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The numerical simulation of the light pressure on atoms in the field

of counterpropagating waves with stochastic amplitudes has been

carried out. It has been shown that, similarly to the light pressure

exerted in the field of two counterpropagating bichromatic waves,

the light pressure on an atom in counterpropagating stochastic

waves, with one of them repeating the other with some delay, may

considerably exceed the pressure exerted in the field of a single

running wave.

1. Introduction

The study of the phenomenon of light pressure on atoms

during last decades has brought about the development

of new methods for manipulating the motion of atoms,

which are based on the interaction of atoms with

counterpropagating light waves [1�20]. The appropriate

choice of the law of modulation of counterpropagating

waves allows the process of atom-light interaction to

be organized in such a manner that the atom should

absorb a photon from one wave and emit it into the

other one, with the atom momentum changing by 2~k,
where ~k is the momentum of a photon. The time

interval needed for the atom momentum to be changed

by this value is defined by the rate of the stimulated

transitions, which is proportional to the electric field

strength of light waves, and the modulation period

of counterpropagating waves, and can be significantly

smaller than the time of emission from the excited

atom state. As a result, the light pressure caused by

stimulated transitions, or the stimulated light pressure,

can considerably exceed the pressure on an atom in

the field of a single running wave Fsp = 1
2
~k, where

 is the inverse lifetime of the atom in an excited

state. The condition for the stimulated light pressure

to emerge is, in general, the presence of a correlation

of the amplitudes or phases (or simultaneously both

amplitudes and phases) of counterpropagating waves.

This pressure can also arise in the fields with stochastic

modulation of the amplitude or phase, as was pointed

out in works [11, 12], if, for example, the field of one of

the counterpropagating waves repeats the field of the

other wave with a certain time delay.

In work [20], the stimulated light pressure with

stochastic modulation of the frequency (the phase

diffusion) was theoretically studied. It was shown that

the stochastic modulation of the phase gives an effect

close to that caused by sinusoidal modulation. At

the same time, the case of the stochastic amplitude

modulation remains not studied for today; only the weak

stochastic amplitude modulation of counterpropagating

waves has been examined. The interest to stochastic

modulation is connected with the opportunity to apply a

powerful, but close to stochastic, emission of multimode

lasers for manipulating the motion of atoms.

In this work, the numerical study of the light pressure

on atoms in the field of counterpropagating waves has

been carried within the stochastic field model which

describes the laser emission with multiple non-correlated

modes [21].

2. Model

Let us consider a two-level atom interacting with the

field of two counterpropagating waves with identical

frequencies, which coincide with that of the atomic

transition !0 between the ground j1i and excited j2i
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states of the atom. The system is supposed to be closed,

i.e. the atom comes back after a spontaneous emission

from an excited state into the ground state. In the

quasiclassical approximation, the approximate equations

for the density matrix in the atom reference system look

like

@

@t
�11 =

iE

~
(d12 �21 � d21 �12) + �22 ;

@

@t
�22 =

iE

~
(d21 �12 � d12 �21)� �22 ;

@

@t
�12 =

iE

~
(d12 �22 � d12 �11) + i!0�12 �



2
�12 ;

@

@t
�21 =

iE

~
(d21 �11 � d21 �22)� i!0�21 �



2
�21 : (1)

Here, d12 = d�21 are the matrix elements of the dipole

moment, and E is the electric field strength at the point

where the atom is located.

Now, let us write down the electric field strength

in the atom reference system. Owing to the Doppler

effect, the frequencies of counterpropagating waves felt

by a movable atom differ by kv from the frequency !0,

where v is the projection of the atom velocity onto the

wave propagation direction, so that !1 = !0 + kv and

!2 = !0 � kv. Therefore,

E =
1

2

�
E1(t)e

�i!0t�ikvt+ikz +E�

1 (t)e
i!0t+ikvt�ikz

�
+

+
1

2

�
E2(t)e

�i!0t+ikvt�ikz +E�

2 (t)e
i!0t�ikvt+ikz

�
: (2)

Here, we neglect the difference of the wave vectors of

counterpropagating waves in the atom reference system,

taking into account a very small value of the ratio kv=!0.

