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Basing upon a deep analogy between light optics and the physics
of nuclear scattering, the application of methods of the theory
of stochastic processes to calculating the parameters of elastic
collisions between nuclei has been substantiated. Starting from the
model of total absorption with near-surface spin-orbit interaction,
the amplitude of the nucleon elastic scattering by atomic zero-
spin nuclei, which takes into account the fluctuation character of
the nucleon-nucleus interaction, has been built in the diffraction
approximation. At small scattering angles, an agreement with
experiment concerning both the differential cross-sections (DCSs)
and the angular dependences of the scattered nucleon polarization
has been achieved. At large angles, calculations are in agreement
with experimental data concerning DCSs, if zero oscillations of the
nuclear surface are taken into account. The results of calculations
are in a qualitative agreement with polarization data. It has
been shown that fluctuations of the nuclear density can stimulate
fluctuations of the limiting angular momenta of orbital waves.

1. Application of Methods of the Theory of
Stochastic Processes for Calculating the
Characteristics of Hadron-nucleus
Scattering

The wave nature of physical objects is a fundamental
basis of light optics and nuclear physics. It reveals
itself, e.g., in rotating the plane of polarization and
birefringence in the nuclear optics of polarized media
[1], in nuclear rainbow scattering [2, 3], in diffraction
nuclear processes, which, contrary to light optics, can
be inelastic [4, 5]. The theory of light diffraction is
essentially inseparable from the concept of stochastic
processes, because instant realizations (microstates) of
the diffraction field are not interesting as separate
entities and practically do not repeat themselves.
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Concerning the probabilistic distributions and statistical
momenta, they represent stochastic processes adequately
as the persistent characteristics of a random field [6].
In this work, we would like to demonstrate the results
of introduction of elementary stochastic assumptions
into the calculations of the angular dependences of
polarization and the DCS of the elastic diffraction
scattering of hadrons by atomic nuclei.

Suppose that a particle beam, which is characterized
by the Poisson distribution, strikes a point inertialess
counter. The probability for m particles to be registered
within the time interval ¢ is determined [7-9] by the
expression

(A1) oM

P(m,t) = -

; (1)

where the intensity of the process A corresponds to the
average constant number of particle registration (events)
per unit time [7]. Now, let the counter register particles
that have already interacted with a target, and the
radius R of particle interaction with target nuclei is
constant. Since the scattering angle 6 of a hadron in the
center-of-inertia frame cannot be foreseen beforehand
from dynamic considerations, the ensemble of target
nuclei represents a statistical sampling [7,9] of events
distributed according to the Poisson distribution (1).
Therefore, the counter positioned at an angle 6 will
register a Poisson-like beam of particles [7,9] with a
certain constant intensity A = A(6). Provided R = R(t),
where R(t) is a determinate function, the intensity A
becomes a regular function of time: A = A(f,t). Now,
if one defines a reference point t, on the time axis,
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then [7,9]

P(m, to +t,to)

tott
{/)\ dt} X

tott
Xexp{— / )\(t’)dt'}zme[], (2)

where U is the integral intensity [9, 10]. At last, let
the radius R fluctuate, i.e. depend on the parameter ¢
randomly. Then, the intensity A(¢) is a sample function
(trajectory) of a definite, not necessarily Poisson-like,
stochastic process A(t), that corresponds to statistical
properties of both the ensemble of beam particles
and the ensemble of target nuclei. This means that
the process, which is studied in the hadron-nucleus
scattering experiment, turns out to belong to a class of
double-stochastic Poisson processes introduced by Cox
and studied in details by Bartlett [9].

