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A complex analog of the Dirac�K�ahler equation (CDK) as a

system of 8 (but not 16) equations for 8 independent complex

components with nonzero mass m =
p
�1�2 is proposed. This

equation is written in three Bose (2.11), (2.13), (2.14) and

two Fermi (2.19), (2.24) forms. It is shown (Theorem 3) that,

irrespective of m 6= 0, the CDK equation is invariant relative

to the algebra ~A8 of purely matrix transformations, whose 8�8-
matrices are constructed from 4�4-matrices of the Pauli�G�ursey
invariance algebra A8 for the massless Dirac equation 
 @ = 0. Six

generators of the algebra ~A8 generate the internal symmetry group

for the CDK equation which can be identified with the isospin

group SU(2) of the compound-field 	 = ( 1;  2). It is shown

(Theorems 4, 5) that the CDK equation (in any form) is invariant

relative to two nonequivalent representations PS and PTSV of

the Poincare group P � L which are generated by the spinor 2LS

(3.20) and, respectively, tensor-scalar-vector LTSV (3.29) matrix

representations of the Lorentz group L. The operator connecting

the Bose and Fermi forms of the CDK equation is found: by the

action of this operator, the Fermi compound-field 	 = ( 1;  2)

is expressed through the system F = (B�� ; �; V �) of three P-

irreducible Bose fields. An equation of the CDK type is given

(without any discussion) in the 5-dimensional Minkowski space.

1. Introduction

For recent years, a great interest is paid to the equation
Dirac�K�ahler (DK) (see review [1] and references
therein) which has a long history and is called the
equation Ivanenko�Landau�K�ahler by certain authors
[2, 3]. In the language of differential forms, the DK
equation looks as

(d� Æ +m)� = 0;

� =

4X
0

'�1:::�pdx
�1� � � ��dx�p ; (1.1)

where the components '�1:::�p are skew-symmetric
tensors of rank p. As shown in many works (e.g., [3�
5]), it splits into four Dirac equations

(i
�@� �m) (b) = 0;  (b) = ( a

(b)
); a; b = 1; 4; (1.2)

with the irreducible Dirac matrices 
� (i.e., it can be
written as

(i��
(16)

@� �m)	 = 0;

	 = column( a
(1); : : : ;  

a
(4))

4
a=1; (1.3)

where ��
(16)

are the corresponding reducible Dirac 16�
16-matrices).

The interaction of the multicomponent Dirac�
K�ahler field with the electromagnetic field of potentials
A� is introduced in the standard way (@� ! @�� ieA�),
like the transition to quasirelativistic approximations.
This stimulated the application of the DK equation
to specific problems in certain field and quantum-
mechanical models (e.g., [6�7]). In particular, work
[6] indicates the advantages of the use of the DK
equation in the problems, to which the Duffin �
Kemmer � Petiau equation or Proca equation was
earlier applied. The DK equation was widely used (e.g.,
[8�9]) for the construction of the theory of fermions
on lattices. In particular, the representations of the
corresponding symmetry groups of Fermi fields on
lattices were constructed on the basis of representations
of the symmetry groups of the DK equation [8] and were
used in quantum chromodynamics.

In addition, we mention various generalizations of
the DK equation with the purpose of a significant
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increase in the number of components of the field � � 	
[10�11] [i.e. in the dimension of matrices �� in (1.2)] and
the consideration of both the DK equations in spaces
of higher dimensionalities [3] and their relation to the
DK equation in the form (1.1)=(1.3). Some works (e.g.,
[2,14]) consider the problems of the general relativity
theory with the use of equations of the DK type. While
performing the group-based and other analyses of the
DK equation and its modifications, the various general
theoretical and conceptual questions were discussed,
including a distinctive revision [13] of the conception of
the spin of a Dirac fermion.

In the present work, we give attention to the
expediency to consider an equation ½more fundamental�
in a certain sense than the DK equation (1.1)=(1.3). By
taking the simplest version of the DK equation where
the tensors '�1:::�p in Eq. (B.1) are real (real-valued)
functions in the 4-dimensional Minkowski space M(1; 3)
(i.e., when the DK equation (B.1) is a system of 16
differential first-order equations for 16 real functions in
M(1; 3)), we will construct, with the proper justification,
a simpler 8-component equation of the DK type for 8
complex functions (see the CDK equation (2.11) below
and its different forms). This equation is self-sufficient
in the sense that its complete analysis (in particular,
the analysis of the symmetries of this equation and
their consequences, its solutions in various quantum-
mechanical bases of a certain physical content, the types
of quantization, and other interrelated aspects) does not
require the embedding of the CDK equation into more
general schemes (e.g., into equations with the greater
number of components or into the models of equations
with higher spatial dimensionalities). We do not see any
obstacles in the practical use of this equation for many
problems, in which the DK equation (more complicated
and �less fundamental�) was used. Therefore, it is actual
to carry out the complete analysis of the CDK equation
(2.11) on the modern axiomatic level and with the same
detailing, as this made for the ordinary Dirac equation,
for example in [14] (but such an analysis cannot be
executed in the scope of the present paper).

