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Based on the Dirac equation with direct potential interaction, the
scattering of two nucleons in a singlet spin state is investigated
within the Born and high-energy quasiclassical approximations.
For the Yukawa potential, it is shown that the expansion of the
total scattering amplitude in a series of perturbation theory with
respect to the effective potential is not applicable. For potentials
finite at zero, it is found that the Born scattering singlet S-phase
has a non-zero high-energy asymptotics. For the potentials with
Coulomb’s singularity at small distances, it is obtained that the
Born phase increases with energy logarithmically. For the Yukawa
potential and a number of other interaction potentials, analytic
expressions for perturbation terms of the second order to the Born
S-phase are found. A qualitative analysis of the accuracy of the
Born and eikonal high-energy approximations for the singlet S-
scattering of nucleons is given.

1. Introduction

A relatively simple description of two-nucleon processes
including relativistic effects can be developed with
the use of the two-particle Dirac equation with
direct interaction potential. This approach allows a
transparent interpretation of scattering parameters in
terms of potential functions [1,2]. With this approach
which takes into account relativistic effects in two-
nucleon systems, it is possible to describe two-nucleon
processes in singlet and triplet spin states within
the same formalism. Notice also that the relativistic
Dirac equations with direct potential interaction have
interesting symmetry properties, namely, such equations
possess, apart, from standard, specific integrals of motion
that are absent for non-relativistic equations [3—6].
From the Dirac equation for spatial components
of wave functions of two particles, one can derive
an equation of the Schréodinger—Breit type with a
modified kinetic energy operator and effective potentials
that depend on distance and the total energy of two
particles. For the relatively simple singlet state of the
two particles, when we have one spatial equation of
the Schriodinger—Breit type, it is possible to carry out
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a detailed analysis of solutions, to obtain non-trivial
results, and to describe the behavior of the singlet
scattering S-phase of nucleons in a wide range of
energies without the use of the standard strong repulsion
core [2]. In the case of a triplet state of two nucleons
(these equations are much more complicated), the
relativistic equations include central, spin-orbital and
tensor interactions (the tensor interaction is represented
in terms of a momentum operator). Nevertheless,
such triplet equations can be solved analytically for
rectangular “potentials”, which made it possible to create
the model of a deuteron and to give a consistent
explanation of its main experimental characteristics [7].

The principal feature of our approach is the use
of the Dirac equation (instead of the Schrédinger
equation) for the description of nucleon scattering
at high energies and the application of approximate
methods to this equation, such as the Born and high-
energy quasiclassical approximations. In this work we
consider the application of these methods to an equation
of the Schrédinger—Breit type in order to describe the
scattering of two nucleons in a singlet spin state. For the
case of interaction in the form of the Yukawa potential,
we consider the first and second Born approximations
to the total scattering amplitude and the S and P
scattering phases. For the interaction potentials that
allow the analytic description of the S-phase of nucleon
scattering, we consider the Born and quasiclassical
approximations.

2. Two-particle Dirac Equation with Direct
Interaction

As is known, the Dirac equation for two electrons
with a direct potential interaction was introduced for
the first time by Breit. In this equation, the direct
two-electron interaction was taken into account as the
lowest order approximation with respect to the fine
structure constant. Later, these ideas were applied not
only to electrons, but were also extended to relativistic
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two-nucleon nuclear systems, although only at the
phenomenological level. The steady-state Dirac equation
for two particles can be represented as a sum of two
Dirac Hamiltonians of free motion for each particle and
the direct interaction potential V. For the relativistic
two-particle model (consider for simplicity only the
central interaction), we can write the Dirac equation
in the system of the center of inertia and in the equal-
mass approximation (here, we use the system of units,
in which c =k =1) as

(@1 —d2)p+ (B1+ fo)m + V|V = EV, (1)

where FE is the total energy of the system of two
particles. The direct interaction (central) potential V' of
two particles is constructed with the Dirac matrices and
comprises four spherically symmetric potential functions
(a vector function Vi (r), scalar one Vs(r), pseudoscalar
one Vp(r) and Vy(r), where r = |7y — 72|):

V=1 -ad)Vy + p182Vs + a1 810:28Vp + Vo  (2)

Here, &, [ are the Dirac matrices:

. 0 & I 0
a:<&0>’6:<0—1>

In Eq. (1), the full wave function ¥ is represented by
a direct product of bi-spinors 4 x 4 (16 functions) and
depends on particle-antiparticle states, their spins, and
distances between particles. In the general case, Eq. (1)
is a system of sixteen differential equations of the first
order.

