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The structure of the ground state and low-temperature

thermodynamic properties of a one-dimensional generalized

Wigner crystal on a disordered host-lattice are investigated. It

is established that the spectrum of elementary excitations has a

gapless structure at any finite values of the host-lattice disorder.

The instability of the ground state of the system with respect to

infinitesimal disturbances of the host-lattice order is discovered.

This instability results in the violation of a long-range order in the

system. The influence of the long-range action of the interparticle

repulsion potential on thermodynamic properties of the system is

considered.

1. Introduction

In the last few decades, investigators show the strong

interest in low-dimensional and multilayer lattice

conductors, where charge carriers (electrons or holes)

are essentially separated spatially from impurities. In

such conductors, the potential induced by impurity ions

in conducting layers slightly differs from a constant

value, and the thermodynamic and kinetic properties

are determined by the potential of electron-electron

(hole-hole) repulsion. Among conductors of such a kind,

the systems where the tunneling of charge carriers

between sites of a host-lattice (a substrate) is suppressed

by their mutual Coulomb repulsion attract a special

attention, because charge carriers in these systems turn

out to be self-localized. The exact criterion of the

Coulomb self-localization (CS) is formulated as the

smallness of the overlap integral t as compared to

the typical variation Æ" � (a0=�l)
2�" of the Coulomb

energy of a charge carrier as it hops (tunnels) between

neighbor sites of the host-lattice (HL). Here, a0 is

the average distance between cites of the HL, �l is

the average distance between particles, and �" is the

average Coulomb energy per particle. This condition

can be realized in MOSFET structures [1] or in other

semiconductor heterostructures. As a typical example

of the described systems, one can name MOSFET

compounds with an impurity hole zone formed when a

part of impurity electrons passes from a semiconductor

to a metal (which represents one of the components

of a heterostructure) [1, 2]. Another important group

of CS compounds is formed by quasi-one-dimensional

organic conductors [3]. The latest achievements in

nanotechnology allow one to create new types of CS

systems, for example, the arrays of quantum dots

exchanging electrons [4], networks of metal nanograins

with tunnel couplings, whose role is played by organic

molecules of various types [5]. In addition, there are all

reasons for supposing that the CS criterion (t < Æ") can

be also realized in multilayer metal-oxides of the type

of high-temperature semiconductors under the condition

that the concentration of impurities is not too high.

The first theoretical investigation of the structure of

the ground state (GS) in CS systems was carried out

by Hubbard [3]. He considered a one-dimensional (1D)

ensemble of electrons on a strictly periodic HL in the

limit of strong CS (t � Æ"), when the dynamic effects

appearing due to the finiteness of t are negligible and

electrons are localized at the sites of the HL to a high

accuracy. In the mentioned paper, it was shown that

the GS has an incommensurable structure in the general

case. This structure depends only on the electron density

ne = N=Ns (N and Ns are the number of electrons and

sites of the HL, respectively; N;Ns !1), but it doesn't



THE STRUCTURE OF THE GROUND STATE

depend on the form of the potential of electron-electron

repulsion v(r) (r is the distance between electrons). The

potential v(r) must only satisfy the following limitations

obvious from the physical point of view: v(r) > 0;
v(r) ! 0 at r ! 1 more rapidly than 1=r; v(r)
is an everywhere convex function of r. If the above

limitations are met, the GS structure is universal. In

addition, Hubbard postulated a universal algorithm of

constructing the GS [3]. Later on, Hubbard's hypothesis

was completely confirmed and validated in [6, 7], and

the considered 1D structures were called in the literature

as a �generalized Wigner crystal� (GWC). According to

the GWC theory, the position of the i-th electron in the

GS (xi) measured in the units of a0 is described with a

simple formula [6]:

xi = [i=ne + �]:

Here, [: : :] denotes the integer part of a number, and �

is an arbitrary value (the initial phase). As follows from

this formula, the distances between each pair of electrons

xi+1 � xi can be equal to [1=ne] or [1=ne+1] depending
on i and ne. Hence, even in the case of a regular HL,

interelectron distances don't correspond to the minimum

of the potential energy of electron-electron interaction

(excluding the trivial case where the concentrations are

given by ne = 1=m;m = 1; 2; 3 : : :). In particular, this

results in a rather specific zero-temperature dependence

of ne on the chemical potential � which represents a

well-developed fractal structure of the �devil staircase�

type [7]. Hubbard's results were recently enriched and

generalized in [8�10]. The former two works deal with

the low-temperature thermodynamics of a 1D GWC,

while it was shown in [10] that two-dimensional (2D)

systems of this type are characterized with an effective

decrease of their dimension. The last circumstance allows

one to find the GS structure on the basis of a universal

analytical procedure (a 2D generalization of Hubbard's

1D algorithm).

