

developed in [7, 8] and appropriate physical arguments.

In such a way, we are able to calculate the shear

viscosity for the following cases: 1) not dense suspension

(� < 0:15); 2) dense suspension (� < 0:5) with � � 1
and 3) suspension with close components (� � 1). It

will be shown that the results obtained are in a quite

satisfactory agreement with the experimental data.

2. Shear Viscosity of Monodisperse Suspension

To describe the average shear viscosity � of a one-

component suspension of spherical particles, we will

use the cell approach developed in [8]. The distinctive

features of the last are: 1) the rotational motion of

a particle in the spherical cell is considered; 2) the

dependence of the cell radius on the volume fraction

� occupied by particles is taken into account. Due to

the first point, the symmetry of hydrodynamic flows

is consistent with the shape of a cell. The second

assumption allows us to choose the values of the model

parameters that reproduce, at small �, the first terms of
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the �-expansion in the series with respect to � obtained

with help of the hydrodynamic perturbation theory [9].

In such a way, the following expression for the average

shear viscosity has been found [8]:

� = �0F ( ): (1)

Here, �0 is the shear viscosity of a liquid,  =
�
Rp
RC

�3
,

Rp and RC are the radii of a particle and the cell,

correspondingly,

F ( ) =
 (1� )

1 +  (1� )�
p
1 + 2 2(1�  )

: (2)

The dependence of RC on � is given by the formula

RC = a(�)RG; a(�) = �0 + �1�+ �2�
2:::; (3)

where RG is the average interparticle distance,

�0 =

�
6

2:5�

� 1

3

� 0:93;

�1 �
��40
18

�
6

��30
� 5:2

�
� 0:127; �2 � 0:03: (4)

It is evident that

� =
�

6

�
Rp

RG

�3

; (5)

and the relation between  and � is 	 = 6
�a3(�)

�.

In accordance with the above, at small �,

F ( ) = 1 + 2:5� + 5:2�2 + :::; (6)

which coincides with the expression given in [9].

The hydrodynamic description of the rotational

motion of a particle inside the cell is correct up to

�x � 0:49, corresponding to the occasional dense

packing of spherical particles [10]. The comparison with

experimental data [11] shows that, in the interval

0 < � < 0:49, there is a very good agreement between

them and the values calculated according to (1) with

parameters (3)�(5).

It is necessary to emphasize that the shear viscosity

of a one-component suspension is only determined

by the volume fraction of suspended particles and

does not depend on their radius. This conclusion

correlates successfully with experimental data [11]. The

dependence of � on Rp is expected for � > �x only.

3. Bimodal Suspension with Strongly Different

Particles (R2 � R1) in the Case where

�1 � �2 � �

In this Section, we consider the shear viscosity of a

bimodal suspension, whose fractions differ from each

other by the radii (R2 � R1) of their particles and

the volume fractions �1 and �2 satisfying the inequality

�1 � �2. Obviously, the small disperse fraction can be

considered as a suspending fluid for the second fraction.

Therefore, we can write

� = �2F ( 1); (7)

where the meaning of  1 is evident. In its turn, the shear

viscosity of the small disperse fraction of the suspension

can be approximated by formula (1):

�2 = �0F ( 2): (8)

Hence,

� = �0F ( 1)F ( 2): (9)

Let '2 be the volume fraction of the small disperse

phase. It is connected with �2 by the relation

'2 =
�2

1��1
: (10)

Since

 2 =
6

�a3('2)
'2 (11)

and

� = �1 +�2; (12)

relation (9) yields

�(�1;�) = �0�(�1)�

�
���1

1��1

�
�

� ��(��)�

�
1� �

1� ��
�

�
; (13)

where �(t) = F
�
6
�

t
a3(t)

�
. The applicability region of

(13) is determined by the inequality

�1 � �2 � � < 0:5: (14)

If � � 0:15, then one can use, in accordance with (6),

the expression

�(�1;�) =

= �0[1 + 2:5�+ 5:2�2
� (1:65�� 23:5�2)�� + :::]: (15)
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Fig. 1. Dependence of the shear viscosity of a bimodal suspension

on � at volume fraction � = 0:3 and � = 5. Dotted and dashed

lines correspond to Eqs. (13) and (22), respectively, circles are

experimental data [2]

Fig. 2. Dependence of the shear viscosity of a bimodal suspension

on � at volume fraction � = 0:4. Solid line corresponds to (21),

dash lines show the asymptotic behavior of � at � ! 0 (left line)

and � ! 1 in accordance with (19) and (18), circles are computer

simulation data [3] for the same � and � = 4

As we see, the exchange of some part of small disperse

particles by large disperse ones of the same volume

fraction leads to a decrease in the shear viscosity.