The main purpose of this paper is to analyze, in the
first turn, the general theoretical conceptual questions.
To avoid the indefiniteness and ambiguities, we will
carry out, in Section 3, the detailed, transparent, and
clear group analysis (in fact, on the level of the axiomatic
approach to the theory of fields and particles) of the
CDK equation by the Bargman�Wigner method which,
in particular, adequately identifies the mass and spin
of the field (and of its components) satisfying some
equation (a system of equations), being invariant relative

to a certain representation of the Poincare group. In
Section 2, we present various forms of the CDK equation
which illustrate the propositions of the proved theorems
on the groups of symmetries of the CDK equation. It
is most interesting that, despite m 6= 0, the operators
of essentially different Poincare-symmetries of the CDK
equation (Bose and Fermi ones), as well as those of its
internal symmetry (not connected with transformations
in the Minkowski space), are expressed in terms of
the corresponding elements of the symmetries of the
massless Dirac equation (a short systemized description
of its symmetries is given in Section 2.2 together with
a new result on the connection of the standard spin
matrices with the matrices of the internal symmetry).

2. Definition of an 8-component Equation and

Its Different Forms

2.1. Main definitions and clarifying

considerations

We will use the real Cartesian (contravariant)
coordinates x�; � = 0; 1; 2; 3 � 0; 3; x0 = ct, for 4-vectors
x � (x�) 2 M(1; 3); the metric tensor g�� = g�� ; g =
diag(1;�1;�1;�1); the Levi�Civita tensors "���� and
"jkl with norms "0123 = "123 = +1; the summation rule
over repeated Greek (upper and lower ones) and Latin
indices; the d'Alembert operator � � @�@� = @20 ��.

For real skew-symmetric tensors '�1:::�4 of a proper
rank and a variance, it is convenient to write Eq. (1.1) in
the explicitly covariant form as the system of equations8<
:

@�B
�� + @�'+m2A� = 0; @�A

� = ';

@�"B
�� + @� ~'+m2 ~A� = 0; @� ~A� = ~';

B�� + @�A� � @�A� � "����@
� ~A� = 0

(2.1)

for a scalar ', pseudoscalar ~', vector A�, pseudovector
~A�, antisymmetric tensor

B�� = �B��; "B�� =
1

2
"����B�� ;

"B01 = B23; "B12 = �B01; etc:; (2.2)

i.e., for the polycovariant (compound-field)

F = ('; ~';A�; ~A�; B��) (2.3)

as a collection of the indicated independent tensors
and pseudotensors. That is, we have the system of 16
equations (which are not repeated) for 16 independent
components of the tensors in collection (2.3). This
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system is invariant relative to a representation of
the universal covering P of the proper orthochronous
Poincare group P"+ = T(4)�)L"+ generated by the
representation

(0; 0)� (0; 0)� (0; 1)� (1; 0)� ( 1
2
; 1
2
)� ( 1

2
; 1
2
) (2.4)

of the universal covering L = SL(2;C) of the proper

orthochronous Lorentz group L"+ � O(1; 3).

It becomes clear from (2.4) (see also [1]) that the
set of independent (basic) solutions of the system of
equations (2.1) for the compound-field F (2.3) contains
the spin states which are repeated twice for bosons
described by the fields indicated in (2.3). Here, we are
faced with an analogy with the Maxwell equations

@�B
�� = j�; @�"B

�� = 0; @� � @/@x� ; (2.5)

for the tensor of intensities

B � (B��) : Boj = �Bjo = Ej ; Bjl = "jlnHn; (2.6)

In terms of the vectors of electric ~E = (Ej) and magnetic
~H = (Hj) intensities (in the Gauss corrected system of
units), these equations take the form

�
@0 ~E = rot ~H �~j; div ~E = �;

@0 ~H = �rot ~E; (~j; �) � (j�):
(2.5a)

Indeed, Eq. (2.5)�(2.5a) is invariant [at j�(x) �
0] relative to the P-representation generated by the
reducible representation (0; 1) � (1; 0) of the group L.
However, in terms of the complex tensor

B = B � i"B � (B��) : B
oj = E

j � Ej � iHj ; (2.7)

which is self-dual in the sense that

" B�� � 1
2
"����B�� = iB�� ,

, " ~E � " ~E � i"~H = i~E; (2.8)

the Maxwell equations (2.5) have also an explicitly
covariant form

@�B
�� = j�; (2.9)

In terms of a 3-component complex function ~E � (Ej),
they look as

@0~E = irot~E+~j; div~E = �: (2.9a)

Moreover, the complex field B � (B��) or ~E =
~E � i ~H (which was used, in fact, by Oppenheimer) is
an irreducible P-covariant: it is transformed according
to an irreducible P-representation generated by the
irreducible (0,1)-representation of the group L. (This
P-representation [at j = (�;~j) � 0] corresponds to
the invariance group of Eqs. (2.9)=(2.9a)). Therefore,
just the complex field B or E; rather than B or
( ~E; ~H); should be considered as a photon field in

terms of the intensities. In this sense, Eq. (2.9)=(2.9a)
for the complex electromagnetic field (2.7) is more
fundamental, than the historically primary Maxwell
equations (2.5a)=(2.5).

