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We present a method of construction of piezo-optical surfaces

(POS) which consists in the finding of the difference of position

vectors of the optical indicatrix perturbed by a mechanical

stress and a nonperturbed one. It is proved that the method

of construction of the indicative surfaces (IS) of the longitudinal

and transversal piezo-optical effects (POE) is a partial case of

the offered method. The examples of POS are adduced for cubic

crystals BaF2 and KBr which concern to the symmetry class

m3m. It is shown that the transformation law of components of

the tensor of piezo-optical coefficients (POC) upon a rotation of

the coordinate system is identical to the difference of position

vectors of the optical indicatrix perturbed by the tensor of POCs

and those of a nonperturbed one. This statement is spread on

other physical effects induced in crystals by external fields.

The anisotropy of a physical property of a crystal is

most completely represented by the spatial distribution

(the indicative surface) of the value of the appropriate

effect [1,2]. Mathematically, the IS corresponds to a

transformation law of components of the tensor of a

physical quantity upon a rotation of the coordinate

system. For the 4-rank tensor of POC, this law looks

like

�0ijkl = �im�jn�kp�lo�mnpo; (1)

where �0ijkl is one of the components of the tensor of

POC in the new coordinate system, �mnpo are all the

components of the tensor of POC in the old (crystal-

physical) coordinate system X1, X2, X3, and �im; :::; �lo
are the direction cosines between the axes of the new and

old coordinate systems.

Let us take advantage of record (1) for cubic

crystals [3] of the highest symmetry m3m in the matrix

denotations of POC [4,5]. The matrix of POC of these

crystals has only three non-zero independent coefficients

�11; �12, and �44: Therefore, if the directions of the

pressure action and the light polarization coincide,

formula (1) for the longitudinal POE transforms to the

simple relation for the IS of the POE

�011 = �11 + 2(�12 �11 + �44)�

�(�2
11�

2
12 + �2

11�
2
13 + �2

12�
2
13); (2)

where �11; �12, and �13 are direction cosines between the

axis X 0

1 of a mobile coordinate system, with which the

position vector R describing the surface coincides, and

the axes X1, X2, and X3 of the old coordinate system.

If we pass to a spherical coordinate system, in which

the direction cosines are given by the known formulas

(see, for example, [3])

�11 = sin � cos�; �12 = sin � sin�; �13 = cos �; (3)

then we get a formula for the IS of the longitudinal POE:

R(�; �) = �011 = �11 + 2(�12 � �11 + �44)�

�(sin
4 � sin2 � cos

2 �+ sin
2 � cos2 �); (4)

where R is the length of the position vector R which

is given by the spherical coordinates �; � and coincides

with the direction of light polarization; � is the angle

between a position vector R and axis X3, � is the angle

between the projection of a position vector R on the

plane X1; X2 and the axis X1.

In works [3, 6�10], the method of construction of IS

for the longitudinal and transversal POE is surveyed in

detail. In the present work, we develop other method of

the spatial description of POE which allows one to find

the POE value at arbitrary mutual orientations of the
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light polarization vector i and the pressure action vector

m. The essence of our method consists in the finding of

the difference of values of the position vectors (indices of

refraction) of the optical indicatrix of a crystal perturbed

by a mechanical stress �m and a free one.

Let us write the equation for an optical indicatrix

[4,5] as

a1x
2
1 + a2x

2
2 + a3x

2
3 = 1; (5)

where ai = 1=n2i are the main polarization constants, ni
are the main indices of refraction (semi-axes of an optical

indicatrix), and xi are the Cartesian coordinates.

In a spherical coordinate system, if x1 =

r sin � cos�; x2 = r sin � sin�; x3 = r cos �; Eq. (5)

looks as

a1r
2 sin

2 � cos2 �+ a2r
2 sin

2 � sin2 �+ a3r
2 cos2 � = 1;(6)

where r is the length of a position vector r which

describes a characteristic surface of the tensor of

polarization constants ai (the optical indicatrix).

Therefore, r has the sense of the refraction index of a

crystal at the light polarization in an arbitrary space

direction which is determined by the polar coordinates

� and �.