In statistical light optics, it became a tradition
to apply the theory of stationary stochastic processes
to the problems similar to ours, and, assuming their
ergodicity, to equate light fields averaged over time
to those averaged over an ensemble. For example,
in photocounting statistics [9, 10], in case of a
fluctuating light flux that strikes a photocell, the
Poisson distribution (2) of counts P(m,tg + t,tg) is
habitually averaged over the stochastic ensemble of
integral intensities U with a distribution W (U), which
constitutes the essence of the Mandel formula [10]

(P(m,to +t,t0)) /% “Uw(U)du. (3)
0

Similarly to the case of diffraction hadron-nucleus
scattering, where it is possible to assume the
presence of quasiclassical fluctuations of the interaction
region boundaries and to use quantum-mechanical
amplitudes of the scattering process, the double-
stochastic Poisson process in photocounting statistics
reflects both quantum-mechanical uncertainties, which
are connected with the photoeffect, and classical
fluctuations of an incident light flux. Therefore, having
brought the ensemble of R(t)-values or, equivalently,
the stochastic ensemble of corresponding values of
the angular momentum L(t) of incident particles in
correspondence with the stochastic ensemble U in
Eq. (3), we obtain the opportunity to compare our DCS
of elastic diffraction scattering of hadrons by atomic
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nuclei, which is the average over time, with the relevant
DCS averaged over the ensemble of trajectories of the
process L(t) with a distribution W (L):

o0

(o(9))r = /U(L,ﬂ) W (L)dL. @)

0

Here, the DCS o (L, %) is connected, analogously to the
Poisson probability of registration (1) in the Mandel
formula (3), to the probability of registration of a
particle that has been scattered at an angle 6.

None of the specific cases of hadron-nucleus
scattering is restricted in any way by the speculations
presented above. In order to estimate the efficiency of
the proposed approach, let us consider the scattering of
nucleons by nuclei. The stochasticity of the parameters
of the relevant potential function is associated with
fluctuations of the mean nuclear field. If one proceeds,
say, from the model of the diffraction of nucleons by
a black nucleus with a sharp (diffusiveless) surface
[2-4], the radius of nuclear absorption (the radius of
nucleon-nucleus interaction) Ry = rgA'/? turns out a
single dynamic parameter, and the parameter of nuclear
density ry can be regarded as a stochastic variable.

2. Construction of a Diffraction Amplitude
with Regard for the Fluctuation Nature of
Nucleon-nucleus Interaction

Let us consider the elastic scattering of nucleons
possessing the kinetic energy E within the interval
0.1 — 1.0 GeV by heavy nuclei [2-4] in a reference
frame connected to a target within the framework of a
stochastic modification of the diffraction approximation
of nuclear optics. At energies E > 50 MeV, the
analysis of nucleon-nucleus scattering on the basis of
the optical model [4] becomes essentially complicated,
especially if both the DCS and the angular dependences
of the polarization of scattered nucleons are reproduced
simultaneously. If the analysis is confined to the
scattering into the forward hemisphere, a simple
diffraction model of strong absorption turns out rather
productive at energies £ > 50 MeV and up to the
values, at which the relativistic effects and phenomena
connected with internucleon distances in nuclei become
noticeable. A nonuniformity of absorption in this model,
which is, to a certain extent, a reduction of the full-
scale optical approach, is usually taken into account
through introducing a profile function w(b), where b is an
impact parameter for a nucleon—nucleus collision [2—4].
An obvious shortcoming of such an approach is typical
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diffraction dips, which are brought in correspondence,
more or less successfully, with the measured DCSs
by making allowance, as a rule, for nuclear refraction
[2-4]. We suggest an alternative way for matching
the calculated and measured DCSs in the vicinity of
their minimal values, restricting ourselves to an idea
of a spherical black nucleus with sharp surface. In the
framework of this approach, the effects of diffusiveness
of a nuclear surface and a nuclear refraction turn out a
consequence of the stochastic nature of the parameter
Tro.

