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The system of two anyons (particles with fractional statistics

in two dimensions) is considered in the presence of a magnetic

impurity, i.e., a static magnetic flux. A numerical algorithm for

finding the spectrum is worked out; the ground state is computed

and is found to exhibit a nontrivial level crossing.

1. Introduction

It is widely recognized now that statistics in two
dimensions can continuously interpolate between the
bosonic and fermionic ones [1]; particles obeying such
intermediate, or fractional statistics are called anyons

[2]. The existence of anyons is possible because the two-
dimensional space with an excluded point is multiply
connected; a path taking one particle around another
one is topologically nontrivial, and the statistical phase
associated with such a path need not be equal to unity.
Hence, an interchange of two particles may supply the
wave function with a phase factor exp(i��), where �,
usually called statistics parameter, can be fractional
(hence the term �fractional statistics�).

A physical incarnation of such statistics is possible
due to the Aharonov�Bohm effect [3], whereby the
phase comes from the coupling of a charge to the
topologically nontrivial electromagnetic potential of a
flux tube. �Charge-flux composites� in two dimensions
are anyons. (It is also worth noting that, in the so-
called Chern�Simons field model emerging as an effective
model under certain conditions as a result of dimensional
reduction in gauge theories, charges themselves generate
a magnetic field, so that any point charge is, at the
same time, a point flux. In that model, all charges are
effectively anyons [4].)

The multianyon problem is not believed to be
exactly solvable even in the absence of interaction.
The reason is that, under the nontrivial interchange
conditions, the usual representation of a multiparticle
wave function (which is now a multivalued function of
its complex arguments) in terms of products of single-
particle functions is no longer possible. It is only the two-
body case that has been solved [1,2], and much is known

about the three-anyon problem (see [5,6] and references
therein); for many anyons, there exists a class of exact
analytic solutions [7], but rather little is known beyond
that.

In recent years, a new class of systems has
been considered: particles in the presence of magnetic

impurities [8, 9]. The latter are static point fluxes�
essentially, anyons with infinite mass. Like the standard
multianyon system, this one is of interest because of
its relevance to the fractional quantum Hall effect
[10], where the elementary excitations are believed
to be anyonic. Another motivation is the relevance
of the system at hand to the problem of winding
number distribution of random paths [11]. Essentially,
the partition function of a particle in the presence of
N impurities is a Fourier transform of the sequence
Pm1m2:::mN of probabilities that a random closed
path winds mk times around point k for all k =

1; : : : ; N .

Up to now, only (1+N)-body systems (one particle
plus N impurities) have been considered. For a
random Poissonian distribution of magnetic impurities,
calculations of the density of states averaged over the
positions of the impurities have been performed [8],
with some interesting qualitative conclusions. Also, a
numerical treatment of the (1+2)-body system has been
carried out [9], with low-lying quantum states being
found and their dependence on the strengths of the
impurities (the values of their magnetic fluxes) and on
the distance between them elucidated.

In this paper, we proceed to solve the (2+1)-
body problem�in other words, the standard two-anyon
problem with one impurity. The presence of the impurity
renders the system nontrivial: because of the impurity-
induced boundary conditions, the relative motion is no
longer independent of the center-of-mass motion. In fact,
the complexity is about the same as that with the three-
anyon problem: the topological properties of the wave
function are the same, and the fact that the third particle
is pinned down to a fixed point does not make it simpler
in any crucial way.
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We first demonstrate that there exists a set of
exact eigenfunctions in the (2+1)-body system under
consideration, which are special cases of the known
exact solutions of the N -anyon problem [7]. The
remainder of the spectrum, apparently, can only be
evaluated numerically. To that end, we search for the
wave function in terms of products of monomials in
transformed single-particle coordinates. The boundary
conditions imply a homogeneous system of linear
equations for the coefficients, and the condition of its
solvability yields the energy levels. The ground state
is found numerically and is discovered to exhibit a
nontrivial level crossing at a certain relationship between
the statistics of the particles and the impurity magnetic
flux.