Formula (13) is also qualitatively applicable in the

limiting case �1 ! � and in the intermediate region

�1 � �2. It is not difficult to verify that (13) leads to

the following consequences:

�(0;�) = �(�;�) (16)

Fig. 3. Character of an inhomogeneous distribution of small

particles in a system with rotating large particles

and����0

�(0;�)
���

�
0

�(�;�)
= 1��: (17)

This means that changing the shear viscosity for the

left side of the interval 0 � �1 � � should be more

sloping in comparison with that for the right side of

the interval. The curve corresponding to (13) is in a

satisfactory agreement with the experimental data [2]

for � = 0:3 and � = 5 (see Fig. 1). However, as follows

from Fig. 2, the agreement worsens for � = 0:4 and

� = 4.

4. Influence of the Inhomogeneous

Distribution of Small Particles

and Inertial Effects

The results obtained in Section 3 correspond to the

assumption about the homogeneous spatial distribution

of both disperse fractions. This condition seems to be

quite correct only at �1 � �2 < �. At �1 � �2

for dense enough suspensions, 0:2 � � � 0:5, the

homogeneous distribution of the small dispersed fraction

is violated. This effect is particularly pronounced in the

limiting case �2 � �1 � �. To diminish the production

of entropy caused by the rotation of large particles,

small particles should be accumulated in the regions

(voids) maximally removed from the centers of large

particles (see Fig. 3). In these regions, the gradients of

the velocity field take minimal values. This conclusion is

not related to the specificity of the rotational motion. In

this situation, the shear viscosity of a bimodal suspension

is mainly determined by the large disperse fraction:

�(�1;�) � �0�(�1) = �0�(��); � ! 1: (18)

The stronger the inequality �2 � �1, the higher the

accuracy of this relation is.

620 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 6
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Some revision of formula (13) is also necessary in the

opposite limiting case �1 � �2 � �. Here, we should

take into account that the mobility of large particles

is considerably less in comparison with that of small

particles. Due to this, the shear viscosity of the system

is mainly formed by small particles:

�(�1;�) � �0�('2): (19)

Here, in accordance with (10),

'2 = [1� (1��)�]�; � � 1: (20)

The difference between the values of �(�;�) given by

formulas (13) and (19) is proportional to �:

��(�2;�) = 2:5��0��([1� (1��)�]�):

With increase in �, this effect becomes less pronounced.

Thus, we expect at �1 � �2 that the shear viscosity

will be less than its value given by (13). The rotation

of large particles leads to the redistribution of small

ones so that the effective value of the volume fraction

'
(e�)
2 diminishes in comparison with '2 =

1��
1����. Since

the accumulation effect in (18) increases with �1 = ��,

one can assume that the effective volume fraction '
(e�)
2

decreases:

'
(e�)
2 = '2(1� ��)

p: (21)

The value of p seems to be natural to identify with that

determining the production ÆS of entropy as a function

of the gradient velocity gik: ÆS �
R
V

dV g2ik (V is the

volume of a cell). This yields that p = 2.

As a result, the shear viscosity of a bimodal

suspension is assumed to be equal to

� = �0(��)�((1 � �)(1� ��)�): (22)

The limit values of �(�2;�) at �2 = 0 and �2 = � are

the same:

�(0;�) = �(�;�) = �0�(�): (23)

However, their behavior is asymmetric at �2 ! 0 and

�2 ! �:

�(�2;�) =

=

�
�(0;�)� �

0

(�)�(1� �); � ! 0;

�(0;�)� �
0

(�)(1��)(���(1� �)); � ! 1:

(24)

Thus, it follows from our analysis that the decay rates

of the shear viscosity near the left and right points of

the interval (0;�) are related as

� =

�����
�

0

�(1;�)

�
0

�(0;�)

����� = 1��: (25)

This result correlates with experimental data [2]

quite satisfactorily (see Fig. 2). There, the comparison

of the experimental and theoretical values of �(�;�)
calculated according to (22) is also presented. It testifies

to the favor of our assumption about the inhomogeneous

distribution of small particles.

5. Bimodal Suspension of Components with

R1 � R2

Let us consider a bimodal suspension, whose components

differ slightly from each other only by their radii: R1 �

R2. To determine the shear viscosity of such a system,

we generalize the cell approach developed in [8]. More

exactly, we complete it by the arguments characteristic

of the mean field approximation.

Firstly, let R and RC be the average radii of particles

and the spherical cell:

R
3
= P1R

3
1 + P2R

3
2; (26)

R3
C = P1R

3
C1 + P2R

3
C2; (27)

where

P1 =
n1

n1 + n2
=

�1

�1 + �3�2

is the probability to take a particle of the first type,

P2 = 1 � P1, � = R1

R2
, ni, i = 1; 2, are the numerical

densities of particles.

