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In the framework of the deformation potential model, the influence

of the growth temperature of a heterostructure with quantum

dots (QDs) and of the QD dimensions on the width of the QD

optical gap has been studied. The optical gap has been found to

become narrower as the growth temperature of the heterostructure

increases.

1. Introduction

Nowadays, significant interest is attracted by
heterostructures with (In, Ga)As QDs in a GaAs matrix
[1]. It is connected with an opportunity to expand the
optical range of emission produced by structures grown
on GaAs substrates up to 1.3 �m, and stimulated by
modern optoelectronics needs in effective solid-state
emitters (lasers) [2].

The process of formation of InAs QDs on singular
and vicinal GaAs surfaces by the method of molecular
beam epitaxy in the InAs/GaAs system within the
temperature interval 350�700 ÆC is composed of two
stages [2, 3]. In the first stage, the growth of an
InAs pseudomorphic strained layer occurs. After the
critical thickness of 1.5�1.7 ML (monolayer) has been
reached, the second stage begins. The latter, according
to the Stranski-Krastanow growth model, comprises a
spontaneous decay of the pseudomorphic layer into a
system of crystal islands (QDs) and a wetting InAs
layer about 1 ML in thickness. Up to the thickness
of 3�4 ML, the quasi-three-dimensional islands remain
coherently strained, i.e. dislocation-free. This process
is accompanied by the increase of the surface density
and the average size of the ODs. The further growth

of InAs results in emerging mesoscopic clusters that
contain dislocations.

The strained state of the InAs growing layer is
caused by different constants of InAs and GaAs lattices
(�InAs = 6:08 �A and �GaAs = 5:65 �A [4]) as
well as by different factors of thermal expansion of
contacting materials (�InAsT = 4:5 � 10�6 K�1 and
�GaAsT = 5:9 � 10�6 K�1 [5]). The lattice deformation
of the growing layer depends on growing conditions,
e.g., the growth temperature of the heterostructure
with QDs (350�700 ÆC [6]), the concentration and the
chemical nature of dopants [7]. In particular, varying
the growth temperature, one can affect the degree
of deformation of an epitaxial layer deposited onto a
substrate. Ultimately, it will cause a modification of
the energy spectrum of current carriers in the QD,
i.e. a variation of optical properties of heterostructures
with QDs.

This work aims at calculating the energy of the

basic optical transition within a coherent-strained QD
and analyzing the dependence of this energy (or the
relevant frequency) on the growth temperature and the
dimensions of a QD.

2. The Model of a Heterostructure with

Coherent-strained QDs, which Takes Into

Account Thermal Deformations

Consider the system of strained islands (QDs), which
has three sources of elastic stress field [8]: a mismatch
between the lattice parameters of a substrate and a
material, which is epitaxially deposited onto it (f =
(aInAs � aGaAs)=aInAs � 7%), a mismatch between their
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Fig. 1. Scheme of a spherical quantum dot

thermal expansion factors, and a discontinuity of the
surface tension tensor at the edges of islands.

We consider QDs that possess no well-defined
crystallographic facet, in particular, QDs, the form of
which is approximately spherical. For example, such
QDs are formed in a InAs/GaAs(001) heterosystem
provided the thickness of the InAs growing layer is about
2 ML [2]. Therefore, a contribution of the island edges to
the energy of elastic relaxation will be neglected below.

To reduce a problem with plenty of QDs to a
problem with a single QD, the following approximation
is adopted: the energy of pair-wise elastic interaction
between QDs is replaced by the energy of interaction
of every QD with a mean field of elastic deformation of
all other QDs �e� (N � 1).

