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The evolution of hydrodynamic vortices (acceleration, stationary

behavior, and diffusion) in multicomponent multiphase open

systems with a matter sink in some region is considered. The

mechanism of vortex development and dissipation influence on its

stabilization are analyzed.

1. Introduction

The non-linear character of hydrodynamic equations

allows one to get analytical solutions only for several

specific models. At small velocities, these equations may

be linearized, and their solutions can be obtained by

standard methods [1, 2]. Moreover, at small Reynolds

numbers, one can neglect viscosity and solve the Euler

equations for the ideal liquid. In the general case, the

motion of a viscous liquid is described by numerical

methods.

At the end of the 19th century, an exact solution

(velocity profile) of the Navier�Stokes equations, which

nullify the term with the viscosity coefficient in the

equation for azimuthal velocity, was proposed: v' �
r (r < R) and v' � 1=r (r > R); where R is the radius

of a cylindrical region of "rigid-body" rotation. In this

case, a radial velocity equals to zero. This velocity profile

is known as a Rankine vortex [3]. Let us note that the

region of �rigid-body� rotation of liquid is arbitrary and

determines by the initial conditions.

In [4], a new mechanism of origin and development

of instable hydrodynamic vortices was proposed, and

the velocity profiles, which nullify terms with viscosity

in the Navier�Stokes equations with a nonzero radial

velocity connected with a volumetric sink inside a

certain region of liquid, were considered. In the case of

the presence of initial vorticity, the azimuthal velocity

appears to be instable and increases exponentially with

time. Such initial vorticity may appear on the account

of natural conditions (e.g., the Earth rotation and

contradirectional air flows for atmospheric vortices).

This mechanism was used for the description of power

atmospheric vortices such as tornados and typhoons.

In the present paper, we consider the mechanisms

of stabilization and decay (diffusion) of such instable

cylindrically symmetric vortices. The full evolution of

an instable vortex can be divided into three stages:

exponential (in the time) acceleration of the vortex

core, its stabilization, and decay. The acceleration of

the vortex lasts till the moment, when a turbulent

dissipation become strong enough to compensate the

inflow of kinetic energy to the region of the vortex core

(the sink region). The turbulent dissipation leads to the

stabilization of the vortex motion, which may go on

a quite long period of time, while the volumetric sink

exists. After that, the vortex spreads in space (diffusion

or decay of a vortex), loses its energy, and disappears.

2. Instability of Rotational Motion in the Case

of a Cylindrically Symmetric Sink Region

One of the key aspects of the instability mechanism

we consider is the presence of a volumetric sink of

matter q in a certain region of space (we call it as

�internal� region) and a possibility of the infinite matter

inflow from the �external� region (open system). This



E.A. PASHITSKII, V.N. MALNEV, R.A. NARYSHKIN

can be realized in a multicomponent system, in which

some components may convert into others on account

of chemical or phase transitions and drop out of the

collective motion. We will write hydrodynamic equations

for the collective motion of the components as the

equations for one component with a volumetric sink. In

this case, the continuity equation and the Navier�Stokes

equations have a form

@�

@t
+ div�v = q; (2.1)

�

�
@v

@t
+ (vr)v

�
= �rp+ �4v+ (� + �=3)rdivv;

(2.2)

where � is the matter density, p(r; t) is the pressure,

�, � are the first and second viscosity respectively, and

q is a volumetric sink (or source) of mass. Here, we

neglect the gravitation force. We will consider a model of

incompressible liquid (gas) with � = const; for validity
of which it is enough to satisfy the conditions v � cs
and l=� � cs; where �; l are quantities of the order of

intervals of time and space, on which the velocity of a

liquid changes noticeably, cs � speed of sound in the

liquid. In this case, the volumetric sink q may depend

on time, but not on coordinates. For example, if the

volumetric sink has a characteristic time of existence T

(the saturation of a reservoir of the sink), we may model

this situation with the equation

q(t) = q0e
�t=T : (2.3)

For an incompressible liquid, the term with the

second viscosity becomes zero, and the hydrodynamic

equations (2.1), (2.2) read

divv = q(t)=�; (2.4)

@v

@t
+ (vr)v = �rp

�
+ �4v; (2.5)

where � = �=� is the kinematic viscosity.

