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In the framework of the deformation potential model, the baric
coefficient of a quantum point (QP) of spherical symmetry has
been calculated as a function of the QP dimensions and the energy
of the transition into the ground state. The baric coefficient of
the material of the InAs QP with a radius of about 40 �Ahas been
determined to be smaller than that of the bulk InAs by 19%.

1. Introduction

Today, semiconductor nanoheterostructures are among
the key objects of experimental [1, 2] and theoretical
[3, 4] physical researches. The studies of physical
processes in zero-dimensional heterostructures occupy
a particular position, because the unique fundamental
properties which are not inherent to massive crystals
can be observed in such systems. Nanostructures
were successfully used in opto- and microelectronics
during last years. Thus, the interest to semiconductor
nanoheterostructures is connected not only with
the opportunity to study new fundamental physical
phenomena, but also with wide perspectives of their
practical application.

Modern technological methods allow the perfect
ordered arrays of QPs of complex forms to be grown.
However, the further progress in the physics of quantum
zero-dimensional nanostructures is connected not only
with the improvement of a fabrication technology,
but also with the perfection of analytical models of
heterosystems with QPs. Nowadays, the theory is
being developed intensively, because a lot of problems
which demand the adequate understanding of physical
processes in nanosystems with QPs remain unsolved.

One of the problems lies in the fact that the
basic physical characteristics of nanoobjects (the baric
coefficient, Young's modulus, Poisson's ratio, and
effective masses of current carriers) are accepted
in the majority of theoretical models to coincide
with the corresponding characteristics obtained from
macroscopical experiments. However, if the described
structures contain a few nuclear layers, the physical
characteristics of nanostructures appreciably differ from
the corresponding characteristics of bulk crystals [5].
In particular, a discrepancy between the values of the
baric coefficient of the InAs QPs in an InAs/GaAs
heterostructure and in a bulk InAs crystal is observed.
The results of experimental researches, dealing with
the dependence of the energy shift of the InAs-QP
luminescence lines on hydrostatic pressure at various
energies of the transition into the ground state (1.13,
1.15, 1.8, 1.96, 1.28, and 1.40 eV) and the dependence of
the QP baric coefficient on the energy of the transition
into the ground state, show that the value of the InAs-
QP baric coefficient differs from that of the bulk InAs
crystal (K1 = 12 meV=kbar) by about 30�40%.

The aim of this article is therefore to calculate the
dependence of the QP baric coefficient on its dimensions
in the framework of the deformation potential model.

2. Model of the InAs/GaAs Heterosystem

with Coherently Stressed InAs QPs of

Spherical Symmetry

An InAs/GaAs heterosystem with coherently stressed
InAs QPs of spherical symmetry is examined. The
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model of this heterosystem constructed with regard for
deformation effects is displayed in Fig. 1. In order to
reduce the problem with a plenty of QPs to a problem
with a single QP, we replace the elastic interaction
energy of QP pairs by the interaction energies of each QP
with the averaged field of elastic deformation � (N � 1)
of all other QPs.

The formation of QPs in the InAs/GaAs system
according to the method of molecular-beam epitaxy is
carried out in two stages. At the first stage, the growth
of the pseudomorphic stressed InAs layer takes place.
When this layer will reach the critical thickness (1.5�
1.7 times the monolayer thickness), the second stage,
which comprises a spontaneous decomposition of the
pseudomorphic layer into both a set of crystal islets, i.e.
QPs, and a wetting InAs layer of about one monolayer
in thickness, begins. Such a decomposition is caused
by the relaxation of elastic stresses which arise in the
heteroepitaxial system due to a mismatch of lattice
constants, the different factors of thermal expansion in
the GaAs substrate and InAs epitaxial layer, and the
gain in the free energy of the system.

Since the lattice constant of InAs (a(1) = 6:08 �A)
exceeds that of the GaAs matrix (a(2) = 5:65 �A),
InAs and GaAs undergo, respectively, squeezing and
stretching upon the heteroepitaxial buildup of InAs onto
a GaAs layer within the scope of the pseudomorphic
growth.

A spherical QP of radius R0 can be therefore
represented (see Fig. 1) as an elastic dilatational
spherical microinclusion (the dash-dotted line) inserted
into a spherical cavity, which exists in the GaAs matrix
(the dashed line) and whose volume is smaller by �V
than the volume of the microinclusion.