The equation for an optical indicatrix perturbed by

an external field in a Cartesian coordinate system looks

like [11,12]

(a1 + Æa1)x
2
1 + (a2 + Æa2)x

2
2 + (a3 + Æa3)x

2
3+

+2Æa4x2x3 + 2Æa5x1x3 + 2Æa6x1x2 = 1 (7)

ànd, in a spherical coordinate system respectively

(a1 + Æa1)r
2
z sin

2 � cos2 �+

+(a2 + Æa2)r
2
z sin

2 � sin2 �+ (a3 + Æa3)r
2
z cos

2 �+

+Æa4r
2
z sin 2� sin�+ Æa5r

2
z sin 2� cos�+

+Æa6r
2 sin

2 � sin 2� = 1: (8)

Here, rz is the length of a position vector rz (the index

of refraction) of a perturbed indicatrix; Æai (i =1,2,3)

are changes of the main polarization constants which

determine changes of the main indices of refraction

[see the comment to (5)], and Æai (i =4,5,6) describes

rotations of the optical indicatrix around the axes X1,

X2, and X3, respectively.

Having defined values of r and rz from (6) and (8)

and having subtracted them, we get the function which

describes the spatial surface of values of the refraction

index Æn (�, �) which is defined by changes Æai (i =1,2...,

6) of components of the tensor of polarization constants:

Æn(�; �) = rz � r = �

�
(Æa1 cos

2 �+ Æa2 sin
2 �) sin2 �+

+Æa3 cos
2 � + (Æa4 sin�+ Æa5 cos�) sin 2�+

+Æa6 sin
2 � sin 2�

�
=
�
2(a1 sin

2 � cos2 �+

+a2 sin
2 � sin2 �+ a3 cos

2 �)3=2
�
: (9)

We note that relation (9) was obtained by using

one of the postulates of piezo-optics: Æai << ai. This

allows us to simplify the expression in the denominator

of (9) which is a cube of the refraction index of a crystal

in an arbitrary direction (�, �). This is easy to verify

by substituting, for example for a cubic crystal, the

condition a1 = a2 = a3 = 1=n2 in the denominator.

The changes of Æai which enter (9) depend, in turn,

on the value and direction of the action of an external

field on the crystal. For POE, Æai are induced by the

mechanical stress and correspond to the basic law of

POE

Æai = �im�m; (10)

where �im are POC (components of the tensor of POC),

�m are components of the tensor of mechanical stresses,

the indices i; m = 1,2, . . . , 6 correspond to the directions

of light polarization and action of uniaxial pressure,

respectively.

Therefore, (10) presents six equations for Æa1; Æa2,

. . . Æa6, each consists of six terms which correspond to

six components of the tensor of mechanical stresses �1,

�2, . . .�6 [5, 13], should be substituted in (9). Then we

obtain an expression for the surface Æn(�; �) by means

of POCs �im. In addition, components of the tensor �m
should be written in the spherical coordinate system,

namely:

�1 = � sin
2 � cos

2 �; �4 =
�

2
sin 2� sin�;

�2 = � sin
2 � sin

2 �; �5 =
�

2
sin 2� cos�;

�3 = � cos2 �; �6 =
�

2
sin

2 � sin 2�: (11)

Here, � is the mechanical stress created by an uniaxial

compression (stretching) in a direction which is set by

the polar coordinates �, �, which are, respectively, the

angles between the pressure action vectorm and the X3

axis and between the projection of the vector m on the

plane X1, X2 and the X1 axis.
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It is easy to prove the validity of (11) if we use the

following short form of the tensor of mechanical stresses

�m in the Cartesian coordinate system [12, 14]:

�m = [�1; �2; �3; �4; �5; �6] = �[a2; b2; c2; bc; ac; ab]; (12)

where a; b; and c are cosines of the angles between the

pressure action direction and the principal axes X1,

X2, and X3, and express the cosines a; b; c through the

spherical coordinates �; � by analogy to (3).

Let us remark that the polar coordinates �; � of the

pressure action vector should be distinguished from the

polar coordinates �; � which set the polarization vector

of light.