2. The Problem and Exact Solutions

As is commonly done, we place the anyons into a
harmonic potential, and the impurity is put at the
origin. Like between the anyons, there is no classical
interaction force between an anyon and the impurity;
the presence of the latter manifests itself only in the
boundary conditions on the wave function. Therefore,
the Hamiltonian is simply a sum of two single-particle
ones,

H = �2
@2

@z1@�z1
+
z1�z1

2
� 2

@2

@z2@�z2
+
z2�z2

2
(1)

(zi being the complex particle coordinates; the mass and
harmonic frequency are scaled to unity). The presence of
the impurity does not break rotational invariance, and
the kinetic angular momentum

L = z1
@

@z1
� �z1

@

@�z1
+ z2

@

@z2
� �z2

@

@�z2
(2)

commutes with the Hamiltonian. The boundary
conditions on the two-particle wave function are:

(i) anyon interchange condition: when particles 1 and
2 are continuously interchanged anticlockwise (so that
the relative vector z1 � z2 rotates by an angle of �) in
such a way that the impurity is not encircled in the
process, the wave function acquires a phase factor of
exp(i��);

(ii) impurity encircling condition: when a particle
encircles the impurity anticlockwise (so that the vector
zi rotates by an angle of 2�) without encircling the other
particle, the wave function acquires a phase factor of
exp(2i�
).

Here, 
 is the �strength of the impurity�, equal to the
flux it carries in the units of the flux quantum: 
 = �=�0,
where �0 = 2�=e.

Like in the N -anyon problem [7], there exists a
class of exact solutions for the system at hand. The
key observation is that a Jastrow�Laughlin-type phase
factor for N anyons,

Q
jk(zj � zk)

�, satisfies all the
pairwise anyon interchange conditions; and it is possible
to obtain some eigenfunctions of H by means of
multiplying this factor by a symmetric function of
zj 's. A different factor,

Q
jk(�zj � �zk)

��, is as good,
except that with it, the symmetric function must vanish
fast enough at zj � zk ! 0 for the total function
to be nonsingular. A generalization of those factors
to nonidentical particles is completely straightforward
[12]. The very same procedure applies here, with the
constraint that the coordinate of one of the particles�the
impurity�is fixed at zero. The state which, at � = 
 = 0,
becomes the ground state of two bosons,

 = (z1 � z2)
�z



1 z



2 exp

�
�
z1�z1 + z2�z2

2

�
; (3)

is an eigenstate of both H and L, with the eigenvalues

E = 2 + �+ 2
 ; L = �+ 2
 ; (4)

respectively, and satisfies both boundary conditions.
Generally, each two-anyon state with a positive relative
angular momentum and energy E = E0 + � maps
(for a positive 
) onto a state with energy E =

E0 + � + 2
. [Note that this is only possible with the
impurity sitting at the origin. A factor (z1 � z2)

�(z1 �

z0)

(z2 � z0)


 with z0 6= 0 would satisfy the boundary
conditions, but the corresponding wave function would
not be an eigenfunction of the Hamiltonian. Therefore,
in particular, the (1+N)-body problem is nontrivial for
any N � 2.]

This class of exact states, however, does not exhaust
the whole spectrum. The two-fermion ground level is
twice degenerate (E = 3, L = �1); the ground state of
two anyons, (z1 � z2)

� (the exponential damping factor
omitted) connects the two-boson ground state (E = 2,
L = 0) to the first of the two two-fermion ground states,
and a different state, (�z1 � �z2)

2��, connects an excited
two-boson state to the second of them. There does not
exist a straightforward mapping of this state onto a
state with nonzero 
, like in Eq. (3): of the two possible
variants, (�z1 � �z2)

2��z


1 z



2 is not an eigenstate of the

Hamiltonian, while (�z1 � �z2)
2���z

�

1 �z

�

2 is singular. The

reason is, again, the same as in the N -anyon system:
States in which all pairwise relative angular momenta
do not have the same sign cannot be obtained exactly.
A numerical approach is in order.
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3. The Numerical Algorithm

We will employ a scheme similar to the one used
for the 3-body [5] and (1+2)-body [9] problems. Upon
introducing, instead of z1 and z2, four real coordinates:
an absolute distance r, a relative scale factor q, and two
angles, '1 and '2, as

z1 =
rqei'1p
1 + q2

; z2 =
rei'2p
1 + q2

; (5)