Our initial idea was to represent the process of
scattering of nucleons at intermediate energies as
the nucleon motion in a predominantly absorbing
medium. This motion is accompanied by insignificant
perturbations, which are induced by the spin-orbit
interaction and have a refractive character. In the region
of total absorption, which is limited by the value of the
orbital moment [ (0 < I < lnax = L), the diagonal
elements S; of the nuclear part of the S-matrix were
considered equal to zero. The limiting value L of the
angular momentum is a discrete stochastic variable, the
stochasticity of which is generated by fluctuations of
the radius of the nuclear surface. Moreover, we should
bear in mind that the uncertainty of the limiting value
L is also connected with a quasiclassical character of
localization of the region of total absorption, which is
determined in the basis of the angular momentum with
an accuracy of about unity [2]. We suppose that possible
values of L are in the interval Ly — AL < L < Ly
and a certain probability density W (L) corresponds to
them. We also suppose that the spin-orbit interaction
is realized in the surface layer of a nuclear substance,
which is external with respect to the region of total
absorption and whose width is characterized by the
values [ within the interval Lo+1 <[ < Ly+1+Al = L
We assume that, in the external domain with [ > Ly,
the diagonal elements of the nuclear part of the S-

matrix satisfy the condltlon |S+| |S; | 1S;1” =
1, where j = 1 ﬂ: = is the total angular momentum
of an incident nucleon and St = j=i+1- In other

orbital channels with [ > Ly, the nuclear interaction
is absent, so that SljE = 1. Analogously to the case
of the absorption region, we take into account the
opportunity for the value of Lg to fluctuate within
the limits of variation of the spin-orbit interaction
bandwidth: 0 < Al < (Al)max = ALs. A near-
surface character of the spin-orbit interaction allows the
parametrization

SiF = S £iAS, (5)

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 6

where S = (1—(AS)?)'/2, S = ReS, and AS = Re(AS),
to be used.

Below, we confine the consideration to the scattering
of nucleons by nuclei with a zero spin. Then, as is well
known, the amplitude of the process can be written down

as

fo(L, Ls,¥) = fon(L, Ls,9) + (67) fr, (Ls,9), (6)

where @ is the Pauli spin vector, @ = [k x k']/kk' is
the unit vector , k(') is the wave vector of an incident
(scattered) nucleon, and i = ¢ = 1. Within the examined
energy interval, the wave number k = k' is determined

[11], making allowance for relativistic corrections, as
k = EA{[E(E + 2EN)]/[(Ex + Ea)’+
+2E,E]}'/?/197.3, (7)

where k is measured in fm~! units, if the kinetic energy
E and the rest energy En (E4) of a nucleon (of a target
nucleus) are measured in MeV units. The amplitude
fon = fo + fr + frg is a sum of the Coulomb and
nuclear central amplitudes modified by a Coulomb field
in the region of total absorption and in the near-surface

layer:
_ n ) . v
fo= _W exp {21 |:0'0 —nln (sm§>} } ,  (8)
1 L
=5 (20 + 1) exp (2i0y) Pi(cosd), (9)
=0
1 &
frs =% [(2l+1)(1 —S) —iAS]x
¢ I=Lo+1

x exp (2io;) P(cosd). (10)
Here, n = Zae?/V is the Sommerfeld parameter for a
proton and a target nucleus with the atomic number Z4,
V is the relative velocity of the proton and the nucleus
when the distance between them is infinitely large, and
op = arg'(l + 1 + in) is the Coulomb phase shift. The
amplitude of the spin-orbit interaction fr_ looks like

Ls
AS Z exp (2io;) P} (cost),
l=Lp+1

fr, = (11)

ik

where the associated Legendre polynomials P/ (x) are
defined according to work [12].