2.2 Bose forms of the CDK equation

In view of the mentioned analogy, we define the
components of a complex compound-field in terms of the
components of compound-field F (2.3) as

F � (�; V �;B��) : � = '� i ~';

V � = A� � i ~A�; B
�� = B�� � i"B�� : (2.10)

The system of equations (2.1) yields the following system
of equations in the explicitly covariant form for the
complex components of compound-field F (2.10):�
@�B

�� + @��+m2V � = 0; @�V
� = �;

B
�� + @�V � � @�V � � i"��o�@�V� = 0:

(2.11)

This system of equations can be written without
repeated equations, i.e., in the form of the system of 8
equations for 8 independent complex components of the
irreducible P-covariants

F � (~E = (Ej); �; V = (~V ; V 0)); (2.12)

namely:8>>><
>>>:

@0~E� irot~E+ grad��m2~V = 0;

@0~V + irot~V + gradV �o + ~E = 0;

@0�+ div~E+m2V 0 = 0;

@0V
0 + div~V + � = 0:

(2.13)

It is useful to write the last system of equations
in a matrix form for the column composed from the
corresponding components of the compound-field F

(2.12) as

�@E�m2V = 0
�
�@V + E = 0

)
, (2.14)
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"
�@ �m2

I4
�
�@

#
F = 0; F �

�
E

V

�
; (2.14a)

where I4 is the unit 4 � 4-matrix,
�
� � C�C; C is the

operator of complex conjugation, CF � F
�,

�@ � ��@� =

2
664

@0 i@3 �i@2 @1
�i@3 @0 i@1 @2
i@2 �i@1 @0 @3
�@1 �@2 �@3 �@0

3
775; (2.15)

E =

�
~E

�

�
�

2
664
E
1

E
2

E
3

�

3
775; V = (V �) �

2
664
V 1

V 2

V 3

V 0

3
775 (2.16)

(the explicit form of the matrices �� and
�

�� becomes
clear in view of the form (2.15) of the operator ��@�

and the definition
�
� � C�C). The 8-component

equation (2.14)=(2.14à) or Eq. (2.11)=(2.13) in the
componentwise form will be called further the complex

equation Dirac�K�ahler (CDK) in the Bose form.

2.3. Fermi form of the CDK equation

In terms of the compound-field F (2.12), we define two
4-component fields �r = (��r )

4
�=1 (r = 1; 2) of the same

dimensionality as

�
j
1 = E

j ; �41 = �;

�
j
2 = �2V

j ; �42 = �2V
0; (2.17)

where �2 6= 0 is a real positive constant with the
dimension of mass (in units ~ = c = 1). By using the
matrices �� given by equalities (2.15), we define five
matrices ~
 ~�; ~� = 0; 4, as

~
� = C��; ~
4 = �0�1
�

�2�3: (2.18)

In these notations, Eqs. (2.14)=(2.14à) (after the
multiplication of the first equation in (2.14) by the
operator C) take the form

~
@�1 � �1�2 = 0;
~
@�2 + �2�1 = 0;

�
, (~�@ �M)~� = 0; (2.19)

where

�1 � m2
Æ
�2; ~
@ � ~
�@�; ~�@ � ~��@�;

~� �
�
�1
�2

�
; M �

�
0 �1
��2 0

�
; ~�� �

�
~
� 0
0 ~
�

�
:

Using (2.15) and (2.18), we get the matrices ~
 ~� in the
explicit form as

~
0 =

��������
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

��������
C; ~
1 =

��������
0 0 0 1
0 0 �i 0
0 �i 0 0
�1 0 0 0

��������
C;

~
2 =

��������
0 0 i 0
0 0 0 1
�i 0 0 0
0 �1 0 0

��������
C; ~
3 =

��������
0 �i 0 0
i 0 0 0
0 0 0 1
0 0 �1 0

��������
C;

~
4 � ~
0123 = i:

(2.20)

These matrices were introduced in [15,16] and used
upon the study of the interrelations between the massless
Dirac equation and the system of equations for coupled
electromagnetic and scalar fields. They satisfy the
standard Clifford�Dirac (CD) commutation relations


�
� + 
�
� = 2g�� : (2.21)

Under the action of the nonsingular operator [15]

W =

��������
0 0 C+ C�
C+ iC+ 0 0
0 0 C� C+

C� iC� 0 0

��������
; C� � 1

2
(C � 1);

(2.22)

matrices ~
� (2.20) are transformed into the Dirac
matrices 
� = W ~
�W�1 in the standard Pauli�Dirac
(PD) representation, and the transformation

E!  1 =WE; V !  2 = �2WV (2.23)

transforms Eq. (2.14)=(2.14à) or (2.19) into the
equation


@ 1 � �1 2 = 0

@ 2 + �2 1 = 0

�
, (�@ �M)	 = 0; (2.24)

where

	 �
�
 1
 2

�
; �@ � ��@�; �� �

���� 
� 0
0 
�

����;
(2.24a)
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and 
� are the Dirac matrices in the PD-representation.
Based on the clear motives, we call Eq. (2.24), as distinct
from Eq. (2.14à) [and its forms (2.14), (2.13), and (2.11)],
as the CDK equation in the (standard) Fermi form and
call matrices ~
� (2.20) as the Dirac matrices in the Bose
representation (briefly, the Â-representation). The CDK
equations in any form yield the equalities