If we substitute (11) in (10) and (10) in (9), we

get a function Æn(�; �; �; �), which describes a change

of the index of refraction Æn in any spatial direction

(�; �) depending on a value and a direction of the acting

mechanical stress �(�; �). The appropriate general

relation is awkward, therefore we give an example for

cubic crystals of a maximum symmetry, for which we

have only three non-zero independent coefficients �11,

�12, and �44 from 36 components of the matrix of POC:

�

2

�n3
Æn(�; �; �; �) = �0im =

�
�11 sin

2 � cos2 �+

+�12(sin
2 � sin

2 �+ cos
2 �)

�
sin

2 � cos2 �+

+
�
�11 sin

2 � sin
2 �+ �12(sin

2 � cos
2 �+ cos

2 �)
�
�

� sin
2 � sin2 �+ (�11 cos

2 � + �12 sin
2 �) cos2 �+

+
1

2
�44

�
sin

2 � sin 2� sin
2 � sin 2�+

+sin 2� sin 2�(sin� sin�+ cos� cos�)
�
: (13)

In (13), we have transferred the factor (�2=(�n3))

from the right side to the left one and got the expression

which designates the value of POE describing a change

Æn in the directions of the light polarization (�; �) undet

the action of � along the direction (�; �). To prove that

the expression on the left side in (13) has the content

of POE is possible by means of the differentiation of

(10) with respect to one component of the tensor �m:

Æai = Æ 1
n2
i

= �
2
n3
i

Æni = �im�m. Whence we obtain the

relation �im = �2Æni=(n
3
i�m) similar to the left part of

(13).

So, (13) describes the spatial distribution of POE.

Therefore, there is a problem: By what does (13) differ

from the indicative surface of POE (1) which also

describes the spatial distribution of the effect.

Let us substitute the condition which correspond to

the longitudinal POE in (13), if the direction of light

polarization (�; �) coincides with the direction (�; �) of

the action of a mechanical stress, i.e. � = �; � = �.

After transformations, we obtain the relation identical

to (4) which is IS and corresponds to the transformation

law of the tensor of POC (1) for cubic crystals of

symmetry m3m in the polar coordinates.

Let us check up this conclusion for the transversal

POE, when the directions of the light polarization and

the action of a pressure are mutually perpendicular. If IS

is described by a position vector R which coincides with

the light polarization and if the direction of a pressure

changes in the plane X1, X2 (these conditions for IS are

given in [3]), it is obvious that the polar coordinates of

the directions of light polarization and the direction of a

pressure are connected as follows: � = 90Æ; � = �+90Æ.

Having substituted the indicated values of � and �

in in (13), we get the expression

�
0(i)
12 = �12 + 2(�11 � �12 � �44) sin

2 � sin2 � cos2 �; (14)

which is identical to the relation for IS of light

polarization written in [3] on the basis of a

transformation law of the tensor of POC (1). That is,

expression (14) obtained as the difference of position

vectors rz � r of a perturbed indicatrix and a

nonperturbed one is also the transformation law of the

tensor of POC in the polar coordinates.

We can also obtain the relation identical to (14) if

we substitute the conditions � = 90Æ; � = � + 90Æ in

(13). These conditions correspond to IS of the transversal

POE which is described in space by a position vector R

conterminous with the direction of action of the pressure,

and the light polarization direction changes in the plane

X1, X2 (the definitions of such IS are also formulated in

[3]).

So, the differences of the position vectors rz � r

of perturbed and nonperturbed optical indicatrices (9)

and (13) in partial cases, which correspond to IS of

the transversal and longitudinal POEs, are just the

indicative surfaces of POE. The last correspond, in

turn, to the transformation law of components of the

tensor of POC upon a rotation of the coordinate system.

The analysis, which has been carried out on the basis

of the equations of indicative surfaces of cubic, three-

and tetragonal crystals in [3, 6�10], proves that this

conclusion is valid for crystals of any symmetry.

Therefore, the following statement is true: the

difference of the position vectors rz � r of an indicatrix

perturbed by the tensor of POC (owing to the action

of mechanical stress) and a nonperturbed indicatrix is
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just the transformation law of the tensor of POC upon

a rotation of the coordinate system.