We represent a QD (see Fig. 1) as a spherical elastic
dilatation microinclusion with radius R0 (the dotted
curve) inserted into a spherical cavity in a GaAs matrix
(the dashed curve), the volume of the cavity being
smaller than that of the microinclusion by �V . For such
a spherical microinclusion to be inserted into the matrix,
the former must be squeezed, while the surrounding
GaAs matrix to be stretched, both in radial directions.
The result of simultaneous actions of distortions caused
by mismatch of lattice constants and thermal factors of
contacting nanomaterials is described by the variation
of volume �V expressed in terms of the parameter
f(R0; R1; T ):

�V (R0; R1; T ) = f (R0; R1; T ) 4�R
3

0
: (1)

Contrary to works [9, 10], we consider the mismatch
parameter f(R0; R1; T ), which stems from both the
mismatch of lattice constants ai, where i = 1 for InAs
and 2 for GaAs, and different thermal factors of a

QD and a surrounding matrix, as a function of the
QD dimension R0, the radius of the cavity R1 in a
surrounding matrix, and the QD growth temperature T :

f (R0; R1; T ) = f1 (R0; R1) + f2 (R0; R1) + fT (T ) ; (2)

where f1(R0; R1) and f2(R0; R1) are the relative
variations of the lattice parameters of the QD and the
surrounding matrix materials, respectively, caused by

difference between the radial, a
(i)
r , and angular, a

(i)

�

and a
(i)
' , components of the lattice parameters both

in the QD and the surrounding matrix materials, with
respect to their values in unstrained bulk InAs and GaAs
materials;

fi (R0; R1) =
Sp"(i) (R0; R1)

3
;

Sp"(i) (R0; R1) =
1

ai

�
2a� + a

(i)

r

�
� 3; (3)

a� = a' =
a1G1R0 + a2G2 (R1 �R0)

G1R0 +G2 (R1 �R0)
;

a
(i)

r = ai

�
1�D

(i)

001
�

�
a�

ai
� 1

��
; D

(i)

001
= 2

C
(i)
12

C
(i)
11

;

C
(i)
11

and C
(i)
12

are the elastic constants of InAs (i = 1) and
GaAs (i = 2) materials. Since R1 � R0, then f2 � f1.

The third summand fT (T ) in expression (2) describes
a contribution made by a mismatch between the InAs
and GaAs lattice parameters, resulted from different

values of the QD, a
(1)

T , and the matrix, a
(2)

T , thermal
factors (thermal stresses [11]),

fT (T ) =
�
�
(2)

T � �
(1)

T

�
(Tk � T ) ; (4)

where T is the epitaxial growth temperature (T =
350� 700 K), and Tk is the temperature, to which the
heterosystem was cooled. For a heterosystem planned
to operate at room temperature, Tk = 300 K, and in a
cryoelectron device, Tk = 77 or 4.2 K.

Mechanical stresses �
(1)

rr and �
(2)

rr in InAs and GaAs
materials are determined by the expression [12]

�(i)rr =
Ei

(1 + �i)(1� 2�i)

h
(1 + �i)"

(i)
rr + �i

�
"(i)'' + "

(i)

��

�i
;

(5)

where �i and Ei are Poisson's ratios and Young's moduli,
respectively, of the QD and the surrounding matrix
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materials, which are expressed in the known way [13] in

terms of corresponding elastic constants C
(i)
11

and C
(i)
12
.

To define the components of the strain tensor, it is
necessary to find explicit forms of atom displacements

u
(1)

r and u
(2)

r in InAs and GaAs materials, respectively.
With this purpose in view, we write down the equations
of balance [14]

~rdiv~u = 0 (6)

with the following boundary conditions for a spherical
QD:8>><
>>:

4�R2

0

�
u
(2)

r jr=R0 � u
(1)

r jr=R0

�
= �V;

�
(1)

rr jr=R0 = �
(2)

rr jr=R0 + PL; PL =
2�("(1))

R0
;

�
(2)

rr jr=R1 = ��e�(N � 1):

(7)

Here, R1 is the radius of the cavity in the GaAs matrix,
PL is the Laplace pressure, �("(1)) is the QD (InAs)
surface energy, which is the function of the QD surface

stress, �
(1)

ij , and deformation, "
(1)

ij , tensors [15]:

�
�
"(1)

�
= � (0) +

X
i;j

�
(1)

ij "
(1)

ij +

+
1

2

X
i;j;k;l

"
(1)

ij (1) � s
(1)

ijkl � "
(1)

kl + :::;

and s
(1)

ijkl is the stress tensor of the second order. The left
hand side of the first equation of system (7) is equal to a
geometrical difference �V of the microinclusion and the
cavity volumes in the GaAs matrix, depicted in Fig. 1.