(�+m2)F = 0; (�+m2) 1;2 = 0; (2.25)

� � @�@�; m2 � �1�2 > 0:

That is, each from the P-covariants which belongs to the
compound-field F or 	 is a field with mass

m =
p
�1�2 > 0:

for any values of the parameters �1 and �2.
R e m a r k 1. Upon the derivation of equalities

(2.25), the different signs of �1; �2 in Eqs. (2.24) play

the decisive role: at the same signs of �1; �2 in Eqs.
(2.24), the fields  1;  2 would satisfy the equations
(� �m2) 1;2 = 0; i.e. would be fields with imaginary
mass.

T h e o r e m 1. The nonunitary nonsingular operator

V � 1p
m

����
p
�2 0

0
p
�1

���� (2.26)

equalizes the mass parameters �1; �2 in Eq. (2.24), and

the nonunitary nonsingular operator

_

V = UV ; U � 1p
2

���� i 1
�i 1

���� (2.27)

splits Eq. (2.24) into a subsystem of two independent

Dirac equations

(i
 @ �m) � = 0: (2.28)

P r o o f of this theorem is carried out by the direct
calculation of the corresponding transformed quantities,
qed.

The CDK equation under study differs from the
ordinary DK equation (2.2) (or from its Fermi form)
at several essential points. First, as was noted in
Introduction, the ordinary DK equation in the Fermi
form is split [4,5] into four Dirac equations (1.2), whereas
the CDK equation (2.2) is split (moreover, by the
transformation nonunitary at �1 6= �2) only into two
Dirac equations (2.28). This means that Eq. (2.24)
is not equivalent to the system of two independent
equations (2.28) at �1 6= �2. In this case, the different

mass parameters �1; �2 define the ½relative share� of
the 4-component quantities  1;  2 in the 8-component
column 	, which can be significant in the presence of an
interaction of the field 	 with other fields.

There is some analogy with the �large� and �small�
components inthe ordinary stationary Dirac equation
in the presence of the interaction with an external
field. There is also a certain analogy of the factors
�1; �2 with the dielectric permittivity and magnetic
permeability for the electromagnetic field ( ~E; ~H) in
media, at the expense of which the magnetic component
� ~H is small as compared to the electric one " ~E of the
electromagnetic field in the medium.

Finally, the CDK equation contains 8, rather than
16 components. At this point, the 8-component CDK
equation (2.11)�(2.24) is more fundamental, than the
16-component DK equation (2.1) �(1.3), as the 4-
component Dirac equation (i
�@� � m) = 0 with
the irreducible matrices 
� is more fundamental, than
the equation derived from the last by the substitution
 = Re + iIm with the following transition to a 8-
component equation for the system of fields (Re ; Im ).
The symmetry properties of the CDK equation with
arbitrary parameters �1; �2 and m =

p
�1�2 are

expressed through the constructive elements of the
symmetries of the Dirac massless equation which are
given below in Section 3.2.

3. Invariance Groups of the CDK Equation

3.1.

First, we present the necessary information about the
infinitesimal representations of the groups P � L and L.

The local P-transformations of any N -component
covariant A � (An); n = 1; N; of the group P have the

form

A(x)! A
0(x) = F (!)A(��1(x � a))

i
=

i
=(IN � a�@� � 1

2
!��j(A)�� )A(x); (3.1)

where a � (a� and !�� = �!�� are real parameters
of the group P with the commonly known physical
content, the symbol ½ i � above the sign of equality
means ½infinitesimally� (i.e., in a vicinity of the unity
of the group P ),

F (!)
i
=IN � 1

2
!��s(A)�� (3.2)
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is the N -dimensional matrix representation of the group
L, IN is the unit N�N -matrix,

�
i
=I4 � 1

2
!��s(V)�� ; (3.3)

and the matrices s
(V)
�� and s

(A)
�� satisfy the commutation

relations

[s�� ; s�� ] = �g(��s��) �

� �g��s�� � g��s�� � g��s�� � g��s�� : (3.4)

Moreover, the matrices s
(V)
�� generate a vector ( 1

2
; 1
2
)-

representation of the group L, and the operators

@� = @/@x�; j(A)�� = m�� + s(A)��

m�� � x�@� � x�@� (3.5)

satisfy the commutation relations for the P-generators
in the covariant form

[@�; @�] = 0;

[@�; j�� ] = g��@� � g��@�; (3.6a)

[j�� ; j�� ] = �g��j�� � g��j���

�g��j�� � g��j�� : (3.6b)

The Casimir operator ŵ, being the square of the
Pauli�Lubanski vector w�, is defined here as

ŵ � w�w
�; w� � 1

2
"����j(A)�� @�: (3.7)

For the sake of definiteness, we start from form (2.24)
of the CDK equation (i.e., in the PD-representation

of the matrices 
�) and write the formulas for all

the necessary matrices, namely the Lorentz spins s
(A)
�� ,

with the necessary comments. First, we recall that the
relativistic group of invariance of the Dirac massless
equation (like the equation with m 6= 0) is defined by
the spinor representation PS of the group P according
to formulas (3.1), (3.2), and (3.5), in which the matrices

s
(A)
�� with A = S look as

s(S)�� = 1
2
[
�; 
�] (3.8)

and generate the reducilble spinor representation

L
S =

�
0; 1

2

�
�
�
1
2
; 0
�

(3.9)

of the group L by formula (3.2).

