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We study a system of multispecies anyons in the presence of an
external magnetic field parallel to the anyonic Aharonov-Bohm
fluxes (antiscreening regime). The lowest Landau level spectrum
and the equation of state are found, and the connection with
exclusion statistics is established. It is shown that distinguishable
anyons with an infinitesimal statistical parameter in the
antiscreening regime behave, in a certain sense, like fermions.

1. Introduction

The prominent features of statistics in two dimensions
are:
(i) it can interpolate between the bosonic and fermionic
limits [1,2];
(ii) statistics of distinguishable particles is possible [3,4].
Of course, fundamental particles which live in
three dimensions can only be bosons or fermions, but
a nontrivial statistical phase can be emulated via
the Aharonov-Bohm effect [5]. Specifically, consider
“charge-flux composites,” i.e. particles which are charges
and point magnetic fluxes at the same time (two-
dimensional cross sections of infinitely thin flux tubes).
If one such particle with charge e, and flux ¢, is taken
around another one with charge e, and flux ¢, then,
since the charges move in the topologically nontrivial
vector potential of the flux tubes, the wave function of
the system acquires a phase of exp[2imay] with

eaqs +e Qsa
Qgp = % - (1)

ISSN 0508-1265. Ukr. J. Phys. 2005. V. 50, N 5

Furthermore, if the particles are identical, then an
interchange of two of them will yield a phase of
explir@,,]. Therefore,

(i) identical particles effectively exhibit intermediate
or fractional statistics which continuously interpolates
from bosonic to fermionic one as a,, goes from 0 to 1
(if the “bare” particles are bosons; agq F> @gq + 1 if they
are fermions);

(ii) distinguishable particles exhibit mutual fractional
statistics as well, whenever a,; is not an integer.

The coefficients aqp form a matrix of mutual statistics
parameters. Translation invariance dictates that it must
be symmetric, as in Eq. (1).

In the so-called Chern—Simons field model [6] (which
actually emerges as an effective model under certain
conditions as a result of the dimensional reduction in
gauge theories), it follows from the field equations that
the magnetic field is proportional to the charge density.
Therefore, a point charge is a point magnetic flux at the
same time, with

$a = Keq , (2)

the coefficient k depending on the coefficient of the
Chern—Simons term in the field Lagrangian. An accurate
analysis [7] shows that, in this case, the mutual statistics
parameter is, in fact, one half of the one in Eq. (1):
ea¢b
Qgp = —— 3
ab o ( )

[Eq. (2) guarantees that the matrix is symmetric].
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Particles with fractional statistics are termed
anyons; nonidentical particles with mutual fractional
statistics are termed multispecies anyons. The quantum-
mechanical problem for multispecies anyons is
formulated as follows: the Schrédinger equation

Hy = By (4)
plus the boundary conditions

Paj.akt) = explimata] ¥ ; (5)
P yxth = exp[2imaqs] 1) (6)
where the operator FP,jp corresponds to an

anticlockwise interchange of the j-th particle of species
a with the k-th particle of species b.

Just like the problem of N identical anyons [8], the
generic multispecies many-anyon problem is not exactly
solvable, since a wave function satisfying conditions
(5), (6) cannot be represented as a linear combination
of products of single-particle wave functions. There
is, however, one particular case where a (partial)
exact solution is available: anyons in a high external
magnetic field (a physical example is elementary
excitations in the fractional quantum Hall -effect
[9]). At temperatures much lower than the Landau
gap (cyclotron frequency) we, the degree of freedom
corresponding to Landau excitations freezes out, and
it is only the lowest Landau level (LLL) states that
matter.

For identical anyons, the magnetic fluxes of particles
can be either antiparallel or parallel to the external
magnetic field; one talks, respectively, about the
screening and antiscreening regimes (the fluxes screen
the external magnetic field or add to it). For the
screening regime, the higher Landau level states are
always separated by a gap from the LLL. Starting from
the exact quantum-mechanical spectrum, the equation
of state (in the LLL approximation) was derived
in [10]. The antiscreening regime was examined in
[11]. It was shown that the equation of state follows
from that in the screening regime upon invoking a
periodicity in the single statistics parameter «, i.e.,
the invariance with respect to a — «a + 2, as long
as one neglects a number of states that join the
LLL at the bosonic (o« = 0) point. Those states
matter at small values of @ o wg?!, and therefore
can be neglected if the w. — oo limit is taken
first.

