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A theory of the nucleation of optical vortices after the asymmetric

excitation in a beam with initially smooth wave fronts is built. The

theory is based on the developed two-dimensional mathematical

model of diffraction, as a diffusion of transverse perturbation

waves. Two possible mechanisms of the nucleation of optical

vortices in combined Gaussian beams and the diffraction of a

plane wave by the arc are represented. The nucleation of vortices

is considered as an analog of the well-known birth of vortices

due to �the magnetohydrodynamic instability of neutral current

layer� and �the hydrodynamic instability of tangential disruption

of the current velocity�. The conditions for their realization and

evolution in space are analyzed. All the known cases of the linear

and nonlinear nucleations of optical vortices can be described in

the frame of the developed mechanisms.

1. Introduction

Phase singularities or wave-front disruptions were

introduced as a new concept in wave theory in [1].

It was shown that they are zero-amplitude lines in

space with indefinite phase. Most nontrivial are the

screw wave-front dislocations or �optical vortices� [2].

The phase change after the circumference of a zero-

amplitude line is equal to �� = 2m�; where m is an

integer topological charge. Optical vortices affect all the

properties of the light field [3, 4]. It has been found that

optical vortices are modes of quantum noise [5]. What's

more, it was marked recently that an optical vortex and

its orbital angular momentum play the essential role in

the fundamental properties of light and must be taken

into account in the modern theory of photons [6]. All

this allowed one to claim that phase singularities appear

as the most essential features of solutions of the Maxwell

equations [7]. The investigations of the fundamental

properties of singular light beams and their applications

[8] are of great significance and have formed singular

optics last years as a new chapter of modern optics [3, 4,

9 � 11]. But the feeling that the fundamentals of singular

optics are completely established is deceptive. Generally,

the problem of the nucleation of optical vortices is far

from the solution. The main goal of this paper is to make

attempt to proceed in this direction.

As an introduction to the problem, we overview

shortly the known methods of the creation of singular

beams. It is known that optical vortices belong to the

family of the Laguerre�Gauss modes [4]. Therefore, it

is natural that they were realized firstly by the help

of a laser with special cavity to suppress the usual

generation on the Hermite�Gaussian modes [12]. Due to

the subject of our consideration, we are interested in the

out-of-laser methods of synthesis of singular beams from

coherent beams with an initially smooth wave front.

All the known methods can be divided into two next

groups: (i) the use of mode converters [14], computer-

synthesized holograms [15 � 17], spiral phase plate [18],

and nonlinear resonator [19], (ii) vortex nucleation due

to scattering, diffraction, or interaction with nonlinear

media. The nucleation of a circular edge dislocation or a

quadruple of optical vortices after a nonlinear Gaussian-

like lens [24 � 26] is an example of the second-group

methods. We will show that the natural (spontaneous)

nucleation of phase singularities can be realized during

the single-pass free propagation of the light field with an

initially smooth wave front.

Three levels of optical singularities exist [13]: (i)

ray optics caustics, (ii) phase singularities of scalar,

i.e. linearly polarized, light fields, and (iii) polarization

singularities of vector light fields. The vortex nucleation

can be realized for all these levels. It was shown that

caustics are decorated by optical vortices due to a

finite value of the light wavelength [20, 21]. Light

scattering by a rough surface produces not only speckle-

fields, but simultaneously the system of optical vortices

(on the average, one vortex per speckle [22, 23]). The

diffraction of a plane wave by a circular aperture

produces Airy rings in the far field, which represent

themselves as circular edge dislocations [3, 27]. The

diffraction of a screened optical vortex leads to its

self-restoration [28] and the nucleation of a system of

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 4 351



V.N. GORSHKOV, A.N. KHOROSHUN, M.S. SOSKIN

secondary vortices [29]. It was shown that the combined

effect of diffraction and Poynting vector walk-off in the

second-harmonic generation by a singular pump beam is

accompanied by the nucleation of multiple vortex pairs

quasi-aligned in vortex streets [30]. At last, polarization

singularities appear in a polarization speckle-field [31]. In

all cases, optical vortices nucleate in pairs with opposite

topological charges. The transformation of optical

vortices (�topological reactions�) were investigated also

in [32, 33].