In what follows, we consider only a singlet spin state
(S = 0) of two nucleons. In this state, from system (1)
with a direct potential interaction, we can obtain [2]
one scalar wave equation of the Schrédinger—Breit type
for one spinor component ¥ which we denote as 1:

4 3+ 4m?
E-wPYTECW

—

p

¢ =(E-W). (3)

Here, we introduce, for brevity, new central potential
functions Vi, V5, and V3 that describe the interaction
in the singlet spin state and are constructed as a linear
combination of the initial potentials (2):

Vi=W+4Vy + Vs — 3Vp,
Vo=Vy —2Vy 4+ Vs 4+ 3Vp,
Vs=Vo—Vs—Vp.

It should be pointed out that the effective interaction
of two particles in the relativistic equation (3) depends,
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apart from the relative distance, also on the total energy
E through the fractional rational functions. Moreover,
the modification of the kinetic energy operator, which
depends on the total energy and the relative distance
between particles through potential V3(r), indicates that
the interaction between particles becomes effectively
non-static and depending on system dynamics. Such
a structure of the relativistic equation is due to the
reduction of the system of equations (1) for the singlet
spin state to one differential equation. It is interesting
to note that the wave equation (3) is a differential
equation of the second order, although it is a corollary
of the system of differential equations of the total fourth
order. In the non-relativistic limit, Eq. (3) is reduced
to the standard Schrédinger equation with a potential
that is a half-sum of the first and second potential
functions. In the non-relativistic limit, the potential
function V3(r) vanishes, which indicates its essentially
relativistic nature. The function V3(r) is responsible for
relativistic effects and starts to reveal itself at medium
and high kinetic energies. In such a relativistic model,
namely this potential function allows us [2] to explain
the behavior of the two-nucleon singlet S-phase of
scattering at medium and high energies without the use
of the strong repulsive core at small distances.

3. Born Approximation to the Scattering
Amplitude of Relativistic Particles

For asymptotically high energies, the effective
interaction between particles in the singlet equation
(3) becomes a linear function of the total energy and
the sum of the first and third potentials. Namely at
high energies, it is interesting to consider the Born
and eikonal approximations. Without loss in generality,
consider a version of Eq. (3) in which only one potential
V(r) = Vi(r) # 0 is taken into account and others
vanish, V5(r) = V3(r) = 0. In this case, we can obtain
analytical solutions for some simple potential functions.
Let us rewrite Eq. (3) with a non-zero first potential
in the form of the standard Schrédinger equation with
an effective interaction potential depending on the total
energy:

—A(r) + VI V() = (), @

where 4k? = E? —4m?, and k is the wave vector. In this
equation, the potential function V (r) has a factor of the
total energy, which can lead to non-standard results that
are not encountered in the non-relativistic case. It should
be pointed out that the dependence of the effective
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interaction on energy in the relativistic equation (4) is
also due to dynamical reasons [such as the superposition
of the kinetic and potential energies in (3)].

Let us analyze the total amplitude of two-
nucleon scattering within the first and second Born
approximations on the basis of the relativistic equation
(4). The validity conditions of the Born approximation
for the mean value of the potential V with characteristic
radius R are as follows (here, for convenience, we again
use the Planck constant #)

_ 4h2kR 4h 1 /m\2
¥ Jp— 1 _

V< (hk)® + m2R? R{ 2 (hk) }

kR > 1. (5)

In order to drop the second term in the braces, it is
necessary that the condition

m

E: (6)

be fulfilled, and, in the case of nucleons with
characteristic interaction radii R ~ 1 fm, the condition
kR > 1 is fulfilled automatically. Thus, Eq. (5) can be
rewritten in the form

k>

— _4h
V<« —
<<R’

Consider the total scattering amplitude in the first

and second Born approximations for the case of the
Yukawa potential

V(r)y=yrte "R (8)

kR > 1. (7)

For the total scattering amplitude, the Born
approximation for Eq. (8) with the Yukawa potential
takes the form

YWk? +m? ~E
2(R72+¢?) 4(R2+q?)
where ¢ = |p' — P | = 2ksin(©/2) is the transferred

momentum which differs by the factor E from the
standard Born approximation in the non-relativistic
case. In the Born approximation, the amplitude depends
on the total energy not only through the transferred
momentum ¢, but also through the linear dependence
of the effective potential on energy. At small-angle
scattering in the cone k® < 1, the Born amplitude (9)
in the relativistic case becomes proportional to the total
energy:

2
_ﬁE

fi(k,0) 7R Vi + (10)
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At the same time, it is known that the Born
amplitude for the small-angle scattering is independent
of energy in the non-relativistic case. For asymptotically
high energies, the Born approximation to a relativistic
amplitude is a function inversely proportional to k

(fB(k) = fB(kvq)))
1
|fB(k7)|NE, k — oo. (11)
In the relativistic case, the second Born

approximation to the total
obtained on the basis of Eq.
potential has the form

scattering amplitude
(4) with the Yukawa

2 2 2

Lo T ol K Am ‘ﬂ _
f0,07) = =3 <p Vk2—ﬁ2+i0 p>—

2(7.2 2

¥ (k* + m?) A+ kq
=—— - (2 tg —— +iln 12

8Ag ( arctg 5+ A—Jq (12)

where A2 = R™*+4R~2k?+k%¢>. If we take into account

that, at high energies (here, ¥ — 00), the coefficient A
is a quadric function of k,

A~ kq+ 2R kg™,

then, for the second Born approximation, relation (12)
yields the following asymptotic behavior:

In(k)

o) ~ 2

, k— oo (13)

The main contribution to asymptotics (13) comes
from the imaginary term in (12). At small-angle
scattering, k® <« 1, the second Born approximation
takes the form

VR(E* +m?)

Fa(k, 0) = 8(R~2 + 4k2)

(1+2i kR). (14)
For asymptotically high energies, the second Born
approximation for the scattering cone k© < 1 remains
a complex value with the main contribution from the
imaginary term which is proportional to the total energy.
The comparison of the asymptotics of the first and

second Born approximations to the total amplitude gives

f2(k)
fe(k)
In the relativistic case at high energies, the

second Born approximation to the total amplitude
becomes larger in absolute value than the first Born

(15)

‘ ~In(k), k— oo.
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approximation. At the same time in the non-relativistic
case, we have the relation

f2(e)|  In(e)
fe(e) Ve

where e is the kinetic energy. It can be seen that
the relativistic Born approximation to the scattering
amplitude for the Yukawa potential does not approach
the total amplitude (for the asymptotically high
energies). With increase in energy, the second term
in the perturbation series with respect to the effective
potential becomes even more important than the first
Born approximation. This statement remains valid also
for the next members of the series, because all the
terms of the perturbation theory series become equally
important.

It is known that, in the two-particle non-relativistic
model with any interaction potential, there is always an
energy, for which the Born approximation is valid, and
this approximation becomes even better with increase in
energy. In contrast, in the relativistic case for potential
functions that do not satisfy condition (7), the Born
approximation cannot be used at any energy. If the
potential satisfies this condition, then we can possibly
find such a range of energies, in which the Born
approximation will be valid. However, with increase in
energy, the Born approximation stops to be valid. In the
general case of the relativistic approach considered here
[based on (3)], the Born approximation (more precisely,
the perturbation theory with respect to the effective
interaction potential) is not applicable for the total
scattering amplitude.

— 00, (16)

4. High-energy Scattering

For the non-relativistic Schrodinger equation, there is
a region of high enough energies, in which the Born
approximation is not valid:

hQ
mR?’

Such a region can exist if the average value of the
potential satisfies the condition ( see, for example, [8])

1k

2
mR2’

For nucleons, this condition can be rewritten in the form

V' > 40 MeV. For the investigation of the scattering

with such potentials, it is common to apply the high-

energy eikonal approximation. However, the relativistic
effects for nucleons become apparent at energies of order

V>
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of 250MeV [1,2]. Therefore, the applicability of the high-
energy eikonal approximation becomes questionable.
At the same time, the application of the high-energy
approximation to the total elastic scattering amplitude
described by the relativistic equation (4) should be
more justified than in the the case of a non-relativistic
equation.

At high energies, when the potential in Eq. (4)
satisfies the condition V <« 4k?/E, the plane wave
acquires an additional phase, and the dependence of
the wave function on coordinates should be eikonal-like
(analogously to [8]):

z
Y(F) = exp | ikz — Zs—l]z / dz V(z,y,z2) (17)

A characteristic feature of this expression is that
the second term of the phase does not disappear at
high energies as it does in the non-relativistic case,
but becomes a constant. Thus, if a correspondent non-
relativistic wave function reduces at k — oo to the wave
function of free motion, the eikonal wave function (17)
remains deformed in the relativistic case at high energies.