(cf. [5]), the Hamiltonian becomes

H = �
1

2m

"
@2

@r2
+

3

r

@

@r
+

1 + q2

r2
�

�

�
1 + q2

q

@

@q
q
@

@q
+

1

q2
@2

@'2
1

+
@2

@'2
2

�#
+
r2

2
: (6)

Searching for its eigenfunction, H = E , in a
separated form (disregarding the boundary conditions
for now),

 (r; q; '1; '2) = f(r)g(q)ei(j'1+k'2) ; (7)

yields the following equations for f(r) and g(q):

�
1

2

d2f(r)

dr2
�

3

2r

df(r)

dr
+

�
�(�+ 2)

2r2
+
r2

2

�
f(r) =

= Ef(r); (8)

(1 + q2)

�
1 + q2

q

d

dq
q
d

dq
+
j2

q2
+ k2

�
g(q) =

= �(�+ 2)g(q): (9)

The eigenvalues of the radial equation are

E = �+ 2n+ 2; (10)

with the eigenfunctions

fn;�(r) = r�L1+�
n (r2)e�r

2=2: (11)

This degree of freedom completely separates from the
others and provides a �tower structure� of levels with
step 2, just like in the three-anyon spectrum [13].

The solution of the q equation which is nonsingular
at q = 0 is

g(j; k; �; q) = qjjj(1 + q2)��=2�

�2F1

�
jjj+ jkj � �

2
;
jjj � jkj � �

2
; 1 + jjj;�q2

�
: (12)

The initial problem being invariant with respect to q $
1=q, '1 $ '2, there is another solution, g(k; j; �; 1=q),
which is nonsingular at 1=q = 0.

Now the boundary conditions have to be taken into
account. It is impossible, in general, to satisfy these
conditions with one function of a separated form (7);
a linear combination of such functions has to be taken
instead.

For q < 1, rotating particle 1 around the origin, i.e.,
increasing '1 by 2�, means encircling the impurity only;
whereas, rotating particle 2 around the origin leads to
encircling both particle 1 and the impurity, generating a
phase factor of exp[2i�(�+
)]. Consequently, one should
have j = m0 + 
, k = p0 + � + 
, where m0 and p0

are some arbitrary integers. The eigenvalue L of the
angular momentum operator L = �i(@=@'1 + @=@'2)

can be quantized together with E. For a wave function
(7), L = j + k, or

L = L0 + �+ 2
; (13)

where L0 = m0+p0, an integer, is the angular momentum
of the state in question in the absence of magnetic fluxes.
The constraint on j + k implies that two independent
numbers, m0 and p0, get replaced with one integer, m,
such that

j =
L0 � L0 mod 2

2
�m+ 
; (14)

k =
L0 + L0 mod 2

2
+m+ �+ 
: (15)

Introducing the average and relative angles according
to

'1 = '+
�

2
; '2 = '�

�

2
; (16)

one has j'1 + k'2 = L'� (m+ �0=2)�, where

�0 = �+ L0 mod 2; (17)

and a generic wave function has the form

 (q; '; �) = eiL'
X
m

cm gm(q) e�i(m+�
0

2
)� ; (18)

with a shorthand notation gm(q) � g(j; k; �; q), where j
and k depend on m through Eqs. (14), (15).

The quantization of �, yielding the energy levels
through Eq. (10), stems from the remaining boundary
condition associated with an exchange of the two
particles. The condition relates the wave function at
q < 1 to the one at q > 1, which is constructed in the
same manner as above, with (q; '; �) 7! (1=q; ';��).
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Fig. 1. The state which at 
 = 0 connects to the fermion ground state: (a) E(�; 
); (b) E(�; 
)� "(�; 
), Eq. (23)

However, instead of a condition at an arbitrary q, it
is enough to impose conditions on the wave function
and its q derivative at q = 1. It is easy to see that
turning (1; '; �) with � > 0 into (1; ';��) in such
a way that q < 1 in the process, corresponds to an
anticlockwise interchange of particles 1 and 2. The
interchange condition, therefore, isX
m

cmgm(1)ei(m+�
0

2
)� = ei��

X
m

cmgm(1)e�i(m+�
0

2
)�:(19)

Requiring the same to hold for q different from 1 by
an infinitesimal value results in the condition on the
derivativeX
m

cmg
0

m(1) ei(m+�
0

2
)� = �ei��

X
m

cmg
0

m(1)e�i(m+�
0

2
)� ;

(20)

where g0m(q) � dgm(q)=dq (the minus sign comes from
differentiating 1=q with respect to q).