The influence of the HL disorder on the low-

temperature behavior and peculiarities of the GS of CS

conductors represents an absolutely natural problem,

as the majority of real systems of such a kind are

disordered. For example, in MOSFET conductors, this

disorder is conditioned by a chaotic nature of the

distribution of impurities [1,11]. In addition, the disorder

in many nanostructures [4, 5] is determined by a spread

in tunnel couplings. Moreover, there are reasons to

suppose that 1D salts of the TCNQ type [3] also belong

to this class in view of the imperfection of their chemical

structure.

In the case of ne � 1 and t � Æ", the GS

configuration of an HL electron system (regardless of

its dimension D) represents a slightly distorted Wigner

crystal (WC). In such a system, electrons shift from

their ideal positions by discrete values � a0 which are

considerably smaller than the lattice constant of the WC

lWC � �l (a0=lWC � n
1=D
e ). Here, by �ideal� positions,

we understand those of electrons in the WC. If the HL

is irregular, the GS configuration becomes disordered

in spite of the smallness of shifts of electrons from

the WC sites. Such a system can be called a �Wigner

glass on a disordered HL� (WGDHL). We'd like to

pay attention to the fact that, even in the considered

limit of a low electron density, the low-temperature

behavior of a WGDHL differs qualitatively from that

of an ordinary (continual) Wigner crystal subjected to

an external periodic or random field. The reason for

such a difference lies, first of all, in the fact that all

the low-energy excitations in a WGDHL are conditioned

by transitions (hops) of electrons by small random but

fixed distances � a0. One of the consequences of such a

structure is, for example, the absence of small vibrations

in the system, i.e. the absence of acoustic phonons (in

the usual meaning of this term).

The basic object of this paper is the construction

of a low-temperature thermodynamics and the study of

properties of the GS of a 1D WGDHL.

2. Hamiltonian

According to [3, 8], we neglect the tunneling of

charge carriers (let's consider electrons for the sake of

distinctness) between sites of the HL. In this case, the

Hamiltonian of the system under investigation can be

given by

H =
1

2

X
i6=j

v(jxi � xj j)ni nj :

Here, xi are dimensionless chaotically located

coordinates of the sites of the 1D HL; the independent

variable ni = 0 ; 1 stands for the number of electrons

at the i-th site (the occupation number); v(jxi � xj j)
is the screened Coulomb potential of electron-electron

repulsion; the summation is carried out over all the sites

of the HL. As the details of the behavior of v(r) are

not essential for the further consideration, we extend

the class of v(r) under study imposing only those

physically obvious restrictions which we pointed out in

Introduction. In the Hamiltonian, we omit spin indices,

because ne � 1, and, hence, the effects associated with

the Fermi statistics turn out to be negligible.
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In the limit of low temperatures and concentrations,

the distances ln between the neighbor electrons with

numbers n + 1 and n slightly differ from the average

interelecron distance �l = a0=ne. Representing ln in the

form of ln = �l+ �n, where �n is a small random additive

� a0, it is convenient to introduce �n as new independent

variables (instead of the occupation numbers ni). The

quantities �n can be considered as �dipole lengths� e�n
(e is the electron charge), which begin from the �ideal�

positions of the WC n�l (n = 1; : : : ; N) and come to

the end at one of the HL sites located in a small

neighborhood of these �ideal� positions. Without losing

generality, one can always choose these neighborhoods

in such a way that the number of the HL sites will be

the same for all n. We denote this number as �, and

the neighborhoods of the �ideal� WC positions chosen in

the indicated way will be called �clusters�. Hence, every

�cluster� includes one electron. The distances between

the �clusters� � �l. For the sake of convenience, let's

number the HL sites by index k (k = 1; 2; : : : ; � for all n).
In this case, � possible positions of electron n are given

by n�l+ �kn, where �
k
n are random fixed numbers. For the

further consideration, it's convenient to renumber the

quantities �kn in each �cluster� in such a way that they

form an ascending sequence: �kn < �k+1n (�k+1n ��kn � a0).