The total scattering amplitude that accounts for
relativistic effects can be represented in the standard
form

f(k,0) = —ik]odp pJo (2kpsin g) w(p), (18)

where

w(p) = e20(P) _ 1,
) = —g\1+ 2 [ @V,

2T
1 .
o) = 5 [ dpeizeos?,
0

are the profile function, the total phase function
depending on the target parameter, and the Bessel
function, respectively. In contrast to the non-relativistic
case, here the total phase §(p) does not tend to zero with
increase in energy. As a consequence, the profile function
w(p) also tends to a constant (that is not zero). This can
lead to the increase of the total scattering amplitude
(18) with energy. According to the optical theorem, this
leads to a non-zero high-energy asymptotics of the total
scattering cross-section.
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Consider a high-energy scattering for the case of
a rectangular potential, which allows us to obtain
expressions for the total amplitude and phase not only
in the integral forms but also expressed in elementary
functions. Consider the interaction potential in the form

Vo, 7 <R,
V(’“):{ 0, r>R

The total phase function for this potential can be found
as

s = { /T

(19)

<R,
Z g (20)

where v = —@ 214 T—; is the analogy of the Born
parameter in the relativistic case. Correspondingly, the
total scattering amplitude for the zero angle is
k‘R2 ] 621'1/ ’L .
F(k,0) = 22 {z (e 1)}.

2 v 202

(21)

According to the optical theorem, we obtain the total
scattering cross-section as

oK) = = Tmf(k,0) =

(22)

202

1 sin(2v)  cos(2v)
202 v '

For k — oo, the asymptotics of the total scattering cross-
section is

(23)

oo = 27 R? {1 + 1 sin(2vg)  cos(2vo) } |

208 Vo 202

where vy = -V R/4.

It is useful to compare (23) with the total
scattering cross-section in the Born approximation for
potential (19). The Born approximation to the scattering
amplitude takes the form

fe@p") = —m*VE2 + m*('|V|§) =

- _‘/07”]624_7”2 [sin(¢R) — qR cos(qR)].

307 (24)

Integrating the square of this expression over the angles,
we obtain the total scattering cross-section in the Born
approximation for the rectangular potential as

TV2R* m?
O'B(k) = 08 (1 + ﬁ) X

(25)

sin(4kR) sin2(2kR)}

1
% {1 T @kR? T TERP T (2kR)®
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Correspondingly, at high energies, & — 00, the
asymptotic behavior of the total scattering cross-section
in the Born approximation takes the form

TVE R
op=—— .

: (26)

At the same time, within the non-relativistic
approach based on the Schrédinger equation, scattering
cross-sections in the high-energy eikonal and Born
approximations are identical at high energies (kR >
1). This is not the case, however, in the relativistic
case, as can be seen by comparison of the scattering
cross-section in the high-energy approximation (23) and
the relativistic cross-section in the Born approximation
(26) obtained for Eq. (4) with a rectangular potential.
Thus, the Born approximation based on the relativistic
equation (4) is not justified, and we have to apply the full
expansion in effective interaction potential that depends
on the total energy. At the same time, the high-energy
approximation is more justified and natural within the
relativistic approach.

5. Born and Quasiclassical WKB
Approximations to Partial Phases

The linear dependence of the effective interactive
potential on the total energy in the relativistic equation
(4) results in the non-standard asymptotic behavior of
scattering partial phases. It was shown [1,2] that the
singlet scattering S-phase of Dirac relativistic particles
can have a non-zero asymptotics for high energies.
For two-nucleon scattering, it was possible to describe,
within experimental errors, the singlet scattering S-
phase in the full available energy range on the basis
of the full relativistic equation (3) with the Yukawa-
type potential. It was shown that the passage of the
phase across zero at a certain energy is a relativistic
effect. To explain this effect, it is no need to use a strong
repulsive core. It would be interesting to investigate the
possible phase behavior in the Born and quasiclassical
approximations and to evaluate if these approximations
are sufficient at medium and high energies.

Consider first the Born approximation to the singlet
partial scattering phase using the method of phase
functions on the basis of relativistic equation (4). In its
structure, the phase equation formulation is the same
as that in the non-relativistic case where the effective
interaction potential is a linear function of the total
energy. Within this approach, the first and second Born
approximations to the phase function with respect to the
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effective potential can be represented by the following
integrals:

r

() = - f; ar' V()i ),

5 (r) = Q—Ek / dr' V(r'Yji (kr'yny (kr' )P (r'), (27)

where j;(z), ni(z) are the Bessel and Neumann
functions. These expressions differ from the standard
non-relativistic approximations to the phase function by
factor E/4, which results in the non-zero asymptotic
behavior at high energies.