Further, we restrict ourselves by the case where the

matter sink exists only in a certain cylindrical region

with radius R: Then

divv =
q(t)

�
�
� �1=�(t); r < R;

0; r > R;
(2.6)

where �(t) is a given function of time.

Consider a plane motion of liquid, assuming it to

be homogeneous along the axis z ( @
@z

= 0; vz = 0).

Since we will be interested in vortex solutions of the

hydrodynamic equations, it is convenient to use the polar

coordinate system, where these equations are written in

the form8>>>>>>>>>><
>>>>>>>>>>:

@vr

@t
+ (vr)vr �

v2'

r
= �1

�

@p

@r
+

+�

�
4vr � vr

r2
� 2

r2
@v'

@'

�
;

@v'

@t
+ (vr)v' +

vrv'

r
= � 1

�r

@p

@'
+

+�

�
4v' � v'

r2
+

2

r2
@vr

@'

�
;

(2.7)

1

r

@

@r
(rvr) +

1

r

@v'

@'
= q=�; (2.8)

where

(vr) = vr
@

@r
+

v'

r

@

@'
; (2.9)

4 =
1

r

@

@r

�
r
@

@r

�
+

1

r2
@2

@'2
: (2.10)

Further, we will analyze several velocity profiles of

liquid motion in vortices with the purpose of uncovering

the principal mechanisms of their development. From

all possible motions, the survivors will be those, in which

dissipation plays the least role. That is, we will find those

solutions of the hydrodynamic equations, in which the

terms with the kinematic viscosity are nullified, namely,

the square brackets in Eqs. (2.7):

1

r

@

@r

�
r
@vr

@r

�
+

1

r2
@2vr

@'2
� vr

r2
=

2

r2
@v'

@'
; (2.11)

1

r

@

@r

�
r
@v'

@r

�
+

1

r2
@2v'

@'2
� v'

r2
= � 2

r2
@vr

@'
: (2.12)

Consider the case where the radial velocity vr = 0;
and only the azimuthal velocity v'(r); which depend

only on r, is non-zero.

At such a restriction, we get from Eq. (2.12) that

v' = !r +
=r: (2.13)

Then, Eq. (2.7) allows us to determine the pressure from

the relation (cyclostrophic regime)

@p

@r
= �

v2'

r
: (2.14)
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The continuity equation (2.8) is satisfied identically

and does not introduce any additional relations. Dividing

the motion region into the external (r > R) and internal

(r < R) ones and making the velocity and the pressure

continuous on the boundary (r = R), we get the known

velocity profile for a Rankine vortex:

v'(r) =

�
!r; r 6 R;

!R2=r; r > R:
(2.15)

Here, ! is the constant angular velocity of a �rigid-

body� rotation. Notice that the quantity R separates

the region of "rigid-body" rotation from the region of

�irrotary� rotation, where v' � 1=r; and is determined

by initial values. The distribution of the pressure is given

by the expressions

p(r) =

�
p0 + �!2r2=2; r 6 R;

p
1
� �!2R4=2r2; r > R;

(2.16)

where p0 is the pressure at the center of a vortex r = 0;
and p

1
is the pressure at r !1:

From the condition of continuity of the pressure at

r = R; we get

p0 = p
1
� �!2R2: (2.17)

Further, we will consider the peculiarities of vortex

motion at the presence of a volumetric sink of matter q 6=
0. We look for only axially symmetric solutions ( @