The relation between the radii of particles and the

corresponding spherical cell is set by the formulas

R3
C1 =

�a3(�)

6�
R3
1; R3

C2 =
�a3(�)

6�
R3
2 (28)

similarly to that in [8], where a(�) is given by (3).

To determine the shear viscosity of a bimodal

suspension, we use the equation of energetic balance

(see [8])

W (R; �) = P1W (R1; �0; �) + P2W (R2; �0; �); (29)

where W (R1; �0; �) is the energy dissipation rate in

a cell occupied by the first particle, �0 and � are

the shear viscosities of the suspending fluid and the

bimodal suspension, W (R2; �0; �) takes the analogous

meaning, W (R; �) is the energy dissipation rate for an

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 6 621
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isolated particle of the average radius immersed in a

homogeneous liquid with viscosity �.
According to [8], we get

W1(R1; �0; �) =
8�

3

(1�  1)(2 +  1z
2)

(1�  1z)2

2R3

1�0; (30)

W2(R; �) =
16�

3

�
1� z

1�  z

�2


2R
3
�; (31)

where z = 1 � �0
�
,  1 =

R3

1

R3

C1

,  2 =
R3

2

R3

C2

,  = 6�
�a3(�)

,

i = 1; 2.
After respective substitutions, Eq. (29) transforms to

2
1� z

(1�  z)2
� =

=
(1�  1)(2 +  1z

2)

(1�  1z)2
�1 +

(1�  2)(2 +  2z
2)

(1�  2z)2
�2 (32)

and is, in fact, the equation for z. In the approximation

linear in the small parameter Æ = �3�1� (<)1, we find

z = z0 � Æ(3:45 + 2:34 ); (33)

where

z0 =
�1 +

p
1 + z 2(1�  )

 (1�  )
:

Thus, for the average shear viscosity of a bimodal

suspension, we get

�( ; Æ) = �0[�( )� Æ�
2( )(3:45 + 2:34 )] +O(Æ2): (34)

It is very essential that � is a function of � and Æ
only, which agrees fully with the computer simulation

results [3]. The correction term in (34) proportional

to Æ is negative, which also corresponds to the

tendency observed in the laboratory and computer

experiments [3].

6. Conclusion

In the present work, we have studied the behaviour

of the shear viscosity � of a bimodal suspension. To

describe the dependence of � on the dimensionless

parameter � = �1

� and � = R1

R2
, the modified version of

the cell approach [8] is used. It is shown that, at � = 0:3
and � > (�)1, the dependence of � on � is quite weak.

In this connection, the change of � at � ! 1 is more

essential in comparison with that for � ! 0, that is in

agreement with the results of Section 4. Unfortunately,

it is difficult to obtain more detailed numerical estimates

because of the small number of the experimental points.

It is taken into account that the spatial distribution

of small particles is inhomogeneous for dense enough

suspensions. To diminish the production of entropy

in the system, the particles with smaller radii should

be accumulated in the regions with minimal velocity

gradients. Due to this fact, the dependence of �(�;�)
near � ! 0 and � ! 1 is opposite to that corresponding

to the case � = 0:4.

The experimental results obtained in [2] are in

a satisfactory agreement with this conclusion. In

particular, at � = 0:4 and � = 4 the ratio����0�(0;�)
���=�0�(1;�) of the derivatives of the shear

viscosity at � ! 0 and � ! 1 is close to (1��), as follows
from (24). This fact supports our arguments given in

Section 4 about the inhomogeneous distribution of small

particles around large ones.
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ÑÒÀÒÈ×ÍÀ ÇÑÓÂÍÀ Â'ßÇÊIÑÒÜ ÁIÌÎÄÀËÜÍÎ�

ÑÓÑÏÅÍÇI�

Ì.Ï. Ìàëîìóæ, �.Â. Îðëîâ

Ð å ç þ ì å

Âèâ÷åíî ñòàòè÷íó çñóâíó â'ÿçêiñòü � áiìîäàëüíî¨ ñóñïåíçi¨. Îò-

ðèìàíî çíà÷åííÿ � òà ¨¨ çàëåæíiñòü âiä ïèòîìîãî îá'¹ìó çà äî-
ïîìîãîþ êîìiðêîâîãî ïiäõîäó. Ïîêàçàíî, ùî õàðàêòåðíi îñîáëè-

âîñòi ó ïîâåäiíöi � ïîâ'ÿçàíi ç íåîäíîðiäíèì ðîçïîäiëîì ìàëèõ

ñôåð ó ñèñòåìi. Íàâåäåíî ïîðiâíÿííÿ îòðèìàíèõ ðåçóëüòàòiâ ç

åêñïåðèìåíòàëüíèìè äàíèìè.
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