Let us use these expressions to find the first and
second Born approximations to the singlet scattering S-
phase for a few different interaction potentials, which
allows analytical solutions. Such potentials were chosen
in the form of a rectangular well (19), the exponential
potential V(r) = Vpexp(—r/R), and the Yukawa one
(8) (v =VoR):

a) rectangular well

VoR m? sin(2kR)
B 0
=9 1+ =
% (1) 4 = < 2kR )
(2) (VoR)? m_2 2cos(2kR) +1
o~ e FR
kR > 1; (28)
b) exponential potential
Br) = — m?
%0 (r) = =VoR\[1+ 1+ 2kR
(2) (VoR)? m_ 1 _
0y (1) = o 1+ R kR > 1, (29)
c) Yukawa potential
85 (r) = \/ +ﬁ41n (14 (2kR)?),
@)\ (VOR)2 m_2 In(kR)
0 () ~ e (1495 ) —p RR> 1L (30)

It should be noted that, in contrast to the second
Born approximation to the total amplitude, the second
Born approximation to the phase tends to zero at k — oo
for all potentials. In the Born approximation and for the
potentials finite at zero, the phase becomes constant at
high energies and equals Vo R/4. At the same time, the
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Fig. 1. Comparison of the full numerical solution of Eq. (4) with
the Born and quasiclassical (WKB) approximations to the S and
P scattering phases (for the Yukawa potential)

example of the Yukawa potential shows that if a
potential has a weak singularity at zero, its Born
approximation increases at high energies according to
the logarithmic law.

In the quasiclassical approximation based on Eq. (4),
the expression for partial phases can be presented in the
standard form as

1
(5[(’6) = g (l + 5) — kro+

+7dr{\/k2 _a +T12/2)2 - E‘ZL(’") —k},

To

(31)

where the turning point rg is determined as a zero of
the radicand. Here, the partial phase differs also from
the phase in the non-relativistic approximation by the
additional factor of the total energy under the direct
interaction potential V (r).
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Fig. 2. Comparison of the full numerical solution of Eq. (3) with
the Born and WKB approximations to the S-phase of nucleon
scattering

Fig. 1 shows S and P scattering phases in the
singlet spin state for the Yukawa potential (8) (y =
VoR) in the Born and quasiclassical approximations in
comparison with the result of a full numerical calculation
of the phase (based on the phase equation equivalent
to the relativistic equation (4)). Parameters for the
Yukawa potential were chosen to belong to the low-
energy region (the scattering length and the effective
interaction radius) in order to correspond to the non-
relativistic model of nucleon S-scattering:

Vo = —87.428 MeV, R =1.22fm. (32)

For relatively low energies, the S phase in different
approximations behaves in a standard way (although
its values are numerically different) and this is the
same behavior as that in the non-relativistic case: the
phase first increases with energy, reaches its maximum,
and then starts to decrease with a further increase
in energy. However, starting approximately from k& =
7fm~! (in the laboratory system, this is approximately
4 GeV), this similarity with the non-relativistic behavior
ends and the S-phase starts to increase logarithmically.
This makes the behavior of the relativistic phase
different from the phase behavior predicted by the
standard non-relativistic equation. For the P-phase,
such an anomalous increase begins at smaller energies,
k = 3 fm~! (approximately 746 MeV). At these
energies, both the WKB and Born approximations are
numerically close to the results of the full numerical
calculation. We recall that the increase of the phase
with energy is related to the total energy factor of
the direct interaction potential in Eq. (4). It should
be noted that the quasiclassical approach for the S-
phase correctly describes its behavior starting from the
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smaller energies (approximately at 1 fm~—* or 83 MeV)
than those in the Born approximation, and the accuracy
of the quasiclassical approximation does not practically
depend on energy. In contrast, the Born approach better
describes both S and P phases and this approximation
only improves with energy. However, it should be
noted that, for this choice of the potential shape and
its parameters (32), the P phase differs from the
experimental data at all energies.

Fig. 2 shows the application of the Born and WKB
approximations to the singlet S-phase description of
nucleon scattering in the relativistic approach based on
the full equation (3) where all three potential functions
are non-zero.