3.2. On the additional symmetry of the dirac

massless equation

The massless equation


�@� = 0 (3.10)

has, besides three Poincare-symmetries (see [16]), an
additional symmetry, being invariant (see [17]) relative
to the Pauli � G�ursey algebra A8, whose generators can
be written conveniently in the form

ŝ�� = �ŝ�� : ŝ01 = � i
2

2C;

ŝ02 =
i
2

2C; ŝ03 = � i

2

4; ŝjk = "jkl
4ŝ0l; (3.11)


4 � 
0
1
2
3 = i

�
0 1
1 0

�
: (3.11a)

These matrices satisfy the equalities


4 � 
@ = �
@ � 
4; ŝ0k � 
@ = �
@ � ŝ0k;

ŝjk � 
@ = 
@ � ŝjk : (3.12)

Further, as was shown by Theorem 1 in [16], the
matrices ŝ�� (3.11) satisfy the commutation relations
(3.4) and generate the same L-representation LS (3.9)

as the matrices s
(S)
�� (3.8). However, the standard spin

matrices (3.8), as distinct from matrices (3.11), are not
the invariance transformations of Eq. (3.10). They are

only the operators j�� = m�� + s
(S)
�� of the total Lorentz

moment. In this connection, the following theorem is of
interest.

T h e o r e m 2. Matrices ŝ�� (3.11) and s
(S)
�� (3.8)

are connected by the operator Ĉ :

ŝ�� = Ĉs(S)�� Ĉ = 1
4
[
̂�; 
̂�];


̂� � Ĉ
�Ĉ; Ĉ2 = I ; (3.13)

the explicit forms of the operator Ĉ and matrices 
̂� in

the PD-representation of the matrices 
� (where 
�� �

�
�) are as follows:

Ĉ =

2
664
C 0 0 0
0 1 0 0
0 0 C 0
0 0 0 �1

3
775 ; 
̂0 = 
0;
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̂1 = �i
02C; 
̂2 = 
02C; 
̂3 = i
04: (3.14)

In the real CD algebra, the matrix Ĉ is unitary, and

the matrices 
̂� from (3.14) satisfy the standard CD

relations (2.21):
P r o o f of this theorem is performed by the direct

calculations of the corresponding equalities and relations
with the use of the explicit form of the matrices 
� in
the PD-representation, qed.

Thus, the matrix Ĉ in (3.14) has the following sense:

it transforms the operator of the L-spin s
(S)
�� (3.8) [this

operator by itself is not an invariance transformation
for Eq. (3.10)] into the operator of the internal L-
spin ŝ�� (3.11) which is already, due to equalities
(3.12), the invariance transformation for the Dirac
massless equation (3.10). In this case, these invariance
transformations are, firstly, of a purely matrix form
(though they include the operator C of complex
conjugation) and are not connected with transformations
of the argument x of the spinor  (therefore, ŝ�� (3.11)
are called ½internal� L-spin). Secondly, most interesting
is the fact that the matrices ŝ�� and 
̂� commute with

all matrices s
(S)
�� and 
�:h

ŝ�� ; s
(S)
��

i
= 0 = [
̂�; 
�]: (3.15)

This presents the possibility to construct the generators
of local Bose P-symmetries of the Dirac massless

equation (3.10) with the use of L-ñïiíiâ ŝ�� and s
(S)
�� .

T h e o r e m [5]. The matrices s
(TS)
�� and s

(V)
�� defined

as

s
(TS)
0k � 1

2
(s
(S)
0k � ŝ0k) = �s(TS)k0 ;

s
(TS)
jk � 1

2
(s
(S)
jk � ŝjk); (3.16a)

s(V)�� � 1
2
(s(S)�� + ŝ��) (3.16b)

satisfy relations (3.4) and generate the tensor-scalar

and, respectively, vector representations of the group L:

s(TS)�� 2 LTS � (0; 1)� (0; 0); (3.17a)

s(V)�� 2 LV � ( 1
2
; 1
2
): (3.17b)

Using this fact, it was shown (see Theorem 2 in [16])
that Eq. (3.10) is invariant not only relative to the Fermi
(standard spinor) P-representation, whose generators

are set by the Lie operators (3.5) with s
(A)
�� = s

(S)
�� ,

but also relative to two Bose P-representations, whose

generators have the form (3.5) with s
(A)
�� = s

(TS)
�� ; s

(V)
�� .