For multispecies anyons, the signs of particle fluxes
may in general be different, leading to a combined
screening-antiscreening regime. The pure screening
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regime (all fluxes antiparallel to the external field)
has been analyzed [4, 12], and a generalization of the
single-species anyon equation of state is obtained. In
the present paper, we consider the pure antiscreening
regime, extending the periodicity argument onto the
multispecies case.

2. The Spectrum and Equation of State

We place the particles into a uniform magnetic field
B and, in order to discretize the spectrum, add a
harmonic potential, whose strength is to be nullified
in the thermodynamic limit. By convention, we choose
eqeB < 0 (in [10,11], the opposite convention was used).
The cyclotron frequencies

e.B
- ()

are species-dependent, as, in general, may be the
harmonic frequencies w,. The many-body Hamiltonian
is

Wea = —

5 _
Hy=3 [_m_aaajaaj — Wea(?0j0aj = ZajOaj)+

aj

Separating out the long-distance behavior,

_ MqWta = 7
YN =exp | — E 5 aiZa YN,
aj

(10)

yields the Hamiltonian acting on 4y,

Ay =Y

2 _
- _aajaaj + (wta - wca)zajaaj+
aj Ma

+(wm + wca)iajaaj + Wiq

(11)

We are interested in the high magnetic field limit
where we, > w,. As is evident from Eq. (11) with
account for (9), the energy of any eigenstate whose wave
function depends on Zz,; will be proportional to weg;
such states do not belong to the lowest Landau level.
Therefore, the single-particle LLL basis is given by the
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set of functions {2z, £ = 0,1,2,...} (£ is the angular
momentum). For a,, = 0, when the system is one of
multispecies bosons, the complete set of many-body LLL
eigenfunctions is given by

1;[;](\][3{0;;].)} = H H Zﬁ;j )
a J

sym

(12)

where the symmetrization is performed over the
coordinates of particles of the same species only. For
nonzero oy, the key observation is that a multispecies
generalization of the Laughlin factor, T],;)<(pk)(2a; —
zpr) e, satisfies the interchange conditions (5) and

(6). A candidate multibody eigenfunction, then,

is

Iy = I Go—a [[{ =5 ¢ 03)
(aj)<(bk) a J

sym

Here, (aj) < (bk) is understood as “a < b or (a = b and
Jj < k)7, so that each pair of particles is counted only
once. It is easy to see that this will be an eigenfunction
of Hamiltonian (11) if the quantity

(14)

W = W — Wea

is species-independent. From this requirement, one
obtains w,, through Eq. (9); w? will be positive (and
tend to zero, rendering the system free, when w — 0)
only when all w., are positive.

The energy of a state (13) is

Z gaj + Z wagg—k
aj a

E{Zaj} = Z Nowia +

1
+§ZNaNbaab]w ) (15)

ab

and the LLL spectrum is obtained by letting £,;’s run
from 0 to oo with the restriction ¢,; < £, j41. This
makes it possible to calculate the many-body partition
function, and ultimately the equation of state in the
thermodynamic limit, which is [12]

1%
P = Jn |1+ —a> . 16
2 =S matn (14 as)
Here,
MaWeq
PLa = —— (17)
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is the (species-dependent) multiplicity per unit area
of the single-particle Landau level (which becomes
degenerate in the thermodynamic limit @ — 0),

Vo = Pa/pLa (18)

is the filling factor of the Landau level, and vy, =
Pb/PLa-

The wave functions given by Eq. (13) are, in
general, valid only in the pure screening regime,
aqy > 0; otherwise, they may be singular. For
gy < 0, the nonsingular two-body factor with the
correct interchange behavior is (Z,; — Zpr) ~“*t. However,
as noted above, the wave functions depending on
Za; do not belong to the lowest Landau level. To
obtain those that do, one infers a periodicity in the
statistical parameters. Clearly, redefining agq — gq +
2 and ag = ag + 1 (o # b) leaves conditions
(5) and (6) invariant. Therefore, a set of wave
functions