2. Mathematical Model

We will investigate the process of optical vortex

nucleation in the paraxial approximation [1]. It describes

the variety of singular optics events good enough, when

the criteria of its validity are fulfilled. We will seek for

a solution of the wave equation for the vector potential

Â = nU(x; y; z) of a linearly polarized beam (n is a unit

vector in the light polarization direction) in the form:

U = A(x; y; z) exp
�
i(!t� kz +�(x; y; z))] =

= (u+ iv) exp[i(!t� kz)
�
: (1)

Here, ! is the beam frequency, k is the wave vector,

�(x; y; z) is the phase of the beam propagating along

the z axis. This function defines the shape of a wave

front in the vicinity of a small region z � z0 by the

equation z = 1

k
�(x; y; z0) to within some constant. The

complex amplitude A(x; y; z) = u(x; y; z) + iv(x; y; z)
satisfies the well-known Leontovich parabolic equation

[2]

@A

@z
=

1

2ik
�A; (2)

where � is the Laplace operator in the plane xy.

It is easy to find the evolution of the beam field

U(x; y; z = 0) during its propagation by application of

the integral valid for z >>
p
x2 + y2:

U(x; y; z) =
ik

2�z

ZZ
U(x0; y0; 0)�

� exp[�ik
(x� x0)2 + (y � y0)2

2z
]dx0dy0: (3)

This relation is consistent with the calculation of the

interference picture from the multitude of point sources

located in the plane z = 0. It is possible to find also the

zero-amplitude lines U(x; y; z) = 0 or the trajectories

of vortices. Optical vortices nucleate as a result of deep

processes in the whole light field. The goal of this paper

is to investigate the evolution of the beam as a whole

and to find, in this way, factors which define the vortex

nucleation in a propagating beam with an arbitrary

wave front, including the smooth wave front without

singularities. To do this, it is necessary to introduce

new notions into the mathematical description of the

propagating wave beam.

In terms of real variables, we define

U(x; y; z) =

= u(x; y; z) cos(!t� kz)� v(x; y; z) sin(!t� kz) �

� U0(x; y; z) exp[!t� kz +�(x; y; z)]; (4)

where U0 =
p
u2 + v2, � = Arctan v

u
, u = U0 cos�,

v = U0 sin�. All this is well known, but we will enlarge
its physical interpretation. The temporal changes in

the light field represent themselves as a superposition

of vibrations with the �/2 phase-shifted amplitudes

u(x; y; z) and v(x; y; z). These excitations propagate

along and across the z axis according to the given

laws. The wave-front structure z = 1

k
�(x; y; z0) and

a Poynting vector orientation are caused by the

space inhomogeneity of the v(x; y; z)=u(u; x; y; z) ratio.
Therefore, we will concentrate on the evolution of the

field components u(x; y; z)and v(x; y; z), which will give

us the key to the understanding of the mechanisms of the

nucleation of vortices and their following evolution. This

evolution can be followed by some imaginary observer

who is moving along the zaxis by the light velocity c:

The system of equations for u and v,

@u

@�
=

1

4

�
@2v

@x2
+

@2v

@y2

�
;

@v

@�
= �

1

4

�
@2u

@x2
+

@2u

@y2

�
; (5)

follows from (2) with the dimensionless variables � )
z=LR, x; y ) x=r0; y=r0. The transverse coordinates

are normalized to the beam waist r0(z = 0), and the

longitudinal coordinate is normalized to the Rayleigh

range LR = kr2
0
=2.

Equation (5) describes the dynamics of the u and

v components on the XY plane (the beam broadening)

with �time� � � z = ct under the initial conditions

u = u(x; y; 0); v = v(x; y; 0): (6)

The spreading of the beam possesses a peculiar

character, because it is defined by the u and v excitations

in the regions of their pronounced space inhomogeneity.

System (5) for excitations of the types u = u0 exp[i(!̂��
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k?x)], v = v0 exp[i(!̂� � k?x)] leads to the next

dispersion relation in the one-dimensional case:

!̂ =
1

4
k2
?
: (7)

It fits the wavelength-dependent phase velocity of

excitations:

v̂ph =
!̂

k?
=

k?

