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A method that takes into account the influence of the crystal
lattice field on the radial wave functions of an activator ion
has been developed, with the electron density of lattice ions
being approximated by a Gaussian distribution. The radial wave
functions of a Tl+ ion embedded into KCl, KBr, and KI crystal
lattices have been calculated. The results of calculations confirm
the assumption made earlier about the existence of a new type of
chemical bonds. These bonds are caused by a change of the self-
energy of d-electrons, which belong to the activator ion's electron
shell.

An assumption has been made in work [1], that the

closed shell of d -electrons in a Hg-like [nd10(n + 1)s2]

ion gives a certain contribution to the energy of a

chemical bond. This additional energy of a chemical

bond is caused by the environment-induced variation

of the d -electron energy eigenvalue. The appearance of

a chemical bond of such a type, i.e. a non-directed d -

bond, can be considered as a process which consists of

two stages. The first stage comprises a reduction of the

distance between ions, e.g., Tl+ and Cl�, due to the

Coulomb interaction. The second stage is a perturbation

of the electron shell of each ion due to the influence on

the neighbor ion. This perturbation results in a reduction

of the self-energy of, mainly, d -electrons of the Hg-like

ion, which strengthens, from the viewpoint of the general

energy balance, the chemical bond between Tl+ and Cl�

ions.

The assumption concerning the existence of a non-

directed d -bond, which hereafter is coined as isotropic

d -bond, has arisen when studying the processes of

formation of the complexes of Hg-like and halogen ions.

Since the electron spectra of those complexes and alkali-

halide crystals activated by Hg-like ions are practically

identical, the early quantitative calculations of a change

of the d -electron energy eigenvalue have been made

for an activator ion embedded into the crystal lattice

[2]. The thallium ion Tl+, which possesses the 5d106s2

external electron shell and is a typical representative of

Hg-like ions, was selected as an activator.

In order to make allowance for the influence of

the lattice field on the radial wave functions of an

activator ion, the model of a lattice of charged spheres

(LCS) has been proposed in work [2]. This model

takes into consideration both the lattice periodicity

and that ions are non-point objects, which has not

been accounted for in the previous model potentials

of crystals [3]. The analysis of the results obtained

from the calculations of the radial wave functions and

electron energy eigenvalues of a Tl+ ion with the

5d106s2 configuration of the external electron shell in

the field of KCl, KBr, and KI lattices has confirmed

an assumption made in work [1] that, besides the

electrostatic interaction energy, an additional binding

energy, which arises due to a variation of the d -electron

energy under the influence of lattice ions, has to be taken

into account in the halide complexes of Hg-like ions.

It is known that the use of any model simplifies

calculations but makes results dependent on the features

of the model. In this connection, versatile estimations

of the model under consideration should be applied. In

particular, an attempt to estimate the energy of electron

affinity to an alkali-halide crystal in the framework of the

LCS model gave an unexpected result: the calculated

value of the affinity energy had an opposite sign in

comparison with the experimental one. In connection

with this circumstance, two tasks arose. First, the LCS

model has to be improved. Secondly, the calculations

of wave functions have to be carried out making use of

the amended model in order to check up, whether the

conclusion [1, 2] about the existence of a non-directed

d -bond is premature.

The LCS was simulated by hard spheres, the charges

and radii of which were equal to those of corresponding

ions, and the spatial arrangement corresponds to the

lattice structure. The potential Usi inside every i-th

sphere, without regard for the potential created by other

charged spheres, was accepted constant and equal to the

potential on its surface Usi = �1=ri, where ri is the

radius of the corresponding sphere, the plus and minus

signs correspond to a cation and an anion, respectively

(hereafter, the atomic system of units is used: ~ = 1,

e = 1, and c = 1). The potential Us(r) created by

368 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 4



CONTRIBUTION OF THE CLOSED d-ELECTRON SHELL

those spheres periodically changes along each coordinate

axis with a spatial frequency k = �=a, where 2a is the

lattice constant. Taking only the first harmonic of the

lattice potential into consideration and averaging over

the sphere, we obtain

ULCS
s

(r) = Us0 sin(�r
p
3=a)=(�r

p
3=a) + hULCS

s
i; (1)

where

Us0 = (r�1c + r�1a )=2 (2)

is the amplitude of the variable component of the

potential,

hULCS
s

i = (r2c � r2a)=(r
3
c
+ r3a) (3)

is the value of the Us(r) potential averaged over the

lattice volume, and rc and ra are the cation and anion

radii, respectively.