The presented information about the Dirac massless
equation (3.10) makes the analysis of symmetries of the
CDK equation with arbitrary mass parameters �1; �2
to be transparent.

3.3 Matrix-involved and two relativistic

symmetries of the CDK equation

Despite the fact that the 8-component field 	 (together
with its components  1;  2) is a field with nonzero mass
m =

p
�1�2; the CDK equation turns out to be invariant

relative to purely matrix transformations of the Pauli�
G�ursey type.

T h e o r e m 3. Seven independent 8�8-matrices

~s�� = �~s�� : ~s0k �
�
�ŝok 0
0 ŝok

�
;

~sjk �
�
ŝjk 0
0 ŝjk

�
; ~� �

�
�
4 0
0 
4

�
;

(3.18)

where ŝ�� are set by formulas (3.11), together with the

unit matrix are the generators of the purely matrix

algebra ~A8 of invariance of the CDK equation (2.24)

at arbitrary values of the mass parameters �1; �2.

The matrices ~s�� in (3.18) and the matrices

^

s�� = 1
4
[��;�� ];�� = g���

� (3.19)

(�� are reducible matrices in (2.24a)) generate the same

representation

~LS = 2LS �

� (0; 1
2
)� ( 1

2
; 0)� (0; 1

2
)� ( 1

2
; 0) (3.20)

of the group L. Moreover, only the representation ~LS

generated by the matriñes ~s�� in (3.18), as distinct from

the representation 2LS generated by the matriñes
^

s��,

is the purely matrix group of invariance of the CDK

equation (2.24) (the internal symmetry group of the
CDK equation which is not related to transformations
in the space-time M(1; 3)).

P r o o f. Using the equalities

~� �M = �M � ~�; ~sok �M = �M � ~sok;

~sjk �M = �M � ~sjk; (3.21)

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 4 323



I.Yu. KRIVSKY

which follow from (3.12) and definitions (3.18), we verify
that, at arbitrary �1; �2, the equalities

~� �D = �D � ~�; ~sok �D = �D � ~sok;

~sjk �D = �D � ~sjk; D � �@ �M (3.22)

are valid. This testifies to the validity of the assertion of
the first item of Theorem 3. The validity of the assertion
of the second item of this theorem follows from Theorem
1 in [16], definitions (3.18), and the assertion of the first
item, qed.

We now pass to the consideration of the Poincare-
symmetry of the CDK equation. The reducible matrices
�� in (2.24a) together with the matrix

�4 � �0�1�2�3 =

�

4 0
0 
4

�
(2.24b)

satisfy the CD relations (2.21). Therefore, the 8 � 8-
matrices

^

s �̂�̂ = �^

s �̂�̂ :
^

s ~�~� = 1
4
[�~�;�~�];

^

s ~�5 =
1
2
�~� = �^

s5~�;

~�; ~� = 0; 4; �̂; �̂ = 0; 5 (3.23)

satisfy relations (3.4) with the change of �; �; �; � =
0; 3 by �̂; �̂; �̂; �̂ = 0; 5: This means that matrices
(3.23) are the generators of a reducible representation
of the covering L(1; 5) of the proper orthochronous
subgroup of the group O(1; 5) of pseudoorthogonal
transformations in the 6-dimensional Minkowski space
M(1; 5). Then, because all matrices (3.23) have the
block-diagonal form, they commute with the mass
operator M with arbitrary �1;2:�
^

s �
�
s 0
0 s

�
; M �

�
0 �1
��2 0

��
= 0: (3.24)

This means that M is the Casimir operator of a
representation of the group L(1;5) generated by the
generators

^

s �̂�̂ (3.23), and Eq. (2.24) can be written as

(2i
^

s�5@
� �M)	(x) = 0; x 2 R4: (3.25)

Then, because the operator D = �@ � M in Eq.
(2.24)=(3.25) commutes with operators (3.5), in which

s
(A)
�� =

^

s�� (3.19), Eq. (2.24) is invariant relative to
the P-representation P

S which is defined by the L-
representation 2LS (3.20).

For the representation PS, the Casimir operator (3.7)
looks as

ŵ = 1
2
( 1
2
+ 1)I8�: (3.26)

Thus, we have proved

T h e o r e m 4. The CDK equation (2.24)=(3.25)

with arbitrary mass parameters �1; �2 is the example

of an equation of the Bhahba type [18] (in the sense

discussed in [19]). It is a P-invariant equation for the

compound-field 	 as a system of two coupled (at �1 6=
�2 6= 0) 4-component Fermi fields  1;  2with the same

mass m =
p
�1�2 and spin s = 1

2
. Transformations

of the invariance group P
S which is defined by (3.5)

with s
(A)
�� =

^

s�� (3.19) do not mix the components of

different P-covariants  1;  2. That is, they remain the

notion of compound-field 	 as a system of two coupled

Fermi fields  1;  2 to be invariant.