If we substitute the appropriate direction cosines on

the basis of (3) and (11) in the relations such as (13)

instead of the polar coordinates �; �; �; �, we get the

transformation laws for components of the tensor in the

ordinary form such as in (2). Clearly, this statement is

true not only for the 4-rank tensor of POC, but also for

the tensors for other effects and of other ranks, e.g. for

those tensors which perturb a characteristic surface of a

material 2-rank tensor.

Let us pass to the analysis of formula (13) for cubic

crystals of the highest symmetry.

1. Formula (13) and similar formulas for the crystals

of other symmetry classes are the general expressions of

POS, whereas the IS formulated and investigated in [3,

6�10] are partial cases of POS.

Surface (13) enables us to estimate a spatial

distribution of POE for any conditions of a mutual

orientation of the vectors of light polarization i and

pressure actionm and to construct not only the surfaces

of changes of the optical indicatrix upon the action of

a pressure in a fixed direction, but also the surfaces of

changes of the refraction index in a fixed direction under

a change in the pressure action direction in the whole

space.

2. It is of interest, for example, how the optical

indicatrix will change if the pressure acts along one of

the principal axes X1, X2, X3. Having substituted the

appropriate condition in (13) in the case, for example,

where mjjX1, that is, � = 90Æ; � = 0Æ, we get the

appropriate expression for the surface Æn(�; �) which we

call as POS of polarization:

Æn(�; �) = �

�

2
n3
�
�11 sin

2 � cos2 �+

+�12(sin
2 � sin2 �+ cos2 �)

�
: (15)

In Figure, the exterior of such piezo-optical surface is

shown. Let us remark that all the POS shown in Figure

are given in the format of POE by transferring the factor

(��n3=2) from the right side of equations such as (13),

(15) to the left one.

Interesting and unexpected is the fact that the POS

which describes a change of the index of refraction

along one of the principal axes, for example X1, upon

a change of the direction m of pressure action in the

whole space is identical to (15). We call it as the POS of a

mechanical stress. It is easy to be verified by substituting

the conditions for the direction of polarization ijjX1, i.e.

� = 90Æ; � = 0, in (13).

Moreover, on the basis of (13), it is possible to prove

that POS of a polarization and POS of a mechanical

stress are identical for any arbitrary direction of the

pressure action (�; �) or a change of the index of

refraction (�; �). This conclusion follows from the fact

that the factors which consist of trigonometric functions

and stand at POC �11, �12, and �44, are identical

relative to the coordinates �; � and �; �. If the identity

of the factors of �11 and �44 is obvious in (13), it is

possible to prove a similar identity of the factors of the

coefficient �12 by multiplying the term �12 sin
2 � in the

second line of (13) by the sum (sin2 � + cos2 �) equal

to 1.

The analysis shows that POS of a polarization and

POS of a mechanical stress for crystals of the lowest

symmetry will be different.

3. In Figure, a we show surface (15) for crystal

BaF2 (the symmetry class m3m). It is seen that, under

the action of a pressure along one of the principal

axes, the maximum value of POE is observed in the

plane perpendicular to the pressure action axis, and

the POE is mainly positive. The negative effect is

characteristic only of a narrow spatial �lobe� prolated

along the pressure action axis. In the directions which

form a cone around the pressure action axis with a solid

angle

! = arctg
p
��11=�12 = 27:5Æ; (16)

the POE is equal to zero.

We can easily get relation (16) if we cut, at first, POS

(15) by one of the planes which pass through the pressure

action axis Õ1 (for example, by the plane perpendicular

to X3, which corresponds to the condition � = 90Æ)

and equate the obtained expression for Æn(� = 90Æ; �)

to zero.

In the other pressure action directions shown in

Figure, the anisotropy of POE (a change of the optical

indicatrix) is less pronounced. For example, the pressure

action direction � = 0Æ; � = 45Æ (Figure,b), i.e. m

makes an angle of 45Æ with the X3 axis in the plane X1,

X3, causes only the positive POE. Thus, the maximum

absolute value of POE is observed along the X2 axis.

We note that (16) contains the sign ��� in the

radicand, which requires that the coefficients �11 and �12
have different signs (for BaF2, �11 is negative, as wiil be

indicate below). If the signs of these POCs are identical,

POS of such a type will be one-sign and will not have

zero values (see, for example, Figure,à for crystal KBr).