We make the simplest assumption concerning
the distribution function of discrete stochastic values
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of angular momenta. Namely, let these values be
distributed uniformly within the corresponding intervals
of averaging. Such an assumption is made, e.g., when
analyzing radio signals with unknown parameters in a
white noise (see, e.g., [13]). In this case, the probability
density W(L) for a stochastic variable L can be
represented [14] as

Lo

1
W(L) = (1+ AL) Z
Ly=(Lo—AL)

The forms of the probability densities W (Lg) and
W (L) are similar. The averaging of the amplitudes [z,
frs, and fr_ according to formula (4) was carried out
over the corresponding intervals of uncertainty of the
limiting orbital momenta L, Lg, and L,, which gave the
following results:

5(L — Ly). (12)

Lo
(fL)L = ﬁ L:LOX;AL fr, (13)
) Lo+1+ALsg
(frs)Ls = 0+ ALy LS:EL:OH frs) (14)
. Lo+1+ALg
(frodrs = (1+ALs) L,:XL;)-H fr,- (15)

The variance of a complex-valued stochastic function
of a real argument Z(r) is defined, according to [8], as
the mathematical expectation of the function |Z(7) —
(Z(7))|?. Then, the general expression for the variances
of the amplitudes f; = fr, frs, and fr_ looks like

D7 (Fif 7 = (F)FY)/ (imax — imin)-
1=%min
From all the stated above, it follows Ehat the
observable polarization of scattered nucleons P(1}) and
the DCS of elastic scattering oo (L, Lg, ) are determined
as

(PO))L.Ls =
2Re[(fen(L, Ls,9))r,Ls(fr,(Ls, 19)>*LS]

Df; = (16)

-7 (0 Ls D i -
where

(fen(L, Ls,9)) s = (fr(L,9)) L+

+(frs(Ls,9))Ls + fo(d), (18)

and

<UO(L7 LS) ﬁ))L,LS =
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= <%Sp fo(L, Lo, ) J;ro (L;Lmﬂ)> =

L.Ls
= [(fon (L, Ls,9)) 105> + [{fr, (Ls,9)) s>+

+DfL(¥) + D frs(9) + DfL,(9). (19)

Up to this point, the sharp nuclear surface with
a stochastically fluctuating radius has been supposed
to possess a spherical form. Hereafter, we take also
into account the presence of the zero oscillations of the
nucleus surface. According to [15], making allowance for
these multipole pulsations results in renormalizing the
amplitude of scattering:

f(L7L5719) :fO(LaLSaﬁ) Fd(ﬁ)a (20)
where
Fu(0) = exp(—(kd9)*/2) (21)

is the damping factor, d* = R3 >°, %, and ) is the total
amplitude of the zero oscillations with multipolarities
A > 2. Therefore, the multipole zero oscillations of
the nuclear surface induce an additional exponential
reduction of the DCS

(L, Ls,¥) = ao(L, Ls, ) F; (V) (22)

as the scattering angle increases, but do not change
expression (17) for the polarization of scattered nucleons.

3. Results of Calculations of the DCS and the
Angular Dependences of Polarization for
Proton Scattering by 2°Pb Nuclei

We share the doubts of the authors of work [16]
concerning the frequently used procedure of summation
of partial scattering amplitudes, which is based on
the continuous approximation typical of the traditional
diffraction model or on the Poisson formula with the
following substitution of the Legendre polynomials in
the integrand by a Bessel function [2,3]. Taking into
account the Mehler—Rayleigh theorem [17],

lim Pn(cos%) = Jo(p), (23)

n—o0

the substitution of the Bessel function for the Legendre
polynomials is a mathematically correct operation. By
no means the same can be asserted if the matter concerns
a transition from the summation of series over orbital
waves to the integration over the relevant continuous
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Fig. 1. DCS (a) and the polarization (b) of elastic scattering of protons with the energy E = 200 MeV by 2°8Pb nuclei. The points
correspond to the experimental data from [19] and the curve to the result of calculations according to the proposed model of stochastic