R e m a r k 2 (on the CDK equation in a 5-
dimensional Minkowski space). In view of work [20]
and the above-performed analysis, we conclude that the
CDK equation in a 5-dimensional space, i.e. the P(1; 4)-
invariant CDK equation, looks as

(�~�@~� �M)	(~x) � (��@� + �4@4 �M)	(x; x4) = 0;

~x � (x~�) 2 M(1; 4); ~� = 0; 4: (3.27)

The generators of the relevant representation of the
group P(1; 4), relative to which Eq. (3.27) is invariant,
are given by (3.5) with �; � = 0; 3 ! ~�; ~� = 0; 4

and with s
(A)
�� ! ^

s ~�~� (3.19). Equation (3.27) is an
8-component equation of the Bhabha type in a 5-
dimensional Minkowski space and can be used in the
field theory in a 5-dimensional space.

We now present the assertion about the Bose P-
symmetry of the CDK equation.

T h e o r e m 5. The CDK equation(2.24) is invariant
also relative to the P-representation PTSV which is set

by the generators (3.5) with A = TSV, in which the spin

8� 8-matrices

s(TSV)�� � 1
2
(
^

s�� + ~s��) =

"
s
(TS)
�� 0

0 s
(V)
��

#
(3.28)

set a reducible Bose, namely, tensor-scalar-vector

representation

L
TSV = (0; 1)� (0; 0)� ( 1

2
; 1
2
) (3.29)

of the Lorentz group L. Transformations of the

invariance group P
TSV for Eq. (2.24)=(2.19)

�(2.14)=(2.13)=(2.11) do not mix components of

different P-covariants ~E or B
�� , �, and V �, i.e.
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remain the notion of compound-field F as a system

of three coupled Bose fields with the indicated spins to

be invariant.

P r o o f. With regard for the mentioned theorem
in [16] and the emplicit block-diagonal form of 8 � 8-
matrices (3.28), in which s(TS) and s(V) are given
by (3.16 à,b), it is clear that matrices (3.28) satisfy
relations (3.4) and generate just the reducible Bose L-
representation (3.29). In this case, the terms

^

s��(3.19)
and ~s�� (3.18) in (3.28) with arbitrary �; � = 0; 3
commute one with another. Therefore, operators (3.5)
with A = TSV satisfy relations (3.6 à,b) for the P-
generators and thus generate the representation PTSV

of this group. Finally, the direct calculations show that
operators (3.5) with A = TSV are the invariance
transformations of the CDK equation (2.24). Thus, the
Bose representation PTSV corresponds to the invariance
group of this equation.

It is clear that the assertion about the representations

P

^

F and P
TSV corresponding to the groups of P-

invariance of the CDK equation is true for it in
all its forms. Let us clarify the assertion about
the Bose invariance of the CDK equation. Because
the transformation W (2.22), (2.23) does not change
differential operators, we give the corresponding spin
matrices, being the generators of the representation

P
TSV, in their Bose representation

B
s �W�1sW as

B
s
(TSV)

�� =

"
B
s
(TS)

�� 0

0
B
s
(V)

��

#
;

B
s
(TS)

�� =

"
B
s
(T)

�� 0

0
B
s
(S)

��

#
;

B
s
(S)

�� � 0;

(3.30)

where 3�3-matrices
B
s
(T )

�� are

B
s
(T)

01 =

2
4 0 0 0

0 0 �i
0 i 0

3
5; B

s
(T)

02 =

2
4 0 0 i

0 0 0
�i 0 0

3
5;

B
s
(T)

03 =

2
4 0 �i 0
i 0 0
0 0 0

3
5; B

s
(T)

jk = i"jkl
B
s
(T)

0l ;

(3.31)

and the matrix elements of the 4.�4-matrices
B
s
(V)

�� are
set as�
B
s
(V)

�� = s(V)��

��
�
= Æ�� g�� � Æ��g�� (3.32)

That is, they coincide with the matrices s
(V)
�� in (3.3). As

clearly seen, the matrices
B
s
(T)

�� ;
B
s
(S)

�� � 0 and
B
s
(V)

�� are

the generators of (0,1), (0,0), and ( 1
2
; 1
2
)-representations

of the group L. That is, the fields, being P-covariants
in Eq. (2.14), are the complex irreducible tensor ~E

or B�� , scalar �, and vector V � fields). It is clear
that the invariance group PTSV of the CDK equation
(2.14)=(2.13)=(2.11) does not mix the components of

different P-covariants ~E, �, V , qed.

The fact that the 3-component complex field ~E is
the irreducible (namely (0,1)-) P-covariant follows from
the explicit form of the Casimir operator (3.7) with

s
(A)
�� = s

(T)
�� (3.31):

ŵ = 2�I3: (3.33)

We also note that

B

C �W�1ĈW = C; (3.34)

That is, the matrix Ĉ (3.14) in the Â-representation is
simply the operator C of complex conjugation.