4. If we compare the POS of crystals BaF2 and KBr

(symmetry m3m), a large difference in the POE

522 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 5
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�; � BaF2 KBr

a) � = 0
Æ
, � = 90

Æ

b) � = 0
Æ
, � = 45

Æ

c) � = 45
Æ, � = 70

Æ

Piezo-optical surfaces (POS) for crystals BaF2 and KBr for different directions of the action of a pressure (�,�) and some cross-sections

of these POS by the main planes

anisotropies of these crystals is characteristic of the

pressure action along one of the principal axes only

(Figure,à). For other selected conditions of POS

(Figure,b,c), the anisotropy is weakly pronounced, which

is seen, in particular, on the cross-sections of POS by the

main planes.
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The values of POCs needed for the construction of

the surfaces of POE are borrowed from [15] (in units of

10�12 m2/N = 1 Brewster). For BaF2��11 = �0:6; �12
= 2.3; �44 = 1.1; and, for KBr, �11 = 6.0; �12 = 4.3;

�44 = �4.5. For the estimation of a piezo-optical change

of the refraction index Æn(�; �) = �
1
2
�0�n3 [where �0

is the value of POE in a selected direction of POS; see

the expression in square brackets in (15)], we give also

the refraction indices of these crystals [15]: n =1.473 for

BaF2 and n =1.556 for KBr.

Conclusion

We have proved that the difference of the position

vectors of an optical indicatrix perturbed by the tensor of

mechanical stresses and a nonperturbed one corresponds

to the transformation law of the tensor of POC upon

a rotation of the coordinate system. The offered way

of the construction of the spatial distribution of POE

enables one to study more fully the spatial anisotropy

of POE, than the method of indicative surfaces of POE,

and is, therefore, an essential addition to the technique

of piezo-optics. The given method can be applied also to

other physical effects which describe disturbances of the

characteristic surface of the material second-rank tensor

under the action of external fields.

The authors are grateful to I.V. Stasyuk for fruitful

discussions of the conceptual problems related to this

work.
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Ï'�ÇÎÎÏÒÈ×ÍI ÏÎÂÅÐÕÍI

Í.Ì. Äåì'ÿíèøèí, Á.Ã. Ìèöèê, Á.Ì. Êàëèíÿê

Ð å ç þ ì å

Çàïðîïîíîâàíî ìåòîä ïîáóäîâè ï'¹çîîïòè÷íèõ ïîâåðõîíü

(ÏÎÏ), ÿêèé ïîëÿãà¹ â çíàõîäæåííi ðiçíèöi ðàäióñ-âåêòîðiâ îï-

òè÷íèõ iíäèêàòðèñ, çáóðåíî¨ ìåõàíi÷íèì íàïðóæåííÿì i íåçáó-

ðåíî¨. Äîâåäåíî, ùî ìåòîä ïîáóäîâè âêàçiâíèõ ïîâåðõîíü (ÂÏ)

ïîçäîâæíüîãî i ïîïåðå÷íîãî ï'¹çîîïòè÷íîãî åôåêòó ¹ ÷àñòèí-

íèì âèïàäêîì ïðîïîíîâàíîãî ìåòîäó. Ïðèêëàäè ÏÎÏ íàâåäåíî

äëÿ êóái÷íèõ êðèñòàëiâ BaF2 i KBr, ùî íàëåæàòü êëàñó ñèìåò-

ði¨ m3m. Ïîêàçàíî, ùî çàêîí ïåðåòâîðåííÿ êîìïîíåíò òåíçîðà

ï'¹çîîïòè÷íèõ êîåôiöi¹íòiâ (ÏÎÊ) ïðè ïîâîðîòi ñèñòåìè êîîð-

äèíàò òîòîæíèé ðiçíèöi ðàäióñ-âåêòîðiâ îïòè÷íèõ iíäèêàòðèñ,

çáóðåíî¨ òåíçîðîì ÏÎÊ i íåçáóðåíî¨. Öå òâåðäæåííÿ ïîøèðåíå

íà iíøi ôiçè÷íi åôåêòè, iíäóêîâàíi â êðèñòàëàõ çîâíiøíiìè ïî-

ëÿìè.
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