diffraction. The parameters of calculation are quoted in the table

variable [16]. In work [16], the elastic scattering of
charged particles by strongly absorbing atomic nuclei
with either sharp or diffusive surfaces is responsible
for amplitudes which are constructed without use of
the Poisson formula, valid in a wide range of angles
f, and composed of the Fresnel and Fraunhofer parts,
the relation between them being analyzed carefully. The
comparison and discussion of the calculated angular
dependences of the ratio o(¢)/ogr(), where og(¥) is
the Rutherford DCS, up to the angles ¥ ~ 120° and
for various variants of the amplitude of scattering by a
nucleus with a sharp surface were carried out in work
[16]. The authors of [16] emphasized that, in a dark
region [3,18], i.e. at ¥ > Y, where ¥¢ is the critical
angle [2] that demarcates the regions of Coulomb and
nuclear scattering, the positive and negative Fraunhofer
amplitude branches [16] begin to make approximately
equal contributions to the amplitude, thus generating
the Fraunhofer mode of diffraction. Conclusions of
work [16] have substantiated to a certain extent and
render a comparison of the results of our calculations
with experimental data obtained beyond the range
¥ < (kR)™' [2] to be meaningful. By the way,
such a comparison has been done in a number of
known researches [2-4, 16, 18]. The circumstance that
the analytical approach was checked in work [16] by
the numerical summation of partial amplitudes is also
extremely important for us. Such a monitoring evidences
for an impressive coincidence between the results of
analytical and numerical calculations of the amplitude of
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elastic scattering of charged particles by a black nucleus
with sharp surface within the whole interval of angles
0 < 6 < 120°. Basing on this result and on a community
of starting points of the diffraction theory in this work
and in work [16], namely, on the assumption that the
S-matrix can be represented as

Sy = H(l — Lo) exp(2io), (24)

where H(z) is the Heaviside function, we sum up the
series of partial amplitudes also numerically, not using
the Poisson formula. The upper limit of the orbital
angular momentum values reached, as can be seen from
the table, the value of 20 in expression (9) and 64 in (10)
and (11).

The availability of a plenty of experimental data
concerning proton—nucleus scattering allows one to test
the features of the model developed here and the
influence of the averaging over the fluctuating number
of orbital waves that take part in the short-range
nuclear interaction in detail. We have calculated the
DCS and the polarizations for the elastic scattering of
protons with the energies £ = 200, 400, 800, 1000, and
1040 MeV by 2%Pb nuclei. The relevant parameters
of the model are quoted in the table. The results of
calculations are shown in Figs. 1—4 in comparison with
existing experimental data [19-22] (the EXFOR library).
Analyzing the figures, we may state that the developed
model of the stochastic diffraction scattering of protons
of intermediate energies by atomic nuclei results in a
qualitative agreement with experimental data
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Fig. 2. The same as in Fig. 1 but for E = 400 MeV. The points correspond to the experimental data from [19]
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Fig. 3. The same as in Fig. 1 but for E = 800 MeV. The points correspond to the experimental data from [20]

concerning both the DCS and the polarizations of quantity that is recognized as the degree of an orbital
scattered protons. But experimental data are not always fluctuation. Since the lower limit of the interval of the
reproducible quantitatively. In particular, it is hard

Parameters of calculation of the DCS and the

to remov? d(‘eep dips ln_the angular dependences of polarizations at elastic scattering of protons by 20Pb
the polarization at relatively large angles 6. For an uclei

agreeme:nt to be improved, an expansion of the physical Parameter 7, MeV

foundations of the model may be demanded. 200 | 400 | 800 | 1000 1040
Let us introduce the effective limiting orbital Lo 20 30 52 63 63

momentum Leg and let its values be distributed AL 0 0 2 4 8

uniformly within the interval (Leg) — ALesr < Leg < AALSS 0%5 0%5 0%7 (1) [1)

(Lefr) + ALer, where ALeg = (AL + ALs +1)/2 is the d, fm 1 0.9 0.8 0.83 0.83
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orbital momentum uncertainty is Lo — AL, whereas the
upper limit is Lo+ 1+ ALg, ALeg is just a half-interval
between the lower and upper limits. If the stochastic
variable Leg is distributed uniformly, the mathematical
expectation (Leg) is equal to a half-sum of the upper and
lower limits [14], i.e. (Leg) = Lo + (1 — AL + ALg)/2.
The standard deviation 6 Leg in this case amounts to [14]