The field of a wave is supposed to repeat the field of the

other one with a time delay � ,

E2(t) = E1(t� �) (3)

(for example, wave 2 is obtained by reflecting wave

1 from a mirror). The phase shift !0� � kv� which

corresponds to that delay was not introduced into the

term of Eq. (2), because it can be compensated by

a proper choice of the origin of the z-coordinate, the

averaging over which will be carried out further. The real

and imaginary parts of En(t) (n = 1; 2) are described

by independent Gaussian fluctuations (the stochastic

field model) [21]. We introduce the Rabi frequencies


n(t) = d12En(t)=~. For 
1(t), we have

h
1(t)i = 0; hRe(
1(t)) Im(
1(t
0))i = 0;

hRe(
1(t))Re
1(t
0)i =

1

2

2
0 exp (�Gjt� t0j) ;

hIm(
1(t)) Im
1(t
0)i =

1

2

2
0 exp (�Gjt� t0j) (4)

(the Ornstein�Uhlenbeck process).

The force that acts on the atom is calculated

according to the formula [22, 23]

F = d(�12 + �21)
@E

@z
(5)

and is averaged over the atom coordinate.

3. Numerical Simulation

Two series of values of a random variable �(tj), which
simulate the real and imaginary parts of 
1(tj) at the
time moments tj = tj�1 + �t, were generated making

use of the colored noise simulation algorithm proposed

in [24, 25]:

�(tj+1) = �(tj) exp (�G�t) + h(tj); (6)

with h(tj) being distributed according to the Gaussian

law with the first momentum equal zero, and



h(tj)

2
�
=

1

2

2
0

�
1� e�2G�t

�
: (7)

For generating the h(tj)-series, the standard Matlab

function randn was used.

The average value of the force exerted on the atom

was calculated as the ratio between the momentum got

by the atom during the time of averaging T and the

time of force action, with a further averaging over the

atom coordinate. The calculations were carried out in the

�heavy�-atom approximation, neglecting the variation of

the Doppler frequency shift during averaging. In order to

diminish the influence of the initial stage of interaction

on the results of averaging, the latter has been carried

out starting from the time moment t = 7= for a time

interval T = 30=.

4. Results of Numerical Simulations

At first sight, the light pressure on an atom might seem

to arise only in the case of time delays � � 1=G, because,
for longer delays, the fields of counterpropagating waves

are no more correlated, and one may expect that the

result of their mechanical action on the atom is nil.
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Fig. 1. Dependences of the light pressure in the field of

counterpropagating stochastic waves in units of the light pressure

in the field of a single running monochromatic wave Fsp =
1
2
~k

on the time delay between the waves in units of 1=. Parameters:

G = 10 (for all the curves), 
0 = 25 (1 ), 10 (2 ), and 5

(3 ). Circles correspond to the same parameters as curve 1 but for

another realization of the stochastic process
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Fig. 2. Dependences of the light pressure in the field of

counterpropagating stochastic waves in units of the light pressure

in the field of a single running monochromatic wave Fsp =
1
2
~k

on the atom velocity in units of =k. Parameters: � = 

�1
0 for all

the curves, which corresponds to the maximal light pressure on

the atoms with a zero velocity component along the direction of

the laser beam propagation; 
0 = 25, G = 10 (1 ); 
0 = 25,

G = 20 (2 )

Nevertheless, it should be taken into account that the

atom �remembers� the field which acted on it for the time

interval � � 1=. Therefore, the interaction between

the atom and two fields with a large, as compared to

the correlation time 1=G, time delay between them can

lead to appreciable effects connected to the correlation

of those fields [20, 26].

In Fig. 1, the dependences of the light pressure on

an atom in units of the maximal light pressure exerted

in the field of a single running wave Fsp =
1
2
~k [22,23]

on the time delay between the waves in units of �1 are

presented for various ratios between G and 
0. As the

Rabi frequency increases, the amplitude of the maximum

considerably grows and exceeds unity (curve 1 ), which

evidences for an opportunity of exceeding the light

pressure in the field of a single running wave by that

in the field of two stochastic counterpropagating waves.