For such a spherical microinclusion to find room
in the cavity, it must be squeezed, whereas the GaAs
matrix should be stretched in radial directions. The
result of simultaneous actions of those deformations is
shown in Fig. 1 by a solid line.

3. Potential Energies of Electrons and Holes

in the InAs/GaAs Heterosystem

with InAs QPs

The electronic structure of a QP, due to the dimensional
quantization, consists of a set of discrete levels and is
similar, in this sense, to that of an individual atom.
The depth and the character of a quantizing potential
are determined by the profiles of the bottom of the
conduction band and the top of the valence band of
the heterostructure. These profiles are regarded as a

Fig. 1. Spherical model of a quantum point

potential energy which defines the energy spectrum and
the electron (hole) quantum states.

In the case of coherently stressed QPs under the
presence of the fields of elastic non-uniform stresses in
their vicinity, the depth and the form of the quantizing
potential are determined not only by the energy gap
difference between the QP and matrix substances, but
also by the character of a non-uniform deformation of
the matrix and a QP. In particular, the mismatch of
the lattice constants in the InAs/GaAs heterosystem
[plane (001)] and the InAs QP constitutes f = 7%. Since
the difference between the lattice constants in InAs and
GaAs is big, the stresses that arise in the heterosystem
containing QPs essentially affect the structure of the
allowed energy bands and the gap between them. Thus,
the energy shifts of the conduction and valence bands
under an action of elastic deformations are, respectively,
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where "(i) = Tr "̂(i) is the sum of diagonal elements of

the strain tensor; a
(i)
c and a

(i)
v are the constants of the

hydrostatic deformation potential of the conduction and
valence bands, respectively, and the subscript i equals
hereafter 1 for InAs and 2 for GaAs.

To find the components of the strain tensor, it is
necessary to determine explicitly the expressions for

atom displacements u
(1)
r and u

(2)
r in InAs and GaAs,

respectively. For this purpose, let us write down the
balance equation [6]

~rdiv ~u = 0 (2)
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with the following boundary conditions for a spherical
QP:8>>>>>>>>>><
>>>>>>>>>>:
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whereR0 is the radius of the InAs QP, R1�R0 is equal to
the thickness of the GaAs-matrix plate, P is the uniform
pressure, PL is the Laplace pressure, and � is the surface
energy of the InAs QP [7].

The parameter f is represented by the sum

f = f1 + f2: (4)

Here, f1 =
�
�
(2)
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(1)
T

�
(Tk � T0) is the parameter

of the deformation mismatch induced by the different

thermal coefficients of the QP and the matrix (�
(1)
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4:52 � 10�6 K�1 and �
(2)

T = 5:73 � 10�6 K�1,
respectively), and f2 =

�
a(1) � a(2)

�
=a(1) � 7% is

the mismatch parameter of the QP and matrix lattice
constants, a(1) and a(2), respectively. The quantity �V
in the first equation of system (3) is equal to the
geometrical difference of the microinclusion volume and
that of the cavity in the GaAs matrix, represented in
Fig. 1.

As a result of symmetry, the displacement field which
is defined by a solution of Eq. (2), contains only the
radial component both inside the QP,

u
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r = C1r +
C2

r2
; 0 � r � R0; (5)

and beyond it, i.e. in the GaAs matrix,

u
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r = C3r +
C4

r2
; R0 � r � R1: (6)

Since the solution must be finite at r = 0, we have
to put C2 = 0 in formula (5).

The displacement field determines the following
components of the strain tensor:
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respectively, where �1;2 and E1;2 are Poisson's ratios
and Young's moduli, respectively, in the QP and the
surrounding matrix. They are expressed in a certain way
[8] through the elastic constants C11 and C12 of those
materials.

The coefficients C1, C3, and C4 are obtained by
solving system (3) and taking into account Eqs. (5)�
(12).

Thus, knowing the components of the strain tensor
which depend on the QP radius R0, the QP form,
and the uniform pressure P , it is possible to find the
potential energy of electrons and holes in a stressed
heterostructure with QPs
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Here, �Vc(0) and �Vh(0) are the depths of the potential
wells of holes and electrons, respectively, in the QP in a
nondeformed heterostructure.