The spread in values of �kn (i.e. ��n��1n) must be� �l, i.e.
�a0 � �l. The examples of 1D and 2D disordered HLs are

depicted in Fig. 1,a and Fig. 1,b, respectively. It's worth

noting that the �dipole lengths� �kn introduced here can

be both positive and negative.

It is convenient to consider the quantities �kn as

eigenvalues of the displacement operator �̂n. Depending

on the configuration, one of these � values is realized 1.

Accounting for the smallness of j�knj=�l, one can expand

the Hamiltonian in powers of �̂n confining to quadratic

terms. As a result, we get

Ĥ = Ĥd +N"WL;

where "WL � �" represents the WC energy per electron,

and the Hamiltonian of the dipole system

Ĥd = Ĥdd + Ĥdl:

Here, Ĥdd is the operator of the dipole-dipole interaction,

Ĥdl is the operator of the interaction between the dipole

system and the WC. The Hamiltonian Ĥdd reads

Ĥdd = �e2
NX
n=1

MX
m=1

b(m)�̂n�̂n+m;

where M is the maximal number of neighbor dipoles,

whose interaction is taken into consideration. For

example, M = 1 corresponds to the approximation of

the nearest neighbors. At M = 2, we take into account

the interaction between the nearest and next nearest

neighbors and so on. The function

b(m) =
1

2

d2v(r)

dr2
jr=m�l:

The second term

Ĥdl = e2B

NX
n=1

�̂2n; B =

MX
m=1

b(m):

Finally, we get

Ĥd =
e2

2

NX
n=1

MX
m=1

b(m)(�̂n � �̂n+n)
2: (1)

The Hamiltonian Ĥd can be represented now in the form

Ĥd =

NX
n=1

Ĥn; Ĥn =

MX
m=1

"̂(�̂n; �̂n+m); (2)

where

"̂(�̂n; �̂n+m) =
e2

2
b(m)(�̂n � �̂n+m)2: (3)

The matrix elements (3) "m(�in; �
j
n+m) stand for the

interaction energies of the dipoles located at sites n

and n+m and occupying �states� i and j, respectively.

Expressions (1) and (3) reflect the constancy of the

system energy with respect to a simultaneous shift of

all electrons by an arbitrary distance.

Transitions (hops) of electrons from one position

to another inside the �clusters� form the low-energy

excitation spectrum of the system. Such excitations

can be called intracluster ones. Their typical energy

(a0=�l)
2�" � �" (�" is the typical energy of electron

transitions from one �cluster� to another). Hence, when

constructing the low-temperature thermodynamics of

the system under study, one can neglect the transitions

of electrons from one �cluster� to another. Several

examples of electron configurations are depicted in

Fig. 1,c.

In the present paper, we consider the case of complete

chaos. This means that there are no correlations between

1Discreteness of the spectrum of the operator �̂n is conditioned by discreteness of the positions of HL sites (�frozen chaos�) and

reflects a qualitative difference between a WGDHL and systems of the Wigner glass type, where such a spectrum is always continuous.
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both �kn and �kn0 with n 6= n0 and �kn; �
k0

n with k 6= k0.

Therefore, the only characteristic of the given �frozen�

chaos is the distribution of HL sites in space or, in other

words, the distribution �kn as a function of k = 1; : : : � for

all n = 1; : : : ; N . In order to describe such a distribution,

we introduce the function W (�1; : : : ; ��) which is the

probability for the �cluster� to be realized by a set of

quantities �1; : : : ; �� . According to what was said above,

W (�1; : : : ; ��) 6= 0 at �1 < �2 < : : : < �� and j�kj � �l.
W (�1; : : : ; ��) is the product

W (�1; : : : ; ��) =

�Y
k=1

wk(�
k);

where wk(x) (k = 1; 2; : : : ; �) differ from one another

only in displacements:

wk(x) = w(x + (k � 1)a0 � (� � 1)a0=2):