Besides the potential Us(r), the potential Um(r)

created in the center of every i-th sphere by all other

lattice ions is to be included. At the lattice sites, it

accepts the value of the Madelung potential Um0. After

carrying out the procedure similar to what has been

applied to the Us(r) potential, we obtain

Um(r) = Um0 sin(�r
p
3=a)=(�r

p
3=a): (4)

With both the components of the lattice potential

being taken into account, its expression for a positive

test charge can be written down as

Ukr = Us(r)St � Um(r); (5)

where the step function St(r) = exp
�
� log 2 e�2(r�ri)

�
was introduced into formula (5) to switch off the

potential Us(r) in the region r < ri, where it is rather a

rough approximation (ri = 0:136 nm is the radius of a

thallium ion [4]).

At r ! 1, the lattice potential calculated in the

framework of the LCS model tends to the average bulk

value hULCS
s i. Therefore, for an electron, in view of

the sign of its charge, its potential (5) in KCl, KBr,

and KI lattices, according to Eq. (1), is positive if the

vacuum energy level is accepted zero. From the physical

point of view, the value of the crystal field potential at

r ! 1 must correspond to the value of the electron

affinity energy � taken with the negative sign. Although

there exist crystals, for which the electron affinity energy

is negative [5], but it is positive for the majority of

crystals and in particular for KCl, KBr, and KI. In

Table 1, experimental values of the electron affinity for

the KCl, KBr, and KI lattices are confronted with the

corresponding values calculated in the framework of the

LCS model. The tabular data testify to that not only

a disagreement between experimental and theoretical

values of the electron affinity takes place for each crystal,

but also the directions of its variation in the series KCl

! KBr ! KI are different.

One of the reasons of this discrepancy is that,

according to the LCS model, the potential inside every

sphere is assumed constant. In essence, it means that

the charge of every sphere is completely disposed on the

surface of the latter, which does not correspond to the

actual distribution of charge in ions.

An assumption about a Gaussian distribution of the

electron density in ions is closer to the reality. To take

this fact into consideration, we use the expressions

�a(r) = �a0 exp(�r2d=ra) (6)

and

�c(r)= �c0 exp(�r2d=rc); (7)

where �a0 and �c0 are the amplitudes of those

distributions for an anion and a cation, respectively. The

meaning of the parameter d will be disclosed below.

Let the total number of electrons be equal to Na in

an anion and to Nc in a cation. Then, the normalization

relations for the electron densities �a(r) and �c(r) are

1Z

0

exp(�r2d=ra)dr = Na; (8)

and
1Z

0

�c0 exp(�r2d=rc)dr = Nc: (9)

With the help of relations (8) and (9) and considering

the constant d as a parameter, one can find the

amplitude values �a0 and �c0 of the electron density

distributions. The charge Qi(r) confined within the

sphere of radius r can be found with the help of the

formula

Qi(r) =

rZ

0

�i(r)dr; (10)

T a b l e 1. Experimental �exp and theoretical �LCS, i.e.
calculated in the framework of the LCS model, values (in
eV units) of the electron affinity in KCl, KBr, and KI
crystals

KCl KBr KI

�exp 0.5 [6] 0.9 [7] 1.1 [8]
�LCS �2.6 �3.1 �3.4
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where the subscript i corresponds to either an anion or

a cation.

The effective potential of the ion

Ui(r) = U1i(r) + U2i(r) (11)

consists of two parts: the potential created by the

nucleus

U1i(r) = Zi=r (12)

and the effective potential of the electron density

U2i(r) =

1Z

r

Qi(r)=r
2dr: (13)

Here, Zi is the charge of the nucleus of the corresponding

ion. Knowing the effective potential, one can calculate

the function of the effective charge

Qe�
i (r) = Ui(r)r: (14)

The value of the effective potential, averaged over

the ion volume, is equal to

hUii = 3(4�r2
i )
�1

riZ

0

Ui(r)4�r
2dr; (15)

where ri is the radius of the corresponding ion.