4
: (8)

The parameter k? defines the period of oscillations

of the u and v functions in the plane. It follows from

relations (5) and (7) that u0 = iv0, i.e. the v-component

waves are �/2-phase-delayed relative to the waves u or

are shifted in space by the wave quarter �? = 2�=k?.
The characteristics of the considered perturbation

waves can be found from the set of interferograms

of the considered wave and a coaxial reference plane

wave for various t, i.å. for the transverse planes with

various z coordinates. The periodicity of the interference

extrema on these planes defines the wave vector k? of

perturbations from relation (7), which is characteristic of

the given value of t. The values of the maxima (minima)

shifts under a variation of z (�time� �) characterize

the perturbation of the phase velocity of waves in the

dynamic problem (5) under consideration. Of course,

relation (7) has to be corrected in the two-dimensional

case. But its main consequence, namely the growth of v̂ph
with k?, remains unchanged. Therefore, our qualitative

analysis of the vortex nucleation mechanisms can be

based on this conclusion.

The initial distribution (6) is asymmetric in the

general case of inhomogeneous beams and axial beams

after a sharp obstacle (diffraction). Therefore, the

perturbation flows will be also asymmetric and will

differ in the wave vector k?. The perturbations with a

shorter wavelength propagate faster and possess greater

changes of �(x; y; �) along the flow (across the z axis).

As a result, they will perturb the initial multiconnected

sequence of smooth wavefronts. Moreover, the zones of

anomalies will appear. They will represent themselves

as various types of folds and shifts of one piece of the

wave front to another one along the z axis. If such an

anomaly is neatly pronounced in any narrow region and

the fold deepness reaches �=2, the wave front disrupts,

the neighbor phase sheets switch together, and one

single-connected phase surface makes up. This event

corresponds to the nucleation (generation) of a pair

of vortices with opposite topological charges. So, if we

want to nucleate vortices, we need to realize such initial

condition (6) that the transverse perturbations of the u

and v flows be strongly asymmetric and strong enough.

We will show that the vortex nucleation mechanisms

in the region of smooth wave-front anomalies appear

themselves as the direct analogies with the creation

of the structures of vortices on a neutral current

layer in magnethydrodynamics [2] or on the layers

with tangential disruption of the flow velocity in usual

hydrodynamics [3].

Let us now move to the application of the above-

presented approach to the simple, but still unknown

nontrivial examples.

3. Nucleation of Vortices by an Optical

Analog of the Magnetohydrodynamic

Instability of the �Neutral Current Layer�

Let us consider a combined beam with two noncoaxial

Gaussian beams without any singularities. The axis of

the first beam coincides with the z axis. The amplitude

decreases exponentially with radius r =
p
x2 + y2:

u1(x; y; 0) = U01 exp(�r2=r201); v1(x; y; 0) = 0: (9)

The second beam possesses the same amplitude, the

lesser waist radius r02 < r01 and the axis shifted along

the y axis by a distance y12:

u2(x; y; 0) = U01 exp

�
�
x2 + (y � y12)

2

r2
02

�
;

v2(x; y; 0) = 0: (10)

It was presumed that r02 = 0:4r01. All dimensionless

variables were defined through r01.

Which physical assumptions were in the basis of

such a choice? It is clear that a narrower beam will

produce the transverse perturbation waves u2 and v2
with a wavelength of the order of r02 (�? � 0:4)
at � > 0. These relatively fast perturbations will

propagate against the immovable background created

by the broader second beam according to the evaluation

by (8). On the other hand, the perturbations u2 and v2
possess relatively small amplitudes and will appear on

the broader periphery only. Due to the chosen geometry,

these waves will diminish essentially the phase �(x; y; �)
of the combined beam in the narrow zone along the y

axis. As a result, the phase folds have to appear on the

smooth wave front and will manifest themselves as the

regions of wave-front disruptions and the nucleation of

vortex dipoles.

The designed characteristics of the combined beam

presented in Fig. 1 support the foregoing assumptions.

One vortex pair nucleated yet to the moment � = 0:17.
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a b

Fig. 1. Phase map �(x; y; �) of the combined beam at � = 0:17(a) and 0:7(b). Filled (open) circles are the single-charge positive

(negative) optical vortices. Crests (a) are the centers of the Gaussian beams. The shadow disks with ri = r0i (b) are the localization

zones of the beams at � = 0. The bold lines correspond to the phase lines which differ by 2�

a b

Fig. 2. a � the shape of the wave front z = �(x; y; �)=k of the combined beam in the fold area, � = 0:17; b � the initiation of the

wave-front disruption and nucleation of vortex dipole, � = 0:175

We draw the readers' attention to the region in the upper

part of Fig. 1,a confined by the rectangular frame. The

phase fold is formed there (its 3D structure is shown in

Fig. 2,a). It is seen that the transverse components ny of

the normal n to the wave front at x � 0, y are oppositely

directed. Therefore, two oppositely directed transverse

energy flows appear in the combined beam. This key

moment allows us to make a direct analogy of this

optical effect with the well-known �neutral current layer�

in magnetohydrodynamics [5]. The plasma contrary

movement in such a layer results in switching on the

magnetic power lines and the creation of the structures

of vortices.