The function w(x) stands for the probability for an

HL site to be located at a distance x from the origin

of coordinates. For computer calculations, w(x) was

chosen in such a way that w(x) = 1=� if jxj � �

(� � a0) and w(x) = 0 otherwise. The quantity � is

interpreted as the disorder parameter of the system. The

complete disorder corresponds to � = a0. If � � a0,

the quantities �kn are slightly shifted with respect to the

positions (k�1)a0�(��1)a0=2, but these displacements

don't correlate. The limiting case � ! 0 corresponds

to a periodic HL with a lattice constant a0 and to

the equidistant configuration of the GS with a lattice

constant �l.

3. Low-temperature Thermodynamics

The statistical sum of the system under study has a form

Z(N;T ) =
X

exp

 
�Ĥd

T

!
: (4)

Here, T denotes the temperature in energy units, and

the summation is carried out over all �N microscopical

configurations. As a matter of principle, the free energy

F (N;T ) = �T lnZ(N;T ) can be calculated with the

help of the replica technique. But in this case, such

a technique turns out to be very ineffective as the

microscopical variables �n are random unlike the regular

variables sn in spin glasses. In the considered 1D case,

one can overcome this difficulty with the help of the

technique which is proposed here and based on the

representation of the statistical sum (4) of the system

(1) in the form of a product of random non-Hermitian

Fig. 1. Examples of disordered 2D (a) and 1D (b) HLs. Symbols

� denote �ideal positions� of the WC, circles denote HL sites; (c)

gives some possible configurations of electrons on a 1D HL

modified transfer-matrices P̂ (n). Imposing the periodical

boundary conditions �kN+1 = �k1 (k = 1; : : : ; �), one can

represent the statistical sum (4) as [13]

Z(T;N) = Tr

 
NY
n=1

R̂(n)

!
: (5)

In this case, the symbol Tr stands for the spur of

a matrix. It is just the fact that (5) is expressed in

terms of the product of matrices R̂(n) allows one to

quickly compute the thermodynamic characteristics of

a 1D WGDHL. Indeed, if this technique is used, the

computation time is proportional to N , while it is

proportional to �N for expression (4).

In the approximation of the nearest neighbors (M =
1), R̂(n) has a form

Ri;j(n) = exp

 
�"(�

i
n; �

j
n+1)

T

!
:

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 6 605
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Fig. 2. Dependences s(T ) at various values of � and M = 1

For the interaction between an arbitrary number of

neighbors to be taken into account, it is convenient to

introduce the matrices Âm(n) defined in the following

way:

Am
i;j(n) = exp

 
�"(�

i
n; �

j
n+m)

T

!
(6)

It is easy to notice that, in the approximation allowing

for the interactions between the nearest and next-nearest

neighbors, the matrices R̂(n) take the form

R(n)i;j;k = A1
i;j(n)A

2
i;k(n):

In the general case of the account of M neighbors,

the matrices R̂(n) are expressed in terms of Â as

R(n)i;k1;k2;k3;:::;kM =

= A1
i;k1

(n)A2
i;k2

(n)A3
i;k3

(n) : : : AM
i;kM

(n); (7)

while the multiplication function is defined as

(P (n)P (n+ 1))i;k1;k2;:::;kM =

=

�X
j=1

P (n)i;j;k1;k2;:::;kM�1
P (n+ 1)j;k1;k2;:::;kM : (8)

For example, for M = 1,

(R(n) �R(n+ 1))i;k =

�X
j=1

R(n)i;jR(n+ 1)j;k:

For M = 2, we get

(R(n) �R(n+ 1))i;k1;k2 = (R(n) �R(n+ 1))i;k1;k2 =

Fig. 3. Dependences s(T ) at � = 1=2, v(r) = 1=r, and various M .

The continuous curve corresponds to M = 1, the dashed one � to

M = 2, and the dash-dotted line � to M = 3

=
�X

j=1

R(n)i;j;k1R(n+ 1)j;k1;k2 =

=

�X
j=1

A1
i;j(n)A

2
i;k1

(n)A1
j;k1

(n+ 1)A2
j;k2

(n+ 1):

In computer calculations, the parameters e and a0 were

taken equal to 1, and the disorder parameter 0 � � � 1.
In the case of � = 1, the system is completely disordered.