Knowing the average value of the effective potential

for every ion, one can find its average value hUi over the
volume of the whole crystal as

hUi = (hUcir3c + hUair3a)=(r3c + r3
a); (16)

where hUci and hUai are the average values of the

effective potential inside an anion and a cation,

respectively. By fitting the parameter d, the average

value of the potential hUi can be made equal to

the experimental value of the electron affinity in the

corresponding crystal lattice �exp. In such a manner,

one can remove the discrepancy between the calculated

theoretically and measured experimentally values of the

electron affinity, which appeared, as mentioned above,

in the LCS model.

Knowing hUi, we can determine the amplitude UG0
of the variable component of the lattice potential as a

simple mean of deviations of the ion potentials averaged

within the sphere from the average bulk value

UG0 = ((hUci � hUi) + (hUi � hUai))=2: (17)

The obtained values hUi of the potential averaged

over the lattice volume and the amplitude of its variable

component UG0 should be substituted for hUsi and

Us0, respectively, in formula (1). Such an account of

the lattice field eliminates the discrepancies between

the theoretical and experimental data concerning the

electron affinity energy.

Table 2 quotes the amplitude values of the variable

component of the lattice field potential and its average

value calculated in the framework of the proposed

model with the Gaussian distribution of electron density

(GDED) and, for comparison, the corresponding values

obtained in the framework of the LCS model.

In order to estimate how close the distribution of the

electron density of lattice ions obtained in the framework

of the given model is to the real one, we compared the

curve of the electron density distribution calculated for

a Cl� ion in this work with the curve obtained for

the approximation, also by a Gaussian curve, of the

electron density of a Cl� ion according to the data

of work [9]. Both plots practically coincide. Since we

intend below to take into account only the first harmonic

and to carry out averaging Eqs. (1) and (4) over the

sphere, distributions (8) and (9) can be regarded as quite

satisfactory.

The method of calculations of the radial wave

functions was the same as that applied in work [2].

We calculated the radial wave functions of the ground

5d106s2 state for a monovalent thallium ion surrounded

by one of the KCl, KBr, and KI lattices. For this

purpose, we solved the system of Hartree equations

which took into account the potential created by the

lattice:

Z 0i = P 2
i ; (18)

Y 0 = (Y � Z +
X

hiZi � 13)=r; (19)

Y 0i = (Yi � Zi)=r; (20)

W 0

i = ("i + li(li + 1)=r2 � 2(Y + Yi � St)=r)Pi�

�2UkrPi; (21)

P 0i =Wi: (22)

T a b l e 2. The amplitude values Us0 of the variable
component of the lattice field potential and the average
values hUi of the latter, both in a.e.u., calculated for KCl,
KBr and KI lattices in the framework of the GDED and
LCS models

Value Model KCl KBr KI

Us0 GDED 0.573 0.509 0.468
LCS 0.345 0.333 0.321

hUi GDED 0.018 0.033 0.040
LCS �0.096 �0.112 �0.123
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Fig. 1. The radial wave functions of d- and s-electrons of the

ground 5d106s2 state of the Tl+ ion surrounded by the KCl lattice

Fig. 2. Results of calculations of the radial wave functions of d-

electrons for the energy value "
d
(1 ), "

d
+0:001 (2 ), and "

d
�0:001

(3 ); "
d
being the energy eigenvalue

Here, the subscripts i = 1; 2 correspond to d - and s-

electrons, respectively; li is the orbital quantum number

(l1 = 2, l2 = 0); hi is the number of electrons in the

shell (h1 = 10, h2 = 2); "i is two times the eigenvalue

of the electron energy; Pi is the radial wave function of

the corresponding electron; Yi and Zi have the meaning

of effective charges of the i-th electron shell for the

field potential and strength, respectively; Y means the

effective charge for the potential of the Tl+ ion; and

Z + 13 is the quantity calculated according to the data

of work [10] and used for accounting the effective charge

of the nucleus and the internal electrons of a thallium

ion. The functions in Eqs. (18)�(22) correspond to the

following boundary conditions: Y (0) = 81, Yi(0) =

Zi(0) = 0, Y (1) = Yi(1) = Zi(1) = 1, Pi(1) =

Pi(0) = 0. The radial wave function Pi(r) has to possess

ni � li � 1 nodes in the region 0 < r <1.