6Less = ALet/V/3. (25)

Following work [2], let us determine now the effective
limiting radius

Ret = Ler/k = Ro(1 — 2n/kRo)*/%. (26)

Within the considered energy interval, the values of
(Lesr) correspond, on the average, to the parameter
of nuclear density ro = (1.17 £ 0.03) fm that does
not contradict the values of ry found when studying
other nuclear processes. For example, rgoul ~ 1.2 fm
is a typical value of a radial parameter of charge
distribution in nuclei. On the other hand, making use of
the approximate formula D[h(z)] ~ [h'[(x)]]?D(x) and
Eq. (26), we obtain the standard deviation

1 (Leog)0 Leg
= LAL/3 [772 + <Leff>2]1/2'

5T0 (27)

It turns out that the sampling average is equal
to 079/To = (3.2 £ 1.4)% in the considered energy
interval. Such an estimation of the relative variation
of the parameter of nuclear density can be interpreted
as a hint at the primary source of fluctuations of the
limiting angular momentum, fluctuations of the nuclear
density. The obtained value for 67 /7y can be confronted
with the data concerning the compressibility of nuclear
substance. For example, when expanding the energy of
a nucleus in a series and determining the compressibility
modulus K, the approximate estimation

) E

(ﬂ) ~ 20 (3 A) (28)
To theor KA or 0

is obtained.
For a 2°%Pb nucleus, the value K ~ 211 MeV

was determined from experimental data concerning the
position of the giant monopole resonance [23]. Having
adopted that the main contribution to the derivative
is provided by the surface and Coulomb energies, we
obtained, according to the Weizsdcker formula, that

<8EA> ~ [_2A2/3bsur+

or
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Fig. 4. (a) The same as in Fig. 1,a but for E = 1040 MeV. The
points correspond to the experimental data from [21]. (b) The same
as in Fig. 1,b but for E = 1000 MeV. The points correspond to
the experimental data from [22]

+be Z5(1 = 0.76Z /%Y A=3 Iy, (29)

where bg,,; & 17 MeV and be ~ 0.70 MeV [24]. Then, the
expected value of the relative variation drg/ro &~ 0.02,
which does not contradict our estimation. At last, our
calculations led to the estimation of the parameter d,
namely, d ~ (0.87 £ 0.08) fm, which, according to
Eq. (21), can be confronted with the parameters of
dynamic deformation of a 2°8Pb nucleus. A collective
low-frequency oscillation mode reveals itself in a 2°*Pb
nucleus through the excitation of its octupole state 3~
(= J™) and is characterized by the experimental value
B3 = 0.12 [25], wherefrom d ~ 0.83 in a good agreement
with our estimation.
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4. Conclusions

The results of this work have led to the following
statements.

1. There exists a deep analogy between light
optics and the physics of elastic and inelastic nuclear
scattering, both being based on the wave nature of light
and a nuclear (corpuscular) emission.

2. The application of methods of the theory of
stochastic processes to calculating the characteristics
of nuclear phenomena beyond the framework of
the theory of counters has been substantiated. The
attention was concentrated on the stochastic nature
of the DCS measurements in nuclear physics, which
is similar, to some extent, to the photocounting
statistics.

3. Starting from the simplest model of diffraction
scattering, i.e. the model of total absorption with
the surface spin-orbit interaction, we have constructed
the amplitude of the elastic scattering of nucleons
by atomic nuclei with zero spin, which takes into
account the fluctuation character of the nucleon-nucleus
interaction.

4. As an example, the amplitude of scattering
has been constructed assuming a uniform distribution
of the angular momenta of partial orbital waves
within the limits of their uncertainties. But nothing
prevents from using other, more complicated
distributions.