For � � 1, there exists a slight disorder, i.e. the

quantities �1n and �2n take random values within short

intervals [1 � �; 1] and [�1;�1 + �], respectively. In

the case of � = 0, the system is equivalent to a one-

dimensional ferromagnetic chain of spins with s = 1=2
and the exchange integral J = �4b(1). The number of

electrons in the system amounts to 104� 105 depending
on M and �. In all the cases, the error of computations

was at most 0.1%, i.å. j1 � f(N;T )=f(2N;T )j < 10�3,
where f(N;T ) = F (N;T )=N .

A thermodynamic quantity which is mostly sensitive

to the degree of disorder of a 1D WGDHL system is the

entropy (per particle) as a function of temperature:

s(T ) = � @

@T
f(N;T ): (9)

The collections of curves s(T ) corresponding to various

values of � and M obtained with the help of (5)�

(8) are depicted in Figs. 2, 3. We'd like to pay

attention to the fact that taking into account the long-

range interaction results only in a slight modification

of the dependences s(T ) even in the limit case of the
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unscreened Coulomb potential (Fig. 3). As one can see

from the figures, the residual value of the entropy s(0) is
equal to zero in all the cases (i.e. the Nernst heat theorem

always holds true). According to Fig. 4, the quantity

s0(T = 0) is nonzero for all � 6= 0, which testifies to

the gapless character of the excitation spectrum of the

considered system at any nonzero values of the disorder

parameter. Thereupon, it is natural to study the problem

concerning the properties of the excitations realizing

such a spectrum. Its complete solving can be reached

only after a thorough study of the spatial structure of

the ground state.

4. The Structure of the Ground State

All the basic properties of a 1D WGDHL manifest

themselves already at � = 2 and in the nearest neighbor

approximation (M = 1). That's why for the sake

of simplicity, just this case will be considered in the

present section. Unlike the frequently used Monte Carlo

method, we propose a technique of finding the GS of

a 1D WGDHL based on its accurate calculation. This

technique is grounded on the formalism of modified

transfer-matrices (4)�(8). In order to find the GS of the

system with Hamiltonian (2), we consider a 1D WGDHL

in an external nonuniform electric �field� E. It is assumed

that this field is equal to E0 at the l-th site of the system,

and E = 0 at all the other sites. The Hamiltonian of such

a system has a form

Ĥd�h = Ĥd�h =

N�1X
n=1

"̂(�̂n; �̂n+1)�E0�̂l; (10)

where l = 1; 2; : : : ; N . After substituting (10) in (4), we

obtain

P (n)i;j = exp

 
�"(�

i
n; �

j
n+1) + Æi;jÆn;lE0�

i
n

T

!
:

Here, Æk;k0 is the Kronecker symbol. As a result, the free

energy and the average "polarizability"

P (T;E) = P (T;E0; l) =
@

@E

�
f(T;E)

T

�

can be calculated as functions of E. At T ! 0, the basic
contribution to (4) is made by configurations close to

the GS. In the limit E ! 0, the value of the quantity

h�li = P (T ! 0; E0 ! 0; l) is negative if �GSl > 0, and
h�li is positive otherwise (�GSl is the �length� of the l-th

dipole in the ground state). We'd like to pay attention

to a peculiarity concerning the numerical calculation of

Fig. 4. Dependence of s0(T = 0) on the parameter �. The inset

shows the same dependence in the range of small �

the limit E0 ! 0. By virtue of the randomness of the

1D WGDHL structure, energies (3) fluctuate. At certain

sites l0, these energies can take arbitrary small values.

In this case, the application of a field E0 can result in

the dipole flip. In order to overcome this difficulty, the

polarizability P was calculated at certain small finite

values E0 and �E0. If < �l(E0) > (the value of h�li
corresponding to the field E0) coincides with h�l(�E0)i,
then �GSl = h�l0(E0)i. Otherwise, we decrease the field

E0 by a factor of two and repeat the process until the

condition h�l0(E0)i = h�l0(�E0)i is satisfied. The system
temperature was chosen in such a way that T � E0.