@'
= 0)

with the velocity profiles which satisfy conditions (2.11)

and (2.12). In this case, the corresponding solutions have

a form

vr(r; t) =

� ��(t)r; r 6 R;

�B(t)R2=r; r > R;

v'(r; t) =

�
!(t)r; r 6 R;


(t)R2=r; r > R:
(2.18)

One can substitute these solutions in the continuity

equation (2.6) and get the relation

2�(t) =
1

�(t)
: (2.19)

In this case, the Navier-Stokes equation for a velocity

component v'(r; t) gives�
_! � 2�! = 0; r 6 R;
_
 = 0; r > R:

(2.20)

Wherefrom, with regard for (2.19), we get

!(t) = !0 exp

8<
:

tZ
0

dt0

�(t0)

9=
; ; 
 = 
0 = const: (2.21)

In the simplest case where the sink is time-constant

�(t) = � , the azimuthal velocity is given by the

expression

v'(r; t) =

�
!0r e

t=� ; r 6 R;


0
R2

r
; r > R:

(2.22)

We see that the exponential acceleration of a vortex

occurs in the internal region, but, in the external

region, the liquid rotates with a constant initial �angular

velocity�. Therefore, a tangential step of velocity exists

on the boundary (except the initial moment of time,

if we assume 
0 = !0), which grows with time. A

tangential step of velocity is unstable and leads to a

small-scale turbulence on the boundary, which destroys

the solutions that nullify terms with viscosity in the

Navier�Stokes equations. Moreover, the acceleration

of the velocity is limited by the value of the order

of the speed of sound, when the incompressible liquid

approximation becomes invalid and the second viscosity

begins to play a role. Due to the large dissipation of

energy, these factors lead to the stabilization of a vortex,

and its angular velocity stops to increase. Furthermore,

the change (decrease) of the sink intensity with time q(t)
in the internal region (saturation of a sink or external

source depletion) can additionally stabilize the vortex.

We analyze these mechanisms of vortex stabilization in

detail in the next sections.

At last, we will use the Navier�Stokes equation for

the radial velocity vr(r; t):(
(�2 � !2)r = � 1

�
@p
@r
; r 6 R;

(�2 + !20)
R4

r3
= 1

�
@p
@r
; r > R:

(2.23)

This yields the pressure distribution as

p(r; t) =

(
p0(t) +

�r2

2
(!2(t)� �2); r 6 R;

p
1
� �R4

2r2
(!2

0
+ �2); r > R;

(2.24)

where

p0(t) = p
1
� �R2

2
(!2(t) + !2

0
): (2.25)

Continuity of the radial velocity requires the

condition B = �: At the same time, the azimuthal

velocity v' (2.22) has a step which grows with time.

This can be eliminated by taking onto the account the

viscosity in the near-surface layer r = R:
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3. Accounting the Viscosity on the Boundary

of a Sink

On the boundary of a sink (r = R) a tangential velocity

step occurs, in the region of which friction (with the

turbulent viscosity coefficient �� [4]) arises, drags the

liquid in a small layer (with a characteristic thickness

l) near r = R, and eliminate this tangential step. We

describe this by letting the functions !;
 depend on

radius r: We extract apart a stationary solution with

the initial velocity profile from the azimuthal velocity,

i.e. we look for the velocity profiles in the form

v'(r; t) =

�
!0r + !(r; t)r; r < R;

!0
R2

r
+
(r; t)R

2

r
; r > R:

(3.26)

The unknown functions !(r; t) and 
(r; t) must satisfy

the initial conditions

!(r; 0) = 0; 
(r; 0) = 0; (3.27)

and be continuous on the boundary:

!(R; t) = 
(R; t):

One can substitute the velocity profile (3.26) in the

Navier�Stokes equation

@v'

@t
+ vr

@v'

@r
+

vrv'

r
= ��

�
1

r

@

@r

�
r
@v'

@r

�
� v'

r2

�
(3.28)

and get the equations

@!

@t
= ��

@2!