In case of spherical QDs, the solution of Eq. (6) looks
like

u(1)r = C1r +
C2

r2
; 0 � r � R0; (8)

u(2)r = C3r +
C4

r2
; R0 � r � R1: (9)

Since the displacement at the point r = 0 has to be
finite, C2 in solution (8) should be assigned zero.

The displacement field defines the following
components of the strain tensor:

"(1)rr = C1; (10)

"(1)'' = "
(1)

�� = C1; (11)

"(2)rr = C3 �
2C4

r3
; (12)

"(2)'' = "
(2)

�� = C3 +
C4

r3
: (13)

Coefficients C1, C3, and C4 are determined by solving
system (7) taking into account Eqs. (2)�(5) and (8)�
(13).

3. Calculation of the Energy of the Basic

Optical Transition

Knowing the components of the strain tensor, let us find
the potential energy of electrons and holes in a stressed
heterostructure with QDs. The energy is reckoned from
the bottom of the corresponding band in a stressed
nanocrystal InAs:

Ue (r) =

8><
>:

0; 0 � r � R0

�Vc(0)� a
(1)

c "(1) (R0; R1; T )+

+a
(2)

c "(2) (R0; R1; T ) ; R0 � r � R1;

(14)

Uh (r) =

8><
>:

0; 0 � r � R0;

�Vh(0) + a
(1)

� "(1) (R0; R1; T )�

�a
(2)

� "(2) (R0; R1; T ) ; R0 � r � R1:

(15)

Here, �Vc(0) and �Vh(0) are the depths of the potential
well for an electron and a hole, respectively, in a QD in a
non-deformed heterostructure, "(i)(R0; R1; T ) = Sp "(i)

is the trace of the strain tensor; and a
(i)
c and a

(i)
v are the

constants of the hydrostatic deformation potential of the
conduction and valence bands, respectively.

The energy of transition into the ground state in a
stressed QD is defined as follows:

E ("; T ) = E
(e)

00 +E
(h)

00 +E
(1)

g ; (16)

where E
(e;h)
00

is the ground state energy of an electron or
a hole in a stressed QD,

E(1)

g = E(1)

g (0) + "(1) (R0; R1; T )
�
a(1)c � a(1)�

�
; (17)

is the width of the energy gap in stressed QD material,

and E
(1)

g (0) is the width of the energy gap in QD
material provided no deformation effects.

The calculation of the energy spectra of an electron
and a hole will be carried out in the effective mass
approximation. So, the physical condition that the
geometrical dimensions of a QD and a space between
two neighbor QDs should considerably exceed the sizes
of elementary cells in QD and matrix crystals [16], i.e.
R0 � a1; a2, have to be satisfied.

We are to solve the Schr�odinger equation

He;h	e;h (~r) = E(e;h)	e;h (~r) (18)

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 5 503



R.M. PELESHCHAK, O.O. DAN'KIV

Fig. 2. Dependences of the mismatch parameter f(R0; R1; T ) on

the InAs QD growth temperature for various QD radii R0 = 30

(1 ), 60 (2 ), and 90 �A(3 )

with the Hamiltonian

He;h = �
~
2

2
~r

1

m�

e;h (~r)
~r+ Ue;h (r; R0) : (19)

The electron and hole effective masses, m�
1;2e

and m�
1;2h

,
respectively, are supposed to be known both in the QD
and in the matrix; namely, they are taken to be equal to
corresponding values in the relevant bulk crystals.