Multiplying these equations by e�i(n+�0=2)� ,
integrating over � from 0 to 2�, and excluding cn from
the left-hand side yieldsX
m

Dnmcm = 0; (21)

where

Dnm =
1� e2i��

2i�(n+m+ �0)
[g0n(1)gm(1) + gn(1)g

0

m(1)]:(22)

The g functions depend on �, and the eigenvalues of �,
to which the energy levels are related through Eq. (10),
are those for which the determinant of jjDnmjj vanishes.

4. Results and Discussion

In a numerical procedure, the infinite sum over m

is necessarily truncated to a finite one over m =

�N; : : : ; N . In order to improve precision, one should
make the calculation for several values of N and
extrapolate to N ! 1. Convergence in N becomes
better if, for a given finite N , the continuous Fourier
transformation of Eqs. (19)�(20) is replaced with a
(2N +1)-point discrete transformation [6,9]. The factor
(n+m+�0) in the denominator of (22) then gets replaced
with 2N sin[(n+m+�0)=2N ], with the correct N !1

limit.

We have taken N = 20; 40; 80; 160 for the
extrapolation, and the N dependence was found to
be rather well described by a semi-empirical formula
E(N) = E1 + cN�2�. The convergence rate depends
on � crucially, because the main inaccuracy comes
from the difficulty of representing a singular function,
behaving like z� as the relative distance z between the
particles tends to zero, as a linear combination of regular
functions.

The above-devised numerical scheme has been
applied to finding the ground state of the system in
question. First of all, from the boundary conditions, it is
evident that there is periodicity in � with period 2 and
in 
 with period 1. Due to periodicity and P -symmetry,
(1+�; 
)$ (�1+�; 
)$ (1��;�
)$ (1��; 1� 
);
consequently, it is enough to restrict oneself to the
square �; 
 2 [0; 1]. For small enough 
, by continuity,
the ground state is (3), with energy (4). However, at least
at 
 = 1 it is certainly not the ground state anymore;
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consequently, for some values of � and 
, a level crossing
must occur.

The lowest state with a negative relative angular
momentum is the one which, at 
 = 0, connects to
the fermion ground state, with energy E = 4 � �

and angular momentum L = �2 + � (i.e., L0 = �2).
The numerically computed energy of the same state
for nonzero 
 is shown on Fig. 1,a. The behavior of
the energy at the extreme values of � and 
 can be
explained semiclassically. For a single-particle state free
of radial excitations, E = 1 + jLj, and the effect of
the impurity is to add 
 to L, thus increasing or
decreasing the energy depending on the sign of the
angular momentum. The two-boson ground state has
E = 2 (the angular momentum of both particles is
zero), whereas the two-fermion ground level, E = 3, is
twice degenerate: one particle has angular momentum
zero, the other one �1. For an integer � (bosons or
fermions), the �good� quantum numbers are angular
momenta of individual particles. At � = 0, the state
being discussed corresponds to L1 = L2 = �1 + 
,
so that E = 2(1 + j�1 + 
j) = 4 � 2
; at 
 = 1,
the two-boson ground state is recovered. At � = 1,
instead, one has L1 = �1 + 
 and L2 = 
; the state
interpolates between the two two-fermion ground states
with the energy remaining constant. Finally, at 
 = 1,
when the impurity has no effect, the state becomes
the same as (4)�the ground state of two anyons. (For
a fractional �, single-particle angular momenta are no
longer good quantum numbers; the center-of-mass and
relative momenta are.)