@r2
+

1

r
(3�� + �r2)

@!

@r
+ 2�!; (3.29)

@


@t
= ��

@2


@r2
� 1

r
(�� � �R2)

@


@r
: (3.30)

We find the general solution of these equations by

the variable separation method (� is assumed to be

constant)

!(r; t) =

Z
d�C(�) e�t

e��r
2=4��

r2
M

�
�

2�
;
1

2
;��r2

2��

�
;

(3.31)


(r; t) =

Z
d� ~C(�) e�t

1

r�
K�

 r
�

��
r

!
; (3.32)

where � = �R2

2��
�1, M(�; �; x) is the Whittaker function

which determines a solution limited at zero of the

equation M 00(�; �; x)+
�
� 1

4
+ �

x
+ 1=4��2

x2

�
M(�; �; x) =

0; and K�(x) is the McDonald function of order �

(modified Bessel function).

In order that the solution behavior will be

qualitatively clear, we use an approximation, in which

the effect of dissipation is small and the acceleration of

angular velocity in time remains the same, i.e. !(t) /
et=� : Then, the final solution which satisfies all the initial

and boundary conditions reads

v'(r; t) =

=

8<
:

!0 r + !0 r (e
t=� � 1); r < R;

!0
R2

r
+ !0R(e

t=� � 1)
�
R
r

��+1 K�( rl )
K�(Rl )

; r > R;

(3.33)

where

� =
R2

(2l)2
� 1; l =

p
��� : (3.34)

Note that, at R � l, we have an exponentially

decreasing velocity profile of the liquid dragged by

friction in the external region

K�(r=l) �
r

l

r
e�r=l:

Here, l plays the role of the characteristic thickness of a

layer, where a turbulence motion occurs.

At all this, the radial part of velocity (and the

pressure as a consequence) remains without any changes:

vr(r; t) =

� ��r; r < R;

��R2

r
; r > R;

(3.35)

p(r; t) =

(
p0(t) +

�r2

2
(!2

0
e2t=� � 1

4�2
); r < R;

p
1
� �R4

2r2
(!2

0
+ 1

4�2
); r > R:

(3.36)

4. Stabilization Mechanisms of a Vortex

Some of the causes which stabilize the rotation of a

vortex are the saturation of the sink reservoir of matter

or the depletion of an external source, at the expense of

what its intensity decreases with time. For clarity, let us

consider a model with the exponential sink behavior

q(t) = q0 e
�t=tq ; (4.1)
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where tq is the characteristic time of a decrease of the

sink.

In this case, we have

�(t) = �0 e
t=tq ; (4.2)

wherefrom, with the use of expression (2.21), we get

the dependence of the angular velocity on time in the

internal region

!(t) = !0 exp

�
tq

�0

�
1� e�t=tq

��
: (4.3)

In the limiting cases of large and small times (in

comparison with tq) we have

!(t) =

�
!0 e

t=�0 ; t� tq;

!0 e
tq=�0 ; t� tq ;

(4.4)

i.e., at small times, we have exponential acceleration

and, at large times, a tendency to saturation and

stabilization.

Another power stabilization mechanism is the

turbulent energy dissipation in the region of a tangential

velocity step, i.e. on the sink boundary r = R. The

kinetic energy of a small-scale ripple transforms to

heat, and the average amount of the energy, which is

dissipated in the unit time in the unit volume, equals [1]

" � (4u)3

l�
; (4.5)

where 4u is a variation of the average velocity of a

turbulence motion on a characteristic length l�; which

determines sizes of the turbulence motion region. In this

case, the turbulent viscosity is of the order of �� �
4u � l� � � � Re; where Re is the Reynolds number.