The widening of the combined beam with growth

in � is attended by the enhancement of the transverse

perturbation wave flows into the fold region and its

�deepness� growth. When the distance between points

a and b reaches the critical value �=2, the wave-front

disruptions appear and the pair of vortices nucleates

(Fig. 2,b). The sheets of the neighbor wave fronts switch
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together, and a single-connected structure appears along

the z axis by the translation of the profile in Fig. 2,b with

the period �.

The sign of born vortices can be defined directly from

physical reasons even without help of the phase map.

Actually, the fastest flows of transverse perturbations

take place in the vicinity of the y axis. For the vortices

located in the x > 0 area, the energy flow is higher

leftwards than rightwards. Due to this the energy

circulates clockwise. Therefore, the phase on the XY

plane has to grow in the opposite direction, which

corresponds to m = +1.

The next widening of the region with u and v

perturbations leads to the automatic drift of vortices to

the lower half-plane. The picture of the �hydrodynamic

flow� round the broader �stationary� beam by the fast

perturbations of the narrow beam is formed, and two

vortex streets appear like the Karman vortex streets in

hydrodynamics [6].

The spectrum of the transverse perturbation waves

produced by the narrow beam undergoes the �red shift�

with growth in t, and the process of vortex nucleation

terminates. What's more, the family of vortex dipoles

shown in Fig 1, b annihilates due to the approach of

vortices in the pair to each other. It remains only one

vortex dipole nearest to the beam center during some

limited period of �time�.

A detailed analysis of the space evolution of vortices

will be done in future. We will concentrate now on the

establishment of a mechanism of nucleation of optical

vortices and their analogs in other branches of physics.

The following forecast can be given on this subject. It

is known that the Gaussian beam waist radius grows as

ri = r0i
p
1 + �2=r4

0i. Due to this, an initially narrower

beam becomes more broad than an initially broader

beam. It happens at �2 >> 1, when r2=r1 � r01=r02.

Due to these transformations, a new generation of

optical vortex dipoles is born. Fig. 3 substantiates this

prediction.

As a summary of this section, we note that

the creation of asymmetric transverse perturbation

flows in the combined beam with initially smooth

wave fronts initiates the system of optical vortex

dipoles. We emphasize that the optical �neutral

current layers� appear due to the interaction of

faster perturbation flows with the relatively slow

background from another beam. This interaction

possesses a nonlinear character because the combined

beam phase is not the sum of the separate beam

phases.

Fig. 3. Phase map of the combined light beam at � = 3.5. The new-

generation vortex dipole has nucleated in the upper half-plane

4. Nucleation of Vortices by an Optical

Analog of the Hydrodynamic Instability

of �Tangential Disruption of the Current

Velocity�

We have found above that vortices nucleate in the

combined light beam with initially smooth wave front

of its components. Let us try now to answer the next

natural question: Is the vortex nucleation in a single

light beam with initially smooth wave front possible? To

check this possibility, let us consider the diffraction of a

ring-shaped light beam with smooth wave front which is

half-screened by the half-plane (Fig. 4). We assume that

the initial amplitude distribution (with r0 = 1) is

u(r; 0) � r5 exp(�r2); v(r; 0) = 0: (11)

The amplitude maximum is reached at rmax = 1:58.
The dynamics of the beam evolution behind the

screen can be found even without calculation of the

interference integral (3). The flows of initial fast short-

wavelength transverse perturbation waves are generated

by the sharp intensity jumps at y = 0 in the interval

1 < jxj < 2. They are directed up and down along the y

axis because the perturbation wavelengths are much less

than the size of the �generation region� along the x axis.

In the propagation region, the forthcoming nucleation of

vortices should occur with a low background according

to the mechanism of �neutral current layer� as in the

previous section (Fig. 4,b). The sign of born vortices

is defined by the direction of perturbation flows. It is

positive for the right direction and negative for the left
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a b

Fig. 4. a � beam initial amplitude distribution, b � phase map for � = 0:5 found with the help of (3). Filled (open) circles correspond

to optical vortices with m = +1 (m = �1)

one. The widening of wave-front disruptions with �

moves the �inner� vortices to the Y axis, which is seen in

Fig. 4,b. The �external� vortices are pushed to the beam

periphery.