The solution of the Schr�odinger equation (18) in the
spherical coordinate system looks like

	nlm (r;�; ') = Rnl (r) � Ylm (�; ') : (20)

Here. Ylm(�; ') are Legendre spherical functions [17].
The radial functions Rnl(r) are expressed in terms of
Bessel spherical functions [17]:

R1nl
(r) = Ajl (ke;hr) +Bnl (ke;hr) ; 0 � r � R0; (21)

R2nl
(r) = Ch

(1)

l (i�e;hr) +Dh
(2)

l (i�e;hr) ;

R0 � r � R1; (22)

where

k2e;h =
2m�

1e;h

~2
E
(e;h)

nl ;

�2e;h =
2m�

2e;h

~2

�
U

(2)

e;h (r) �E
(e;h)

nl

�
; (23)

and the potential energies Ue;h(r) of electron and hole
are determined according to formulae (14) and (15),
respectively.

The continuity conditions for the wave functions and
the density of the probability stream at the QD�matrix
interface8<
:

R1nl
(r)jr=R0

= R2nl
(r)jr=R0

;

1

m�

1
e;h

dR1
nl
(r)

dr

���
r=R0

= 1

m�

2
e;h

dR2
nl
(r)

dr

���
r=R0

;
(24)

together with the condition of function regularity for
Rnl(r) at r ! 0 and r ! R1, as well as normalization
consideration, determine the spectrum Enl and the
wave functions of electron and hole in the heterosystem
InAs/GaAs with InAs QDs.

Therefore, the ground state energiesE
(e;h)

00
of electron

and hole in a QD are determined from the following
transcendental equation:

m�
2e;h

m�
1e;h

[1� ke;hR0ctg (ke;hR0)] =

=
1 + �e;hR0 + e2�e;h(R0�R1) (�e;hR0 � 1)

1� e2�e;h(R0�R1)
: (25)

4. Numerical Calculations and Discussion of

Results

The numerical calculations of the energy of the basic
optical transition, considered as a function of QD
dimensions and its growth temperatures, were carried
out for a InAs/GaAs nanoheterosystem with InAs QDs,
the parameters of which are quoted in the table.

Fig. 2 demonstrates that the mismatch parameter
f(R0; R1; T ) decreases linearly as the temperature of
the QD growth increases. The increase of the growth
temperature shifts the thermal component of the
mismatch parameter fT (T ) towards larger by modulus
negative values (see formula (4)). In so doing, such
a temperature rise brings about stress relaxation at
the QD�matrix interface. Fig. 2 testifies that an even
greater effect of the diminishing of the mismatch
parameter is observed if the QD radius R0 increases.
This circumstance substantially reduces stresses, which
are caused by a mismatch between lattice parameters of
contacting materials and described by the component
f1(R0; R1); because the QD material becomes more
massive.

The energy E("; T ) of the basic optical transition
(see formula (16)) is determined by a sum of three
energy components: the energies of the ground state of

an electron E
(e)

00
and a hole E

(h)

00
, and the width E

(1)

g of
the energy gap of QD material. So, the character of the
dependence of the transition energy E("; T ) on the QD
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Fig. 3. Temperature dependences of the energy shift of an electron (a) and hole (b) levels in a quantum dot with various radii R0.

Notations are the same as in Fig. 2

growth temperature T is governed by the T -behavior of

its components E
(e;h)

00
("; T ) and E

(1)

g ("; T ). The increase
of the growth temperature stimulates the raise of
electron and hole energy levels in the QD and a reduction
of its energy gap width (Figs. 3 and 4). Figs. 3 and 4

allow the contributions of the components E
(e;h)
00

("; T )

and E
(1)

g ("; T ) to the formation of the QD optical gap to
be estimated. Fig. 3 provides a quantitative estimation

for the increase of the electron, �E
(e)
00

= E
(e)
00

(T ) �

E
(e)
00

(T 0) (Fig. 3,a), and the hole, �E
(h)
00

= E
(h)
00

(T ) �

E
(h)
00

(T 0) (Fig. 3,b), ground states in a QD with radius
R0, if the growth temperature rises from T0 = 350ÆC to
T (�T = T � T0). Fig. 4 demonstrates the magnitude