Ungeasy = [ (Zaj = Zar)= 2 x

a, j<k

(19)

X H (Za]' — Zbk)a“bJrl H

a<b, jk a

laj
Hzaj
J sym
with ¢,; defined as above forms the LLL basis of the

eigenfunctions of (11) as long as a,q > —2 and ag > —1.
The corresponding eigenvalues of energy are

E{laj} = ZNawta + Zéa]“f‘
a aj

Na Na - ]- 1
+ 3 P = 042045 3 NN 1) @ 520
° ab

proceeding in the same manner as in the screening regime
yields the equation of state

BP =" pLax

Ve
xIn|1+ . (21
( 1— (ga + 2)ve — Zb;ﬁa(aab + I)Vba> (21)
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3. Analysis

Just like for a single species, one notes a striking contrast
between the two regimes. It is known [12] that Eq. (16)
describes the so-called Haldane exclusion statistics [13].
The latter is defined in terms of multiparticle Hilbert
space dimension: It is postulated that adding a particle
of species b to the system reduces the dimension of
the Hilbert space (the number of states available) for
particles of species a by g5 (multispecies bosons and
multispecies fermions corresponds to g, = 0 and gqp =
dab, respectively). It is possible to see both from the
exact thermodynamic equations and a simple mean-
field argument (replacing all the particle fluxes with
an average magnetic field) that g, = g in the
screening regime. In particular, in the limit cg, — 07, all
correlations between different species vanish in Eq. (16) .
With Eq. (21), however, the expressions for the exclusion
statistics parameters become

Qga +2;
Qgp + 1

(22)
(23)

Jaa =

Jab = (a #0).

In the limit a,p — 07, adding a particle of a given species
still excludes two states for all particles of the same
species and one state for all particles of other species.
That is to say, distinguishable particles start behaving
like fermions for infinitesimally small (negative) agp-

The explanation of this apparent strangeness is the
following. Consider what happens when an a,, passes
through zero. Any state of the form (19), which was
valid when a,; was negative, remains valid when it turns
positive [it can be expressed as a linear combination of
several states (13)]. The reverse is not true, however: It is
only those states (and/or linear combinations thereof) of
the form (13) for which the symmetrized factor vanishes
at zq; — 2 that “survive” the change from a,p > 0
t0 aqp < 0 without changing their analytic form (the
potential singularity getting cancelled). All the others
start to depend on Z,; in addition to, or instead of, z4;
(see [11] for a complete analysis of the two-body case).
Their energies will then contain terms proportional to
aqpB. Since the energies of all the states, in fact, depend
on ag continuously, so will do the exact equation of
state at any finite B. However, if the B — oo limit is
taken first, then the above-mentioned states (detaching
from the LLL) are to be thrown away. The discontinuity
in the number of states belonging to the LLL implies a
discontinuity in the thermodynamic properties.

The exact equation of state for an arbitrary magnetic
field is apparently out of reach, as the general multibody
problem cannot be solved. It is possible, however, to
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corroborate the above-described qualitative picture at
the level of the second virial coefficient. The virial
expansion for a multispecies equation of state is defined
as

BP =Y anyn NIl e (24)
ni n

where A = /273 /m is the thermal wavelength. For two
identical anyons in a magnetic field, the second virial
coefficient is [14] (o = a11)

()_)\2 11—e 2%

aQa_:r 41 +e 22

a 1— e (lal+a)

@ z(lal+a) _ 25
St Are e T ) (25)

with = Sw.. The mixed virial coefficient is given by [4]

ar1(ai2) = az(o2) +az(ag2 + 1), (26)

so that any features of as for a € [0,2] directly map
onto the corresponding features of a;; for a € [0, 1]. For
x> 1, one has

1
az(a) = —(—1+ 2a) for a€]0,1], (27)
2pr
and
1 2aw
az(a) = =— [—1 4 2a + 4(1 — &**")]
2pr
for a€[-1,0], (28)

which is continuous in « for any finite . However, if the
x — oo limit is taken first, Eq. (28) becomes
1

as(a) = — (=14 2a +4) for

a€|-1,0],
L [-1,0]

(29)
which is the same as (27) with the replacement o —
a+2. Now the continuity of az(a) across the point & = 0
is broken.