In this calculation, the first V; and the second V5
potentials were chosen in the forms of the Yukawa
potentials, and the third potential V3 was chosen in the
form of the Woods-Saxon potential. In should be stressed
that the Born approximation is obtained with respect
to the full effective potential from the corresponding
equation using the method of phase functions [2]. For
comparison, we also present the numerical solution
(taken from work [2]) of the phase equation that
correctly describes the experimental behavior of the S-
phase within experimental errors [9]. In contrast to the
preceding example related to Eq. (4) with one Yukawa
potential, the quasiclassical eikonal approximation based
on Eq. (3) describes more accurately the S-phase
than the Born approximation. It is possible that small
deterioration of the S-phase description in the Born
approximation is related to the potential function V3(r)
in the “kinetic energy” operator (the first term) in Eq.
(3). Nevertheless it should be noted that such high-
energy approximations provide a quantitatively correct
description of S-scattering of two nucleons at medium
and high energies, and these approximations can be used
for the investigation of the scattering phases with higher
orbital moments.

6. Conclusions

The investigations of relativistic nucleons on the basis of
the two-particle Dirac equation with a direct interaction
potential, when closed equations of the Schrodinger—
Breit type can be derived in the singlet and triplet
spin states, can be carried out with the use of standard
methods of quantum mechanics, which allows one to
obtain the results in simple and descriptive forms. In this
work, using the Yukawa potential and the rectangular
potential as examples, we have demonstrated a failure
of the Born approximation to the total scattering
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amplitude at high energies. The linear dependence of
the effective interaction potential on the total energy
results in the fact that, in this model, the Born scattering
amplitude differs from the total amplitude even for
asymptotically high energies, and all the terms of the
Born expansion of the total amplitude become equally
important with increase in energy. A specific form of
the effective interaction leads also to the anomalous
behavior of the scattering partial phases, although the
Born expansion of partial phases can be carried out. An
interesting fact is that in the Born approximation the
singlet S scattering phase has a non-zero asymptotic
behavior at high energies and tends to a constant for
non-singular potentials, but it increases according to the
logarithmic law for a weakly singular Yukawa potential.
For a relativistic system of two nucleons, we obtained
the validity conditions of the Born and high-energy
WKB approximations for the description of the singlet
scattering S-phase for potentials that correctly represent
its experimental behavior in a wide range of energies.
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BUCOKOEHEPTETYHI HABJIM2KEHHA B PO3CISAHHI
JABOX HYKJIOHIB HA OCHOBI PIBHAHHSA JITIPAKA
3 IOTEHIIAJIBHOIO B3AEMO/IIEIO

1.B. Cumenoe, O.1. Typoscvruii
Pesmowme

Ha ocuoBi piBHaHHs /lipaka 3 MIpsMOI0 MOTEHIiAILHOK B3AEMO/IIEI0
IIOCJIiI>KEHO PO3CisiHHS JBOX HYKJIOHIB B CHHIJIETHOMY CIiHOBO-
MY CTaHi B 60pPHOBOMY Ta BUCOKOEHEPreTHYHOMY KBa3iKJIACHIHOMY
nabsmkenHsix. Ha npukisagi norenniany FOkaBu moka3aHo He3a-
CTOCOBHICTH PO3KJIaJJaHHS ITOBHOI aMILTITYyAU PO3CIHHSA B P Te-
opii 30ypens 3a edekTHBHEM HOTeHnDiaaoM. Beranosiemno, mo 60p-
HOBa CHHIVIETHA S-da3a pO3CigHHS AJId CKiHYeHHUX B HYJI IOTEH-
miaJliB MPHU BEJIMKUX eHeprisgxX Ma€ HeHYJIbOBY aCHMITOTUKY. Jlisa
MOTEHIiaIiB 3 KyJOHOBOI OCOOJIMBICTIO HA MAJIMX BiJCTaHSIX OT-
pUMaHO 3pOCTaHHSA OOpHOBOI (ha3u 3a JOTAPUMMIYHUM 3AKOHOM
3i 36inbmenusm emepril. /ns moremmiany HOkaBu Ta Hu3KH iH-
mMuX MOTEHIaJiB B3a€MO/il 3HANIEHO aHAJITUYIHI BHpA3U IMOMpPa-
BOK JIPyroro mnopsigiky rteopii 30ypeHb 10 60pHOBOI S-dasu. I1po-
BeJeHO SAKICHUU aHaJi3 TOYHOCTI OIMUCY CHHIVIETHOI'O S-PO3CiHHS
HYKJIOHIB B GOPDHOBOMY Ta eHKOHAJIBHOMY HAOIMIKEHHSAX IPH BH-
COKHX €Heprisx.
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