�Eg = E
(1)

g (T ) � E
(1)

g (T0) (see formula (17)) of the
reduction of the energy gap width in the material of a
QD with radius R0 for the same variations of the growth
temperature �T . Having evaluated, as the tangents of
the slope angles of corresponding straight lines in Figs. 3
and 4, the rates of variation of components to the energy
of transition into the ground state, we can draw a
conclusion that the rate, at which the energy gap

Parameters of InAs and GaAs crystals [4, 5, 15]

a, C11, C12, ac, a� , �T , Eg,
m
�

e

m0

m
�

h

m0
�(0),

�A Mbar Mbar eV eV K�1 eV N/m

InAs 6.08 0.833 0.453 �5.08 1 4.5�10�6 0.36 0.057 0.41 0.657

GaAs 5.65 1.23 0.571 �7.17 1.16 5.9�10�6 1.452 0.065 0.45

diminishes, substantially exceeds the rates, at which
the electron and the hole ground state energies in
the QD raise. In particular, an increase of the growth
temperature for a QD with radius R0 = 30 �A from
T0 = 350ÆC to T = 400ÆC increases the total energy
of the electron and the hole ground states by 0.31 meV
and reduces the energy gap width of QD material by
1.64 meV. It means that the rate, at which the electron
and the hole ground state energies increase, amounts
to 0.006 meV/K, whereas the rate of the energy gap
reduction constitutes 0.033 meV/K and is 5.5 times as
large as the growth rate of two other contributors to
the optical gap width. Therefore, it is the variations of
the energy gap width in QD material that determine
the character of the dependence of the transition energy
into the ground state on the variation of the QD growth
temperature.

Fig. 5 shows how QD dimensions and temperature
conditions, under which the QD grows, affect the energy
of the basic optical transition E("; T ). From this figure,
it is seen that the increase of the QD growth temperature
stimulates a practically uniform narrowing of its optical
gap E("; T ). Variation of the QD size does not change
the character of the E("; T ) decline with growing T . An
increase of the QD radius R0 monotonously shifts the
energy of the basic optical transition towards lower
energies, with the energy shift being larger for smaller
QDs (20�40 �A).
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Fig. 4. Temperature dependences of the energy gap variation in

material of a stressed QD for various QD radii. Notations are the

same as in Fig. 2

Fig. 5. Dependences of the energy of transition into the ground

state on the growth temperature of a heterostructure with QDs

for various QD radii. Notations are the same as in Fig. 2

On the basis of the obtained temperature dependence
of the energy of basic optical transition E("; T ); one
can indirectly estimate the growth temperature of a
heterostructure with QDs. In particular, knowing from
experimental data the spectral position �max of the
maximum of the photoluminescence curve, we can
estimate the growth temperature making use of the
equality hc=�max = E("; T ).
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ÂÏËÈÂ ÒÅÌÏÅÐÀÒÓÐÈ ÐÎÑÒÓ ÍÀÍÎÃÅÒÅÐÎÑÈÑÒÅÌÈ

ÍÀ ØÈÐÈÍÓ ÎÏÒÈ×ÍÎ� ÙIËÈÍÈ ÊÂÀÍÒÎÂÎ� ÒÎ×ÊÈ

Ð.Ì. Ïåëåùàê, Î.Î. Äàíüêiâ

Ð å ç þ ì å

Â ðàìêàõ ìîäåëi äåôîðìàöiéíîãî ïîòåíöiàëó äîñëiäæåíî âïëèâ

òåìïåðàòóðè ðîñòó ãåòåðîñòðóêòóðè ç êâàíòîâèìè òî÷êàìè

(ÊÒ) òà ðîçìiðiâ ÊÒ íà åíåðãåòè÷íó øèðèíó îïòè÷íî¨ ùiëè-

íè ÊÒ. Âñòàíîâëåíî, ùî iç çáiëüøåííÿì i òåìïåðàòóðè ðîñòó

ãåòåðîñòðóêòóðè, i ðîçìiðiâ ÊÒ îïòè÷íà ùiëèíà çâóæó¹òüñÿ.
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