With increase in the �time� � , the perturbation flows

clean from the fast short-wavelength perturbations, and

their spectrum undergoes �the red shift�. As a result,

the pairs of central vortices have to annihilate. But the

next mechanism of vortex nucleation develops at this

moment, and vortices nucleate in the shadow region

(y < 0) where the immovable background is absent

due to the new �hydrodynamic mechanism�. Really, the

perturbation flows on the right and left sides of the

light beam diminish. The reverse process takes place in

the central part of the light beam. The central part of

the arc-shaped beam �radiates� the perturbation waves

like a peculiar searchlight. Their wavelengths are of

the order of the wave-front transverse dimensions. This

slow preaxial flow penetrates into the shadow region.

Nevertheless, its velocity is higher than the velocity

of peripheral flows. As a result, an optical analog of

the hydrodynamic instability of �tangential disruption

of current velocity� is created.

Fig. 5 gives an insight into the structure of optical

version of such mechanism. The difference between the

rates of phase changes along flows in the XY plane

leads to a shift of the neighbor competing sections of

the wave front relative to each other (Fig. 5,a). Fig.
5,b gives a change of the phase �a;b(x; y;1.5) along

the straight lines located along dissimilar sites of the

tangential disruption layer. The location of the maximal

phase difference between these lines ��max at y � 1.7

corresponds to the border of the domination of the flow

of central perturbations.

The shift of wave-front regions between points a and

b (Fig. 5,a) is of the order of ��/k. During the next

�red shift� of the spectrum of perturbations, the phase

shift reaches the critical value �/2, which is followed

by switching together regions Sa and S�b located under

region Sb in the � interval.

The wave-front disruptions and two nucleated

dipoles are shown in Fig. 6. It is seen that the wave sheet

in Sa switches to the lower sheet S�b to the right and

left. Due to this, the vortices nearest to the coordinate

origin will possess the charge m = +1 (m = �1)
for x <0 (x >0). Such an arrangement of vortices is

natural, when the phase velocity of perturbations for

the central flow is higher than that for the lateral flows.

The opposite-sign vortices born during these tangential

velocity disruptions are alien in this sense and are pushed

out to the light beam periphery. Fig. 7 gives the beam

amplitude and phase structure for great t, i.e. on the

final stage of evolution.

Finally, we evaluate the nucleation �time� �c of

the vortices under consideration in the shadow region,

i.e. behind the half-plane screen. The inner front

width of the initial amplitude distribution (11) for the

perturbation length �? is of the order of 0.7 according

to (11). Then, according to formula (8) for the phase

velocity of perturbations, the wave field penetrates into

the shadow half-plane by the distance rmaxduring the

time �c � 4rmax �?/� = 1.4. This evaluation is in full

356 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 4



THE MECHANISMS OF FORMATION OF VORTICES

a b

Fig. 5. a � structure of the wave front in the area of the tangential velocity disruption of the perturbation velocity; b � the wave front

�a;b (x; y; 1.5) phase shift at xa = �0:3 (1) and xb = �1:2 (2) (left scale). The phase shift �� = �b ��a (bold curve) between curves

2 and 1 (right scale). Both scales are given in radians

accordance with the results of calculations. It is

important only to define the directions of the asymmetry

of perturbation flows and the time evolution of their

spectrum values �?.

5. Discussion

First, we discuss a heuristic sense of the elaborated

mechanisms in the general approach to the problem

of the nucleation of vortices in optical fields with

an arbitrarily given structure including fields with

or without initial phase singularities. It is clear that

the diffraction integral (3) allows one to obtain all

the desired results including the nucleation of optical

vortices. On the other hand, the final result did not

answer the questions about which mechanism provides

for this result and which is the totality of light beam

parameters allowing this process. The answer to these

questions is of principal importance for the nucleation of

vortices due to the accumulation of topological changes

in the amplitude-phase structure of a light beam during

the free propagation, interaction with nonlinear media,

and diffraction by some obstacle.

The vortex nucleation itself is a result of the wave

front �-disruption. We have seen it proceeds by smooth

changes of a wave-front shape. It is clear from the

topological point of view that these changes can possess

the fold or ledge in the direction of propagation. The

analysis shows that the two developed mechanisms

Fig. 6. Structure of wave-front fragments after the switching

together phase sheets and the nucleation of the dipoles of vortices.