Potential (4) is created by all lattice ions, except for

the nearest one. This expression takes also into account

the potential created by the thallium ion at distances

that exceed the radius of the latter ri. Therefore, if

r > ri, the effective charge of the thallium ion should be

reduced by one. This circumstance is taken into account

by introducing the St(r) function into Eq. (21).

The integration of the system of differential

equations was carried out by the Torrance method [11],

starting from large r's, where the radial wave function

can be approximated by an exponent.

The obtained radial wave functions are presented in

Fig. 1. The energy eigenvalues are quoted in Table 3.

Here, also for the sake of comparison, the energy

eigenvalues of the radial wave functions calculated in

the framework of the LCS model [2] are shown as well.

In Table 3, the electron energy eigenvalues of the

thallium ion are displayed with an accuracy to three

digits after the decimal point. Such an accuracy is

necessary because the radial wave functions of the d -

electron are very sensitive to relatively minor variations

of the electron self-energy. As an example, the radial

wave functions of d -electrons are depicted in Fig. 2 for

the electron energy eigenvalues increased and reduced by

0.001 a.e.u. As is seen from these plots, even such a minor

alteration in the energy eigenvalue results in violating

the boundary conditions, which are the �criterion� that

the solution is correct (it should be noted that the

radial wave function of a d -electron is also sensitive

to variations of the energy eigenvalues of s-electrons).

Such a strong dependence of the wave function of the d -

electron, which has a relatively large value of the orbital

quantum number (l = 2), on small variations of electron

energy eigenvalues correlates with the data of work [12].

T a b l e 3. The energy eigenvalues for d- and s-
electrons ("d and "s, respectively), the Madelung energy
Um0, and the �total� energy of the ion V calculated in the
framework of the GDED and LCS models. All values are
presented in a.e.u.

Quantity GDED LCS[2]
RCl KBr KI KCl KBr KI

"
d

1.328 1.349 1.367 1.226 1.234 1.260
"s 0.648 0.675 0.691 0.511 0.503 0.408
Um0 0.295 0.281 0.265 0.295 0.281 0.265
V 7.583 7.701 7.791 6.935 6.954 6.977
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An estimation of the contribution made by the closed d -

shell to the chemical bond shows that this contribution

modifies the self-energy value already in the second digit

after the decimal point, so that such an accuracy can

be adopted satisfactory in the framework of the Hartree

model.

The radial wave functions, calculated in the GDED

model, were compared with those calculated in the

framework of the LCS model. It turned out that, in

both cases, those functions are practically identical.

Therefore, in this case, the conclusions made in work [2]

about the form of the wave functions, in particular,

about the compensation of the nepheloxetic effect, can

be considered proper.

If the energy eigenvalues, calculated in the

framework of both models, are confronted, one can see

that the energy levels obtained in the GDED model are

situated below the corresponding levels in the LCS model

(see Table 3).

An increase, by the absolute value, of the d -electron

energy eigenvalue with the anion radius, like what takes

place in the LCS model, is preserved if the Gaussian

distribution of the electron density is taken into account;

it is also seen from Table 3. The behavior of the energy

eigenvalue of an s-electron is quite different. According

to the data of work [2], this value decreases as the

anion radius grows, but if the Gaussian distribution of

the electron density is taken into account, it increases

together with the anion radius. So, a conclusion can be

made that not only d -electrons contribute to the bond

energy, but s-electrons too, although the contribution of

the latter is considerably smaller.

The total bond energy consists of two components.

One of them is caused by electrostatic interaction of a

thallium ion with lattice ions and can be accepted equal

to the Madelung energy Um0. The second component

stems from the energy variation of electrons of the

external shell. Therefore, the energy balance connected

to the formation of new complexes can be estimated by

the variation of the total ion energy

V = E + Um0; (23)

where 2E = 10"d+2"s is the energy of the electron shell

calculated according to Koopman's theorem [12].