5. The DCS and the polarizations of scattered
nucleons have been calculated making no wuse
of the quasiclassical transition, typical of the
diffraction approach, from the summation over
orbital with discrete angular momenta
to the the relevant continuous
variable.

6. At small scattering angles, which are inherent
to the traditional diffraction approach, our approach
allows one to reproduce adequately and simultaneously
both the experimental DCSs and the polarizations of
scattered nucleons, removing deep diffraction dips. But
at large angles, the description of experimental data has
a qualitative character, in particular, for polarizations.

7. To improve an agreement with experiment, we
made allowance for zero oscillations of the nuclear
surface which generate, according to a corresponding
calculation, the exponential damping of a DCS at large
scattering angles.

8. Fluctuations of the nuclear density can serve
as a primary source of fluctuations of the limiting
angular momenta (i.e. the radius of the nucleon-

waves
integration over
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nucleus interaction). It is evidenced, in particular, by
a coincidence of the parameter values calculated by us
with those available in the literature.

Thus, the model of statistical diffraction, proposed
by us, has a certain physical substantiation, illustrates
the basic features of the DCS and polarization behavior
at the scattering of protons of several hundreds of MeV
in energies, and can be applied for the estimation of
the relevant structural characteristics of nuclei. Making
the model more complicated and using a huge body
of knowledge produced by the theory of stochastic
processes, we may expect for a better understanding
of the physics of nuclear scattering which has much in
common with stochastic light optics.
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AIPOH-AIEPHE PO3CIAHHA ¥ CTOXACTUYHIN
SITEPHIN OTITUILIT

I'.0. IIpoxoneuyw, O.B. ®ypcaes
Peszmowme

Crouparounch Ha rnbOKY AHAJIONII0 MiXK CBITJIOBOIO ONTHKOIO Ta
Gbi3UKOI0 AMepHOro PO3CigAHHS, OOTPDYHTOBAHO 3aCTOCYBAHHS Me-
TOZiB Teopil CTOXaCTHYHHUX IPOIECIB 1151 PO3PAXYHKIB XapaKTePH-
CTHUK IPYKHUX SIePHUX 3iTKHEHb. BUXOASYIHN 3 MO/IeTi IOBHOT'O 10~
IJIMHAHHS 3 IPUIIOBEPXHEBOIO CIiH-0POiTaIbHOI B3aEMOZIIEI0, Y AU~
dpakiiiinoMy HabIIKeHH] TOOYA0BAHO aMILTITY Ly IPYKHOTO PO3-
CisIHHS HyKJIOHIB ATOMHHMHE sIJPAMHE 3 HYJIbOBHM CIIIHOM, sIKa Bpa-
xoBy€ (baykryaniiinuii xapakrep HyKJIOH-saepHOI B3aemogii. [Tpu
HEBEJIMKHAX KyTaxX PO3CISHHS IOCATAE€THCS OJHOYACHE Y3TOMKEHHS
3 eKCIIEPUMEHTOM K audepeHniaIbHuX nepepisis, Tak i KyToBmx
3aJIeKHOCTe! MOIIpu3alil po3CigHnX HYKJIOHIB. [Ipu BeIukux Ky-
TaxX PO3PaxXyHKH y3TOJKYIOThCS 3 JaHUMH PO AudepeHIiaibHi
mepepi3u 3 BpaXyBaHHSAM HYJIbOBUX KOJIMBAHDL SITEPHOI MTOBEPXHI.
36ir pe3ysbraTiB PO3PAXYHKIB i3 MOASpPU3AINAHUMU JaHUMH MA€
gaxicuuit xapakrtep. [Tokazano, mo mKepesroM GpIyKTyarii rpanud-
HHUX KYTOBUX MOMEHTIB OpOITaJIbHUX XBHJIb MOXYTH OyTH (DIyK-
Tyamil sigepHol rycTHHH.
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