A simple semiclassical argument supports this
picture and explains relations (22), (23). For a single
particle, the normal modes in the magnetic field in the
presence of a harmonic potential are circular orbits with
frequencies wy — we = w and —wy — we. The excitations
of these modes correspond to the splitting of a Landau
level and to different Landau levels, respectively [12].
The different signs correspond to different directions of
rotation; consequently, it is only states with a positive
angular momentum (that is, states whose wave functions
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depend on z and not Z) that belong to the lowest Landau
level.

The single-particle LLL spectrum is [ = 0,1,... .
The exclusion principle for fermions dictates that if one
particle is in the [ = 0 ground state, the next one must
occupy the I = 1 (or higher) state. Now, the allowed
values of relative angular momentum of two identical
anyons are a + 2n with n integer according to Eq. (5).
Semiclassically, therefore, if alpha is positive and the
first particle sits in the ground state, the second one
may go into the | = a state. In view of the aforesaid, this
corresponds to “excluding a states” for the subsequent
particle, so that the exclusion statistics parameter is
g = a. For two distinguishable anyons, the allowed
values are a + n, which leads to the same result. The
situation, however, is drastically different for negative
a. The | = a state now does not belong to the LLL.
For identical anyons, the lowest allowed (within the
LLL) value is | = a + 2, which explains Eq. (22).
For distinguishable anyons, it is [ = « + 1, explaining
Eq. (23).

4. Conclusion

We have found the lowest Landau level spectrum and
the equation of state for multispecies anyons in the
antiscreening regime, when all anyon magnetic fluxes
are parallel to the external magnetic field. The presence
of the latter can be expected, of course, to break the
mirror symmetry, but the effect turns out to be crucial
even for infinitesimal fluxes. In the B — oo limit, for a
small «, identical and distinguishable anyons alike are
little different from bosons in the screening regime; but
in the antiscreening regime, distinguishable anyons start
behaving like fermions, while identical anyons behave
like “superfermions”, with one particle excluding two
states for the subsequent ones.

A question remaining open is what happens in the
“mixed” regime, when some fluxes are parallel and some
ones are antiparallel to the external field. Numerical
simulations [15] seem to indicate that the exclusion
statistics parameter matrix is not symmetric in this case,
with one of the off-diagonal parameters actually being
negative. The exact quantum-mechanical spectrum is
not available in this case. Even the two-body problem
appears to be solvable only numerically (since the center-
of-mass motion does not separate); it should be possible,
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however, to at least use that numerical solution to make
contact with the exclusion-statistics description.

I would like to thank Stéphane Ouvry for numerous
useful discussions.
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EHIOHU BATATHOX COPTIB ¥V MATHITHOMY IIOJII

C. Mawxesu
Pesmwowme

BuBuaerbcsi cucrema eHioHiB HaraTb0X COPTIB B IPHUCYTHOCTI 30B-
HIITHLOTO0 MATrHITHOrO IIOJId, [MapaJieIbHOTO EHIOHHHM aapOHOB-
GOMIBCHKMM MAUHITHEM IOTOKAM (peKMM AaHTHEKDAHYBAHHS).
3HaAEHO CIEKTDP PO3MIEIJIEHOr0 HaWHU>K4Y0ro piBHs Jlanmay ta
PiBHSIHS CTaHY; BCTAHOBJIEHO 3B’S30K i3 €KCKJIIO3IMHOI0 CTATUCTHU-
xo10. ITokazamHo, 1o eHioHH, [0 PO3PI3HAIOTHCH, 3 iHdiniTe3uMaAIL-
HHUM CTATUCTUYHUM IaPaMeTPOM B PeXKHMi aHTHEKPAHYBAaHHS II0-
BOIsTH cebe B meBHOMY CeHCi momibHo g0 depmioHiB.
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