Thus, the account of the Gaussian distribution of

the electron density in the lattice ions allows the

discrepancies with experimental data, which exist in the

LCS model, to be eliminated. The energy eigenvalues of

d - and s-electrons, calculated within the framework of

the GDED model, are larger by their absolute values

than the corresponding values obtained in the LCS

model. Nevertheless, the assumption about the existence

of an isotropic d -bond is confirmed in both models. The

radial functions calculated in the framework of both

methods practically coincide. Therefore, we may assert

that the principal conclusions made on the basis of LCS

calculations remain valid. Moreover, they find another

sound confirmation in the GDED model.

1. Belyi M.U., Okhrimenko B.A. // Zh. Prikl. Spektr. � 1984.
� 40, N 4. � P. 648�652.

2. Belyi M.U., Okhrimenko B.A. // Izv. Vyssh. Ucheb. Zaved.,
Fiz. � 1995. � 38, N 2. � P. 42�47.

3. Kaminskii A.A., Aminov L.K., Ermolaev V.L. et al. Physics
and Spectroscopy of Laser Crystals and Molecules. � Moscow:
Nauka, 1986 (in Russian).

4. Chemist's Handbook. Vol.1. � Leningrad: Gos. Nauch. Tekh.
Izd. Khim. Liter., 1963 (in Russian).

5. Bell R. L. Negative Electron Affinity Devices. � Oxford:
Clarendon Press, 1973.

6. Pisanias M.N., Hamill W.H. // J. Appl. Phys. � 1980. � 51,
N 3. � P. 1569.

7. Sasaki T., Iguchi Y., Sugawara H. et al. // J. Phys. Soc. Jpn.
� 1971. � 30, N 2. � P. 580.

8. Physical Constants. A Handbook / Ed. by I.S. Grigoryev, E.Z.
Meilikhov. � Moscow: Energoatomizdat, 1991 (in Russian).

9. Froese Fischer C. // Atom. Data � 1972. � 4, N 4. � P.
301�399.

10. Douglas A.S., Hartree D.R., Runciman W.A. // Proc.
Cambr. Soc. � 1955. � 51, N 4. � P. 486�503.

11. Hartree D.R. The Calculation of Atomic Structures. � New
York: John Wiley and Sons, 1957.

12. Bethe H.A. Intermediate Quantum Mechanics. � New York:
Benjamin, 1964.

Received 10.03.04.
Translated from Ukrainian by O.I.Voitenko

ÂÍÅÑÎÊ ÇÀÌÊÍÅÍÎ� ÎÁÎËÎÍÊÈ d-ÅËÅÊÒÐÎÍIÂ IÎÍÀ
ÒÀËIÞ Ó ÕIÌI×ÍÈÉ ÇÂ'ßÇÎÊ

Á.À. Îõðiìåíêî, Ä.Þ. Ñòàðêîâ

Ð å ç þ ì å

Ðîçðîáëåíî ìåòîä âðàõóâàííÿ âïëèâó ïîëÿ êðèñòàëi÷íî¨ ãðàò-
êè íà ðàäiàëüíi õâèëüîâi ôóíêöi¨ àêòèâàòîðíîãî iîíà. Ó çàïðî-
ïîíîâàíîìó ìåòîäi âèêîðèñòàíî íàáëèæåííÿ ãàóññîâîãî ðîç-
ïîäiëó åëåêòðîííî¨ ãóñòèíè iîíiâ ãðàòêè. Ðîçðàõîâàíî ðàäiàëü-
íi õâèëüîâi ôóíêöi¨ iîíà Tl+, ââåäåíîãî â êðèñòàëi÷íi ãðàòêè
KCl, KBr òà KI. Ðåçóëüòàòè ðîçðàõóíêiâ ïiäòâåðäæóþòü âè-
ñëîâëåíå ðàíiøå ïðèïóùåííÿ ïðî iñíóâàííÿ íîâîãî òèïó õiìi÷-
íîãî çâ'ÿçêó. Öåé çâ'ÿçîê çóìîâëåíèé çìiíîþ âëàñíîãî çíà÷åí-
íÿ åíåðãi¨ d-åëåêòðîíiâ çàìêíåíî¨ åëåêòðîííî¨ îáîëîíêè àêòè-
âàòîðíîãî iîíà.
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