The arrows directed above and down give the location of positive

and negative single-charge vortices

correspond just to these variants. What's more, we

believe that they exhaust all possible variants of the

optical vortex nucleation on the whole. Actually, the

phase fold occurs before vortex nucleation by the

mechanism of neutral current layer instability (see Fig.

2,a). This fold is realized due to the propagation of
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a b

Fig. 7. Phase map of a propagating beam and the amplitude distribution at � = 5

transverse perturbation waves along the initially existing

immovable background. As opposed to this case, the

phase ledge appears when the faster current of transverse

perturbation waves competes with the slower lateral

current (the instability of tangential disruption of the

current velocity). This occurs, for example, when the

light field penetrates into the shadow region due to

the diffraction on a screen (Fig. 6). Common for both

cases is the presence of a sharp asymmetry of the

initial field of the corresponding transverse excitation

waves. Its appearance depends on all actual parameters

of the considered system. So, such parameters for two

nonaxial Gaussian beams are the distance between beam

axes and the ratio of their amplitudes and waists.

It is important to note that the needed asymmetry

value can be obtained for each given system only as

a result of the computer modeling, as done in this

paper.

The developed approaches admit, in our opinion, to

forecast both the vortex nucleation for the initial light

field structure and the actual mechanism of nucleation.

From this point of view, we will analyze shortly all

the cases of vortex nucleation known up to date. Let

us start from the initially smooth light fields. It seems

that the multitude of vortices, which decorate caustics

(the so-called �diffraction catastrophe� [20, 21]), appears

due to the mechanism of neutral current layer. Vortices

appear in the region where the phase gradient of the

intersecting transverse excitation waves achieves the

threshold � value. The nonlinear diffraction catastrophe

with the asteroid-shape caustic was obtained due to the

self-defocusing of an elliptical Gaussian beam with the

aspect ratio 2:1 [34]. Two counterpropagating systems of

transverse waves were excited due to the incident beam

asymmetry. Their intersection inside the asteroid results

in the appearance of a system of interferometric intensity

minima. But the wave-front disruptions occur inside the

sharp cusps only, and a vortex quadruple nucleates.

The threshold character of this event was demonstrated

also in [35]. In our opinion, vortices nucleate by �the

instability of neutral current layer� due to the sufficient

asymmetry of the incident light beam.

The next example is the circular edge dislocation [3]

which appears in the far field of a smooth wave diffracted

by the round aperture (Airy rings) [3, 27, 33]. The birth

of such a dislocation in the common waist of two out-of-

phase Gaussian beams with unequal waist parameters

(1:10) and amplitudes (2:1) was recently investigated.

It was shown that the phase ledges are created in the

vicinity before and after the waist plane, and their

transformation into a circular wave-front disruption in

the waist plane was demonstrated. It easy to see that

such two-beam system is axially symmetric, but radially

asymmetric. As a result, the instability of the circular-

shape neutral current layer is the cause for the circular

edge dislocation birth. It could be believed that such a

dislocation is created also if the interacting beams are

in-phase. But this will happen at such a distance from

the common waist plane, where the height of the phase

ledge achieves �/2.

The same mechanism of circular edge dislocation

nucleation was realized also due to the creation of a
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nonlinear Gaussian-like lens by a Gaussian laser beam

self-action [26, 37]. When the nonlinear medium is

anisotropic, a circular edge dislocation transforms to a

quadruple of optical vortices.

The family of vortices nucleates during the

diffraction of a screened circular beam [38, 39].

The propagation and shadow regions have to be

distinguished. The optical analog of the instability of

a neutral current layer is realized in the propagation

region, and the analog of the instability of tangential

disruption of the current velocity appears in the shadow

region, where the immovable background is absent.

Few papers are devoted to nonlinear transformations

of singular beams. The mismatch of the phase condition

causes a walk-off of the born beams (see, for example [38,

39]). This leads immediately to a linear arrangement of

the born vortices up to the creation of a vortex street

[30]. As we have seen, the same two-fold vortex street

was obtained in our case (see Fig. 6). Therefore, it is the

reason to believe the nonlinear vortex street is created

due to the optical analog of the instability of tangential

disruption of the current veloccity.

To conclude, the nucleation of optical vortices is

possible both in initially smooth and singular beams. In

all the known cases, the reason for the vortex nucleation

was a sufficient asymmetry of the transverse excitation

wave.