In our case, for estimations, we can take

l� � l =
p
��� ; 4u � v'(Re): (4.6)

Hence, the energy dissipation in the unit time on the

unit length (of the axis z) of the surface r = R is

dEdis

dt
� 2��R (4u)3 � 2��!30 R

4e3t=� : (4.7)

On the other hand, the speed of change of the kinetic

energy in the internal region (neglecting the dissipation)

on the unit length (of the z axis) equals

dEkin

dt
=

�

2

d

dt

RZ
0

2�rdr v2(r; t) =
1

2
��

!20
�
R4 e2t=� : (4.8)

In the rough approximation, comparing expressions

(4.7) and (4.8), we can estimate the stabilization time of

a vortex as

td � � ln
1

4!0�
: (4.9)

In this case, the maximum velocity on the sink boundary

is

vmax = !0Retd=� � R

4�
: (4.10)

The considered theory of the unstable behavior

of vortices has a certain simplification, namely, it

demands the incompressible liquid (gas), which takes

part in the acceleration of a vortex. The condition of

incompressibility holds well for motions with velocities

less than the velocity of sound in a liquid,

v < cs:

Since the velocity of motion rapidly increases in time in

our problem, we reach formally (neglecting the energy

dissipation) the velocity of sound cs after the time

interval

ts � � ln
cs

!0R
: (4.11)

The order of such a time interval gives us the limit of

validity of the formulas with exponential acceleration

(2.22). After this, a stage of vortex stabilization due

to liquid compressibility and the second viscosity

originating with it begins. Of course, this mechanism

acts along with a dissipation.

Three mechanisms considered above are actually in

concurrence among themselves (and, of course, among

the other secondary mechanisms). The fact, which

mechanism is realized in a given certain case, depends on

the liquid under consideration and on initial conditions,

especially on the initial angular velocity !0; radius of a

sink region R, and time-behavior of a volumetric sink

�(t): In other words, the evolution is determined by

the hierarchy of characteristic times tq ; td, and ts: For

example, if td < ts; which is the same as

R

4�
< cs;

then the dissipation comes earlier and the velocity of

sound cannot be reached. Inasmuch as at reaching the

sound velocity (if it is possible at all), the role of a

stabilizer is played, in fact, also by the dissipation (via

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 6 573
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turbulence and compressibility), then the time of the

beginning of stabilization is

tD � minftd; tsg: (4.12)

In addition, since our system is an open one, we can

assume that tq is large enough (actually, we need tq >

tD), i.e. the sink exists longer than the interval of vortex

acceleration.

Under the above-presented conditions, we have three

stages of vortex evolution:

1. Acceleration (0 < t < tD). The angular velocity of a

"rigid-body" rotation increases with time: at first as /
et=� ; then more slowly, and finally reaches a saturation.

2. Stationary stage (tD < t < tq). The mechanisms

of acceleration (on account of sink) and dissipation

compensate each other, and a constant angular velocity

is maintained.

3. Decay (tq < t < tq + tr). After the depletion of

the source of kinetic energy (termination of the action

of a volumetric sink), a vortex decays according to

the standard scenario (see the next section; there, a

characteristic time tr is also estimated).

5. Diffusion of a Vortex

Let us take the vortex decay beginning tq as a time

reference point. Since already there is no matter sink,

the radial velocity equals zero, vr = 0; and it remains

only the azimuthal velocity v'(r; t). It is known that if

the initial azimuthal velocity profile is given as v'(r; 0) =
v0(r); then its profile at any point of time is given by

the expression [5]

v'(r;t) =
1

2�rt

1Z
0

r00 dr00
0(r
00) e�r

002=(4�t)�

�
rZ

0

r0 dr0 e�
r0
2

4�t I0

�
r0r00

2�t

�
; (5.1)

where


0(r) = (rotv0)z =
1

r

d(rv0)

dr

and I0(x) is a modified Bessel function.