The geometry of the InAs/GaAs heterosystem
with InAs QPs and the dependences of the potential
energies of electrons and holes on the radius r

without (short-dashed curves) and with regard (solid
curves) for the effect of uniform deformation are
schematically shown in Fig. 2. The dotted lines mark

the energy levels E
(1)
e;h of electrons and holes in

the ground state in the potential wells Ue and Uh,
respectively.

The energy of the transition into the ground state is
determined as follows:

E
(1)
0 = E(1)

e +E
(1)
h +E(1)

g ; (15)

where E
(1)
g is the energy gap in the InAs QP.
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4. Calculation of the Baric Coefficient of InAs

QPs in the InAs/GaAs Heterosystem

Depending on Their Dimensions

The baric coefficient of InAs QPs in the InAs/GaAs
heterosystem is determined by the sum of three
components, namely, two components caused by the
shifts of the electron and hole levels under the action
of hydrostatic pressure and the baric coefficient of the
energy gap width:
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To find the baric coefficient K of InAs QPs, the
electron and hole energy spectra in the InAs/GaAs
heterosystem with InAs QPs are to be obtained
first. (Since the calculations of the electron and hole
energy spectra will be carried out in the effective
mass approximation, a physical condition must be
satisfied that the geometrical dimensions of the QPs
and the distance between two neighboring QPs should
considerably exceed the lattice constants of the QP
crystals and the matrix, i.e. R0 � a(1); a(2) for
a spherical QP.) For this purpose, the Schr�odinger
equations

He;h	e;h (~r) = Ee;h	e;h (~r) (17)

with the Hamiltonians

He;h = �
~
2

2
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1
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~r+ Ue;h (r; R0; P ) : (18)

are to be solved. The electron (m�
1;2e

) and hole (m�
1;2h

)
effective masses in a QP and the surrounding matrix
are supposed to be known and equal to those in
corresponding bulk crystals.

A solution of the Schr�odinger equation (17) in a
spherical coordinate system is sought in the form

	nlm (r;�; ') = Rnl (r) � Ylm (�; ') (19)

Here, Ylm(�, ') is the spherical harmonics. The radial
functions Rnl(r) are expressed through the spherical
Bessel functions as follows:

R1nl (r) = Ajl (ke;hr) +Bnl (ke;hr) ; 0 � r � R0; (20)

R2nl (r) = Ch
(1)

l (i�e;hr) +Dh
(2)
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Fig. 2. Dependences of the electron and hole potential energies on

the radius r in a InAs/GaAs heterosystem with InAs QPs
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and the potential energies Ue;h of electrons and holes are
determined by formulae (13) and (14).

The continuity conditions for the wave functions and
the probability flow density at the QP�matrix interface,8><
>:
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Fig. 3. Dependences of the energy shift of the InAs-QP

luminescence lines on hydrostatic pressure at various energies of

the transition into the ground state (R1 = 500 �A): E = 1:13 eV

at R0 = 42 �A(1 and 1 0) and E = 1:15 eV at R0 = 39 �A(2 and

2 0); theory (1 and 2 ), experiment (1 0 and 2 0)

the regularity conditions for the functions Rnl(r) at
r ! 0 and r ! R1, and the normalization define the
spectrum Enl and the wave functions of electrons and
holes in the InAs/GaAs heterosystem with InAs QPs.

The energies of the ground states of an electron and
a hole in the QP are therefore the roots of the following
transcendental equation:
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From (25) and making use of (16), one can calculate the
dependence of the QP baric coefficient on its dimensions,
taking into account that
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Fig. 4. Dependences of the QP baric coefficient on the energy of

the transition into the ground state: theory (1 ), experiment (2 )
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5. Numerical Calculations and Discussion of

Results

Numerical calculations of the QP baric coefficient as
a function of its dimensions were carried out for
the InAs/GaAs heterosystem with InAs QPs, which
is widely used by experimenters. Its parameters are
presented in the table.

With the help of the formulae given in the previous
section, the energy shift of the QP-luminescence lines
of the examined stressed heterosystem with QPs was
calculated. The results of calculations are shown in
Fig. 3. As is seen from it, the increase of the hydrostatic
pressure in the interval 0�15 kbar results in the growth
of the shift concerned. This result is clear, because
the increase of the external pressure stimulates the
enhancement of optical transitions in the QPs.