To estimate the accuracy of the presented results, the

data obtained for the same parameters as in curve 1

but for another realization of the stochastic process are

also depicted. The maxima of the curves are defined

by the Rabi frequency, provided that 
0 � G (they

are obtained if the time delay � � 
�1
0 ). As the

Rabi frequency decreases, the optimum time of delay is

governed by the correlation time G�1; if the inequality


0 � G holds true, it can be seen from the analytical

expression for the light pressure on the atom, averaged

over the coordinate and the time, which can be obtained

by solving the equations for the density matrix (1) using

the method of perturbation theory and considering the

field strength as a small parameter:

F = ~k

4
0

G2

�
exp (��)� exp

�
�
1

2
� �G�

��
: (8)

The light pressure is maximal at � = �G�1 ln(g=G).
In Fig. 1, this value is shown by a vertical dashed line

for G = 10. The maximum of curve 3 is close to this

value, though for the corresponding parameters of the

curve do not fulfill the conditions for the perturbation

theory eligibility.

It is worth pointing out the analogy of the obtained

results with the dependence of the light pressure on

atoms in a bichromatic field of counterpropagating

waves on the phase difference between these waves.

In this case, the frequency and phase differences of

these waves play the role, respectively, of a reciprocal

correlation time and a time delay. Similarly to the

considered case of the atom interaction with stochastic

counterpropagating waves, if the Rabi frequency is large

as compared with the modulation one, the optimal

phase difference between the waves is reciprocal to the

Rabi frequency or, otherwise, it is close to �=4, which
corresponds to 1

8
of the modulation period [4].

The dependence of the light pressure in the

bichromatic field of two standing waves (or, which

is equivalent, in a field of amplitude-modulated

counterpropagating waves) on the velocity projection

in the wave propagation direction is known to be
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nonmonotonous [4]; in particular, the structure with a

characteristic width of the order of =k is observed. At

the velocity v � 
m=2k, where 
m is the modulation

frequency, the force direction becomes opposite. Fig. 2

illustrates the similar dependence obtained in the

framework of the stochastic field model. The calculations

of both the curves were carried out for the same

realization of the stochastic process 
1(t). One can see

that this dependence has a similar view in the case

of stochastic modulation as well. The only difference

is that the role of a modulation frequency is played

by the doubled reciprocal correlation time 2G of

counterpropagating waves.

5. Conclusions

We have shown that, in the field of counterpropagating

stochastic waves, one of which repeats the other wave

with some time delay, the light pressure on an atom,

averaged over the coordinate and time, may considerably

exceed the pressure exerted in the field of a single

running wave. In the case of the large intensities of

counterpropagating waves, where the Rabi frequency

exceeds the reciprocal correlation time, the optimal

delay time between waves is equal to the reciprocal

Rabi frequency. This light pressure changes its sign,

if the velocity projection onto the direction of wave

propagation is close to G=k. The considered model of a

laser field is close to the real fields of multimode lasers,

which allows the latter to be used in experiments dealing

with monitoring the light pressure action on atoms and

to be applied in optical control systems for manipulating

the atom motion.
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Translated from Ukrainian by O.I.Voitenko

ÒÈÑÊ ÑÂIÒËÀ ÍÀ ÀÒÎÌÈ Ó ÏÎËI ÇÓÑÒÐI×ÍÈÕ ÕÂÈËÜ

ÇI ÑÒÎÕÀÑÒÈ×ÍÎÞ ÀÌÏËIÒÓÄÎÞ

Â.I.Ðîìàíåíêî

Ð å ç þ ì å

Ïðîâåäåíî ÷èñåëüíå ìîäåëþâàííÿ ñâiòëîâîãî òèñêó íà àòîìè

â ïîëi çóñòði÷íèõ õâèëü çi ñòîõàñòè÷íîþ àìïëiòóäîþ. Ïîêàçà-

íî, ùî ñèëà ñâiòëîâîãî òèñêó íà àòîì ó çóñòði÷íèõ ñòîõàñòè÷-

íèõ õâèëÿõ, îäíà ç ÿêèõ ïîâòîðþ¹ iíøó ç äåÿêîþ çàòðèìêîþ,

ïîäiáíî äî ñèëè ñâiòëîâîãî òèñêó â ïîëi äâîõ çóñòði÷íèõ áiõðî-

ìàòè÷íèõ õâèëü ìîæå çíà÷íî ïåðåâèùóâàòè ñèëó òèñêó â ïîëi

îäíi¹¨ áiæó÷î¨ õâèëi.
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