We neglect the azimuthal velocity in the external

region, since the exponentially decreasing turbulent tail

there is thin enough. So, we can approximately write

v0(r) =

�
!maxr; r < R;

0; r > R:
(5.2)

Then, in our case, we get

v'(r; t) =
1

r

rZ
0

r0 dr0 
(r0; t); (5.3)

where the vorticity 
 = (rotv)z equals [5]


(r; t) =
!max

��t
e�r

2=4��t

RZ
0

r00 dr00 e�r
002=4��t I0

�
rr00

2��t

�
:

(5.4)

The analysis of expression (5.4) shows that a vortex

�spreads� in space. The maximum of its azimuthal

velocity moves away and diminishes with time, and the

total kinetic energy of a vortex decreases. Particularly,

the vorticity at the center of a vortex (r = 0) equals


(0; t) =
!max

��t

RZ
0

r00 dr00 e�
r00

2

4��t I0 (0) =

= 2!max

�
1� e�

R2

4��t

�
;

wherefrom, it is seen that a characteristic time of its

decrease is of the order of R2

4��
:

Thus, the characteristic time of decay of the entire

vortex is of the order of

tr � R2

4��
: (5.5)

The turbulent viscosity �� appears to be much larger

than the ordinary kinematic viscosity �. In particular,

estimations in [4] show that �� is by one order larger

than �: At the same time, it is known [5] that this

quantity in powerful atmospheric vortices may be by

5�6 orders higher than �: Hence, the characteristic

time of the vortex decay may vary in a large enough

range.

6. Conclusions

We have investigated the time-instable vortex solutions

of the hydrodynamic equations for incompressible

liquid which describe multicomponent multiphase open

systems with chemical or phase transitions. The

existence of such solutions is guaranteed by a volumetric

sink of one of the components in a certain finite volume
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and by its inflow from the surrounding environment.

For the first time, such solutions were investigated in

[4]. Let us emphasize that the corresponding velocity

profiles of these vortices are exact solutions of the

non-linear hydrodynamic equations, which nullify terms

with viscosity, i.e. satisfy the condition �v = 0: At
a non-zero initial vorticity, these solutions must be

dominant.

The time-space evolution of the above-mentioned

instable vortices is considered. A characteristic time

of vortex acceleration is determined by the intensity

of a volumetric sink. Usually, such an acceleration

mechanism is in a concurrence with the dissipation which

increases with the acceleration and, after a certain time,

leads to the vortex stabilization. The stabilized vortex

may exist long enough, in fact, as long as the volumetric

sink exists. After that, the vortex decays in space via the

diffusion mechanism [5].

The described mechanism of a hydrodynamic

instability may be realized in nature as, for example,

a mechanism of the origin of such powerful atmospheric

vortices as tornados and typhoons [4] or origination of

vortices in a supersaturated 3He�4He solution which

accelerate the process of its decomposition (phase

separation) [6].
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ÃIÄÐÎÄÈÍÀÌI×ÍI ÂÈÕÎÐÈ Ó ÂIÄÊÐÈÒÈÕ ÑÈÑÒÅÌÀÕ

ÇI ÑÒÎÊÀÌÈ ÐÅ×ÎÂÈÍÈ

Å.À. Ïàøèöüêèé, Â.Ì. Ìàëüí¹â, Ð.Î. Íàðèøêií

Ð å ç þ ì å

Ðîçãëÿòóòî åâîëþöiþ ãiäðîäèíàìi÷íèõ âèõîðiâ (ðîçâèòîê,

ñòàöiîíàðíó ïîâåäiíêó òà ðîçïàä) ó áàãàòîêîìïîíåíòíèõ áàãà-

òîôàçíèõ âiäêðèòèõ ñèñòåìàõ çà íàÿâíîñòi îá'¹ìíîãî ñòîêó ó

äåÿêié îáëàñòi. Ïðîàíàëiçîâàíî ìåõàíiçì ðîçêðóòêè âèõîðó òà

âïëèâ äèñèïàöi¨ íà éîãî ñòàáiëiçàöiþ.
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