The increase of QP dimensions does not change
qualitatively the character of the obtained dependence,
but reduces the shift of the InAs-QP-luminescence lines.
In particular, the increase of the QP radius R0 from

Parameters of InAs and GaAs crystals [7�9]

Crystal a, C11, C12, ac, av, Eg,
m
�

e

m0

m
�

h

m0
�,

�A Mbar Mbar eV eV eV N/m
InAs 6.08 0.833 0.453 �5.08 1 0.36 0.057 0.41 0.657
GaAs 5.65 1.223 0.571 �7.17 1.16 1.452 0.065 0.45
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39 to 42 �Aunder the action of the external hydrostatic
pressure P = 5 kbar results in a reduction of the shift
by about 1 meV. As is seen from Fig. 3, the obtained
theoretical results agree well with experimental ones.

The InAs-QP baric coefficient in the stressed
InAs/GaAs heterosystem with InAs QPs was calculated
in the framework of the above-described model with the
help of the dependences displayed in Fig. 3 and formula
(16). The value of the baric coefficient for the spherical
QP of the radius R0 = 45 �Aequals 9.45 meV/kbar
provided the plate thickness of the surrounding matrix
R1 = 500 �A. This means that the value of the InAs-QP
baric coefficient is smaller than that of the bulk InAs
crystal by 21%.

The value of the QP baric coefficient is sensitive
to variations in the geometrical parameters of
heterosystems including QPs. In Figs. 4 and 5, the
dependences of the InAs-QP baric coefficient on the
energy of the transition into the ground state and on
the QP dimensions are presented. As is seen, an increase
of the energy of the transition into the ground state
results in a linear growth of the baric coefficient K.
Such a behavior of the baric coefficient can be explained
by different characters of variations of its components:
the components caused by the shifts of the electron
and hole levels under the action of hydrostatic pressure
decrease, when the QP radius enlarges, more quickly
than the baric coefficient of the energy gap width
grows. The increase of the QP radius stimulates the
opposite effect (Fig. 5): the baric coefficient diminishes.
This is connected to the fact that the increase of the
QP radius results in a deepening of the electron and
hole potential wells in the QPs, which lowers their
energy levels. Accordingly, the energy gap of the QP
material undergoes the reduction as well. This means
that the increase of the QP dimensions narrows its
optical gap.

After the quantitative analysis of the results
obtained, it should be noted that, as the energy of the
transition into the ground state decreases from 1.15
to 1.13 eV, which corresponds to an increase of the
QP radius R0 by 3 �A, the baric coefficient accordingly
diminishes by 0.1 meV/kbar.

As is seen from Fig. 4, the results of experimental
researches qualitatively coincide with theoretical ones.
Some discrepancy between the values of the QP baric
coefficient obtained theoretically and experimentally can
be explained by the fact that QPs were investigated
theoretically only as spheres. In practice, QPs possess

Fig. 5. Dependence of the QP baric coefficient on the QP radius

different dimensions and are of different forms, i.e. there
is a dispersion of dimensions and forms among them.
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ÁÀÐÈ×ÍÈÉ ÊÎÅÔIÖI�ÍÒ ÊÂÀÍÒÎÂÎ� ÒÎ×ÊÈ
Â ÇÀËÅÆÍÎÑÒI ÂIÄ �� ÐÎÇÌIÐIÂ

Ð.Ì. Ïåëåùàê, Ã.Ã. Çåãðÿ, Î.Î. Äàíüêiâ

Ð å ç þ ì å

Â ðàìêàõ ìîäåëi äåôîðìàöiéíîãî ïîòåíöiàëó ðîçðàõîâàíî áà-
ðè÷íèé êîåôiöi¹íò êâàíòîâî¨ òî÷êè (ÊÒ) ñôåðè÷íî¨ ñèìåòði¨ â
çàëåæíîñòi âiä ¨¨ ðîçìiðiâ òà åíåðãi¨ ïåðåõîäó â îñíîâíèé ñòàí.
Âñòàíîâëåíî, ùî çíà÷åííÿ áàðè÷íîãî êîåôiöi¹íòà ìàòåðiàëó
ÊÒ InAs (ðàäióñîì áëèçüêî 40 �A) ¹ ìåíøèì çà çíà÷åííÿ áà-
ðè÷íîãî êîåôiöi¹íòà îá'¹ìíîãî ìàòåðiàëó InAs íà 19%.
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