6. Conclusions

We have studied thoroughly the problem of the

nucleation of optical vortices in the light beams with

both initially smooth wave front and pronounced

transverse inhomogeneity. The tool for such an analysis

was the developed model based on the space evolution

of the �/2-shifted u and v components of a light field.

It was shown that the elaborated model allows one to

establish the mechanisms of the nucleation of optical

vortices.

In brief, we have obtained the following results:

(i) It is shown that the formation of a wave-front

fold or ledge, i.e. the shift of neighbor wave-front pieces

along the axis of propagation, precedes the wave-front

disruption and the nucleation of phase singularities.

(ii) According to the possible forms of a phase

anomaly (a fold or ledge), the nucleation of optical

vortices can be realized due to two next mechanisms:

(a) an analog of the known �instability of a neutral

current layer� in magnetohydrodynamics, which takes

place against the immovable nonzero background, (b)
an analog of the hydrodynamic �instability of tangential

disruption of the current velocity� in continuos media

which takes place during the penetration of a light field

into the shadow area.

(iii) We have shown the possibility of the nucleation

of a system of optical vortices in the light beam

formed by two noncoaxial coherent Gaussian beams

with unequal waists via the instability mechanism for a

neutral current layer. The born vortices flow round the

initial broader beam and form a two-fold Karman vortex

street well-known in hydrodynamics. They annihilate

later, and the �second-generation� vortices nucleate.

(iv) The nucleation of optical vortices is possible in

a single light beam with the half-ring shape both via the

mechanism of neutral current layer (in the propagation

region) and the instability mechanism of transverse

disruption of the current velocity (in the shadow region).

(v) The performed analysis allows us to make

the next general conclusion: the nucleation of optical

vortices occurs in a single or combined light beam with

smooth wave front if the current of transverse excitation

waves possesses a pronounced asymmetry.

(vi) We have analyzed the known cases of the

nucleation of optical vortices during the propagation of a

light beam in free space and/or in nonlinear systems. It is

shown that all of them fit in two proposed mechanisms.
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ÌÅÕÀÍIÇÌÈ ÔÎÐÌÓÂÀÍÍß ÂÈÕÎÐIÂ Â ÎÏÒÈÖI

ÒÀ ÃIÄÐÎÄÈÍÀÌIÖI

Â.Í. Ãîðøêîâ, Ã.Ì. Õîðîøóí, Ì.Ñ. Ñîñêií

Ð å ç þ ì å

Ïîáóäîâàíî òåîðiþ âèíèêíåííÿ îïòè÷íèõ âèõîðiâ â ðàçi àñè-

ìåòðè÷íîãî çáóðåííÿ ïó÷êà ç ïî÷àòêîâî ãëàäêèì õâèëüîâèì

ôðîíòîì. Òåîðiÿ ãðóíòó¹òüñÿ íà ðîçâèíóòié äâîâèìiðíié ìàòå-

ìàòè÷íié ìîäåëi äèôðàêöi¨ ÿê äèôóçi¨ ïîïåðå÷íèõ õâèëü çáó-

ðåííÿ. Ðîçãëÿíóòî äâà ìîæëèâèõ ìåõàíiçìè âèíèêíåííÿ îïòè÷-

íèõ âèõîðiâ ó êîìáiíîâàíèõ ãàóññîâèõ ïó÷êàõ i äèôðàêöi¨ ïëîñ-

êî¨ õâèëi íà äóçi. Íàðîäæåííÿ âèõîðiâ ðîçãëÿíóòî ÿê àíàëîã äî-

áðå âiäîìîãî âèïàäêó íàðîäæåííÿ âèõîðiâ âíàñëiäîê �ìàãíiòî-

ãiäðîäèíàìi÷íî¨ íåñòàáiëüíîñòi òàíãåíöiàëüíîãî ðîçðèâó øâèä-

êîñòi ïîòîêó�. Ïðîàíàëiçîâàíî óìîâè ¨¨ âèíèêíåííÿ òà åâîëþöi¨

ó ïðîñòîði. Âñi âiäîìi âèïàäêè ëiíiéíîãî òà íåëiíiéíîãî íàðî-

äæåííÿ âèõîðiâ ìîæóòü áóòè îïèñàíi ó ðàìêàõ ðîçãëÿíóòèõ

ìåõàíiçìiâ.
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