Calculating P (T;E0; l) successively for l = 1; 2; : : : ; N ,

one can construct the GS of the 1D WGDHL. Typical

structures of the GS of the studied system at various

values of the disorder parameter � are depicted in Fig. 5.

5. Discussion of the Results

The analysis carried out in Section 4. indicates the

domain structure of the GS of a 1D WGDHL at all

� 6= 0. This implies that the GS configuration �GSl must

include two types of blocks (domains) alternating with

one another: in domains of one kind, all �GSl > 0; in those
of another kind, �GSl < 0. At first sight, such a result

seems to be doubtful in the case of a slight disorder

(� � a0). Indeed, as was noted above, the considered

system is equivalent at � = 0 to a one-dimensional Ising

ferromagnetic. In this case, all �GSl are equal to either �1
or 1 (the two-fold degeneracy of the ground state takes

place). At small �, the replacement of the dipole �GSn at

any site n by the dipole � ��GSn increases the energy

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 6 607
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Fig. 5. Examples of the GS configurations of a 1D WGDHL

corresponding to the chain including 104 sites (a�d) and 400 sites

(e) and various values of �: a � � = 0:25, b � 0.3, c � 0.4, d �

0.45, e � 1

of the system by a finite value � 2(ea0)
2b(1). It would

seem that, by this reason, all �GSn must be identical.

That is, the long-range ferromagnetic order in the

system is preserved, and the spectrum of elementary

excitations of a 1D WGDHL with � � a0 has a

gap. By clearly contradicting Fig. 5 and the curves

presented in Figs. 2�4, this conclusion would mean that,

at a slight disorder, s0(T ) exponentially tends to zero

with decrease in T . Moreover, at a certain critical �,

there occurs a phase transition between macroscopic

states with the activative and linear dependences of the

entropy on temperature. Therefore, we arrive at the

conclusion that the ground state of a 1D WGDHL has a

domain structure even in the limit � � a0. In order to

understand the nature of its formation, it is necessary to

compare the energy of the system with domains Edomains

with that of the system consisting of dipoles of one kind

(E1 for �
GS
n > 0 or E2 for �

GS
n < 0). The energy Edomains

has a form

Edomains =

NX
i=1

(Ei
1 +Ei

2) + (ea0)
2N b(1); (11)

where index i numbers the pairs of domains adjoining

each other and having dipoles of unlike signs; Ei
1;2 are

the energies of these domains; N is the total number of

Fig. 6. Concentration of domain walls cdomains as a function of

�. Squares denote the values obtained using the algorithm of

constructing the GS of a 1D WGSHL described in Section 4.

The continuous line corresponds to the fitting by the function

cdomains = c0�
n
with c0 = 0:091 and n = 3:95

domains in the system; the last term stands for the total

energy of domain �walls� (the junctions of domains with

�GSn > 0 and those with �GSn < 0) taken in the zero-order

approximation in �. The comparison of expression (11),

for example, with E1 gives

Edomain �E1 =

NX
i=1

(Ei
2 �Ei

1) + (ea0)
2N b(1):

In view of the randomness of a 1D WGDHL, the

difference between the energies Ei
1 and Ei

2 fluctuates

so that the characteristic energy jEi
2 � Ei

1j �
(ea0�)

2b(1)
p
L, where L = 1=c is the characteristic

number of sites in a domain, and c = N=N is the

concentration of domain walls. The differences Ei
2 �Ei

1

can have any signs depending on the positions of the

boundaries of domain walls. It is obvious that these

boundaries can always be chosen in such a way that all

the differences Ei
2 � Ei

1 were negative. In this case, the

difference Edomains�E1 stipulated by the loss of energies

from domain walls (Edomains) and the fluctuation gain

E1 turns out necessarily to be negative at a sufficiently

small value of c, reaching a maximum at �2=
p
c � 1, i.å.

cdomains = c0�
4: (12)

It is worth noting that this estimate agrees

completely with the results obtained from the GS

structures (Fig. 6). This figure also demonstrates that

dependence (c) is universal for all 0 � � � a0. The

analysis of the GS structures of a 1D WGDHL shows
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that the dependence cdomains(�) remains qualitatively

the same even at M > 1, resulting only in a slight

decrease of the constant c0. This is explained by a

tougher condition fot the formation of domains and,

consequently, by a decrease in their concentration (in

the complete accordance with Fig. 3). Thus, we arrive

at the conclusion that, in the limit � � a0, the

ground state of the system contains a small but finite

concentration of domain walls. This inevitably results in

the violation of a long-range order in the system over

large spatial intervals, with L � a0=�
4 � 1. That is, a

ferromagnetic long-range order existing in the ordered

case (at � = 0, �1n = ��2n) turns out to be unstable with

respect to an arbitrarily small random disturbance of the

system.