A simple bilinear expression encompasses all of these
four special cases:

"(�; 
) = 3 + (1� �)(1� 2
): (23)

By looking at the numerical data, one finds the energy
of the state in question to be described by this formula
rather well, but not exactly (Fig. 1,b). The numerical
error from the N extrapolation, which can be estimated
by looking at the values of energy obtained at different
values of N , does not surpass 0.01 (at � = 0:1, where the
convergence is worst) and becomes negligible at � > 0:5.

As mentioned before, there are two types of pairwise
factors with the correct anyonic interchange properties,
(zj � zk)

� and (�zj � �zk)
��. The exactly solvable N -

anyon states are those where each pair of particles
contributes a factor of the same type (two classes of
states correspond to two types). Semiclassically, this
means that all N(N � 1)=2 pairs rotate in one and the
same direction. In the 2-body problem, there being only
one pair, all the states are exact. In the 3-body problem,
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Fig. 2. The ground state. In the approximation (23), the level

crossing is at 
 = (1 � �)=(2 � �)

1/3 of them are [14]. In the (2+1)-body problem at hand,
1/2 of them are: Since the impurity-induced factor can
only be z
j (lest the wave function becomes singular), it
is only the (z1 � z2)

� ones that are exact. That is why
the state analyzed above is not exact. One can, however,
use Eq. (23) as a good analytic approximation in order
to determine the structure of the ground state. Equating
"(�; 
) = 2 + �+ 2
 yields


 =
1� �

2� �
: (24)

This is an (approximate) interrelation between the
impurity strength and the anyon statistics parameter
at which there is a level crossing. At 
 smaller than
the value above, the ground state is the continuation
of the two-anyon ground state; when it is larger, it is
the continuation of the lowest two-anyon state with a
negative angular momentum. Evidently, this is a true
crossing, since the symmetry of the two states involved
is different. It is to some extent reminiscent of the level
crossing in the ground state of the three-anyon problem;
there, too, the configuration stemming from the boson
ground state is the most energetically favorable at small
enough values of the statistics parameter, but another
one takes over�and leads to the fermion ground state�
as the statistics interaction increases.

5. Conclusion

We have shown that there exists a class of exactly
solvable states in the (2+1)-body problem of two anyons
in the presence of a magnetic impurity. Further, we have
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devised a numerical algorithm to find the states that are
not exactly solvable, and demonstrated its validity by
computing the energy of the ground state. The latter
belongs to the exactly solvable class for certain relations
between the anyon statistics parameter and the impurity
strength, and, for other values of the parameters, its
energy turns out to be rather well described by a
simple analytic formula (which, in turn, yields a simple
expression for the condition of a level crossing). It
would be interesting to see whether this result can be
obtained within some analytic approximation, e.g., with
a variational wave function.

The next logical step would be to calculate enough of
the spectrum to be able to infer the qualitative properties
of the nonsolvable states, as well as to evaluate the
influence of the impurity on the second virial coefficient
of anyons. We plan to address these issues in a future
work.

Numerous useful discussions with Jan Myrheim,
K�are Olaussen, and St�ephane Ouvry are gratefully
acknowledged.
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ÇÀÄÀ×À ÄÂÎÕ ÅÍIÎÍIÂ Ç ÌÀÃÍÈÒÍÎÞ ÄÎÌIØÊÎÞ

Ñ. Ìàøêåâè÷

Ð å ç þ ì å

Ðîçãëÿíóòî çàäà÷ó äâîõ åíiîíiâ (÷àñòèíîê iç äðîáîâîþ ñòà-

òèñòèêîþ ó äâîâèìiðíîìó ïðîñòîði) â ïðèñóòíîñòi ìàãíiòíî¨

äîìiøêè, òîáòî ñòàòè÷íîãî ìàãíiòíîãî ïîòîêó. Ðîçðîáëåíî ÷è-

ñåëüíèé àëãîðèòì äëÿ çíàõîæäåííÿ ñïåêòðà; îá÷èñëåíî îñíîâ-

íèé ñòàí òà çíàéäåíî íåòðèâiàëüíèé ïåðåòèí ðiâíiâ ó íüîìó.
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