THE INFLUENCE OF STRUCTURAL FACTORS ON SENSITIVITY OF SnO_2 -BASED GAS SENSORS TO CO IN HUMID ATMOSPHERE

V. Golovanov, T. Pekna, A. Kiv, V. Litovchenko¹, G. Korotcenkov², V. Brinzari², A. Cornet³, J. Morante³

South-Ukrainian University
(26, Staroportofrankivs'ka Str., Odesa 65008, Ukraine; e-mail: alban@te.net.ua),
¹Technical University of Moldova
(168, Bld. Stefan cel Mare, Chisinau 2004, Moldova),
²Lashkarev Institute for Semiconductor Physics,
Nat. Acad. Sci. of Ukraine
(45, Nauky Str., Kyiv 03028, Ukraine),
³University of Barcelona
(1, Marti i Franqus, Barcelona 08028, Spain)

Summary

The influence of a crystallographic orientation of SnO₂ grain surfaces on the gas-sensing characteristics is considered by the example of the interaction of CO with different tin oxide surfaces in the presence of water. The charge state of a chemisorbed hydroxyl group varies depending on the predomination of different atomic faces of SnO₂ nanocrystallites prepared in different technologies. Involving the differently charged OH groups in the catalytic reaction with CO affects the sensor sensitivity.