6. Conclusion

We have investigated the GS structure and the

low-temperature thermodynamics of one-dimensional

electron systems on disordered HLs. It is shown that

the GS structure of these discrete systems contains a

small but finite concentration of �domain walls� even in

the case of a slight disorder (Figs. 4, 5). As a result,

the long-range order is violated. It is established that

the entropy s(T ) of the 1D WGDHL remains linear in

the low-temperature region at all values of the disorder

parameter � (0 � � � 1) (Figs. 2, 3), which indicates

the gapless character of the spectrum of elementary

excitations.

New fast numerical methods for the investigation

of the GS structures and low-temperature properties

of a 1D WGDHL are proposed. They are based on

the representation of the statistical sum of a system

in terms of modified transfer-matrices. These methods

allow one to study the GS configurations of a 1D

WGDHL containing � 104 � 105 sites (Fig. 5).
The proposed techniques also enable one to calculate

thermodynamic functions and to study the GS structure

of systems with a long-range potential of interparticle

repulsion taking into account the interactions between

an arbitrary number of electrons. It is shown that

making allowance for the long-range interaction results

only in a slight variation of the obtained results (Fig. 3).

In particular, this implies that the structure of �domain

walls� and the instability of the GS are the properties of

the studied system, rather than the peculiarities of the

proposed model.

In the nearest future, the author plans to investigate

the kinetic properties and the spectrum of low-energy

excitations of the system under consideration.

In conclusion, the author expresses his thanks to

A.A. Slutskin for the discussion of the results of this

work.
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ÑÒÐÓÊÒÓÐÀ ÎÑÍÎÂÍÎÃÎ

ÑÒÀÍÓ I ÍÈÇÜÊÎÒÅÌÏÅÐÀÒÓÐÍI

ÒÅÐÌÎÄÈÍÀÌI×ÍI ÂËÀÑÒÈÂÎÑÒI

ÎÄÍÎÂÈÌIÐÍÎ� ÅËÅÊÒÐÎÍÍÎ�

ÃÐÀÒÊÎÂÎ� ÑÈÑÒÅÌÈ

Â. Â. Ñëàâií

Ð å ç þ ì å

Âèâ÷åíî ñòðóêòóðó îñíîâíîãî ñòàíó i íèçüêîòåìïåðàòóð-

íi òåðìîäèíàìi÷íi âëàñòèâîñòi îäíîâèìiðíîãî óçàãàëüíåíîãî

âiãíåðiâñüêîãî êðèñòàëà íà íåóïîðÿäêîâàíié ãðàòöi-ìàòðèöi.

Âñòàíîâëåíî, ùî ñïåêòð åëåìåíòàðíèõ çáóäæåíü ìà¹ áåçùiëèí-

íó ñòðóêòóðó ïðè áóäü-ÿêèõ ñêií÷åííèõ çíà÷åííÿõ ðàçóïîðÿä-

êóâàííÿ ãðàòêè-ìàòðèöi. Âèÿâëåíî íåñòiéêiñòü îñíîâíîãî ñòàíó

ñèñòåìè ñòîñîâíî iíôiíiòåçèìàëüíèõ ïîðóøåíü óïîðÿäêóâàí-

íÿ ãðàòêè-ìàòðèöi. Öÿ íåñòiéêiñòü ïðèâîäèòü äî ðóéíóâàííÿ

äàëåêîãî ïîðÿäêó â ñèñòåìi. Ðîçãëÿíóòî âïëèâ äàëüíîäi¨ ïî-

òåíöiàëó ìiæ÷àñòèíêîâîãî âiäøòîâõóâàííÿ íà òåðìîäèíàìi÷íi

âëàñòèâîñòi ñèñòåìè.
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