4. Conclusions

The analyzed 8-component CDK equation (a complex
analog of the 16-component DK equation) is written
in its various Bose (2.11)=(2.13)=(2.14) and Fermi
(2.19)=(2.24) forms which clarify the physical content of
the equation. The presented group analysis of the CDK
equation performed by the Bargman�Wigner method
(Theorems 4, 5) yields that this equation in any form is
invariant relative to two nonequivalent representations
of the Poincare group P: the Fermi representation PS

and the Bose one PTSV. Therefore, it describes both a
system of two Fermi-fields  1;2 (a doublet of particles

with mass m =
p
�1�2 and with spin s = 1

2
) and a

system of three P-irreducible Bose-fields B
�� � ~E, �,

and V � (particles with mass m and spins s = 0; 1).
Moreover, the spin states of these fields (particles) are
not doubled (as distinct from the case of the DK 16-
component equation).

Then, we have found the algebra ~A8 of the internal

symmetry of the CDK equation with any m which is
an analog of the Pauli�G�ursey algebra A8 of invariance
of the Dirac massless equation 
@ = 0. The special
representation ~LS (3.12) of the Lorentz group L, which is
created by the generators f~s��g � ~A8 with ~s��(3.18), is
connected with the standard spinor representation 2LS

(3.20) by the operator ~C = diag(Ĉ; Ĉ) with Ĉ (3.14).
However, it is not connected with transformations
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in the space-time Ì(1,3) and can be identify with
a representation of the group SU(2) as the internal
(isospin) group for the doublet 	 = ( 1;  2).

The next nearest tasks are to find the consequences of
the found symmetries, in particular, the main dynamical
variables (P�; J��)

B;F as the functionals of the states
of Bose or Fermi compound-fields, and to carry out
the quantization of two types for the fields which are
described by the CDK equation. Omitting the practical
applications of the CDK equation, we point out the
use of the results derived here. First, they can create
a specific group basis of the theory of supersymmetric
fields. Secondly, the specific limit m2 ! 0 of the
Bose version of the CDK equation can be used for the
construction of a variant of electrodynamics in terms of
only the tensor of intensities of the electromagnetic field
without the use of the potential A = (A�) as the primary
object of an electromagnetic field. Such a variant can
be useful in the quasirelativistic approximations to the
specific many-particle problems of atomic and nuclear
physics.

The work is performed with the support of the
State Fund for Fundamental Studies of Ukraine, grant
NF7/458-2001.
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ÑÈÌÅÒÐI� 8-ÊÎÌÏÎÍÅÍÒÍÎÃÎ ÐIÂÍßÍÍß ÒÈÏÓ

ÄIÐÀÊÀ�ÊÅÉËÅÐÀ

I.Þ. Êðèâñüêèé

Ð å ç þ ì å

Çàïðîïîíîâàíî êîìïëåêñíèé àíàëîã ðiâíÿííÿ Äiðàêà�Êåéëåðà

� ðiâíÿííÿ ÊÄÊ � ÿê ñèñòåìó 8 (à íå 16) ðiâíÿíü äëÿ 8

íåçàëåæíèõ êîìïëåêñíèõ êîìïîíåíò ç âiäìiííîþ âiä íóëÿ ìà-

ñîþ m =
p
�1�2. Öå ðiâíÿííÿ çàïèñàíî ó òðüîõ áîçîííèõ

(2.11), (2.13), (2.14) i äâîõ ôåðìiîííèõ (2.19), (2.24) ôîðìàõ.

Ïîêàçàíî (òåîðåìà 3), ùî, íåçâàæàþ÷è íà m 6= 0, ðiâíÿííÿ

ÊÄÊ iíâàðiàíòíå âiäíîñíî àëãåáðè ~A8 ÷èñòî ìàòðè÷íèõ ïåðå-

òâîðåíü, 8�8-ìàòðèöi ÿêèõ áóäóþòüñÿ ç 4�4-ìàòðèöü àëãåáðè
A8 Ïàóëi�Ãþðøi iíâàðiàíòíîñòi áåçìàñîâîãî ðiâíÿííÿ Äiðàêà


 @ = 0. Øiñòü ãåíåðàòîðiâ àëãåáðè ~A8 ïîðîäæóþòü ãðóïó

âíóòðiøíüî¨ ñèìåòði¨ ðiâíÿííÿ ÊÄÊ, ÿêó ìîæíà îòîòîæíèòè

ç içîñïiíîâîþ ãðóïîþ SU(2) êîìïàóíä-ïîëÿ 	 = ( 1;  2). Ïî-

êàçàíî (òåîðåìè 4, 5), ùî ðiâíÿííÿ ÊÄÊ (ó áóäü-ÿêié ôîðìi)

iíâàðiàíòíå âiäíîñíî äâîõ íååêâiâàëåíòíèõ çîáðàæåíü PS i

PTSV ãðóïè Ïóàíêàðå P � L, ïîðîäæóâàíèõ ñïiíîðíèì 2LS

(3.20) i âiäïîâiäíî òåíçîðíî-ñêàëÿðíî-âåêòîðíèì LTSV (3.29)

ìàòðè÷íèìè çîáðàæåííÿìè ãðóïè Ëîðåíöà L. Çíàéäåíî îïåðà-

òîð, ÿêèé çâ'ÿçó¹ áîçîííi é ôåðìiîííi ôîðìè ðiâíÿííÿ ÊÄÊ:

çà äîïîìîãîþ öüîãî îïåðàòîðà ôåðìiîííå êîìïàóíä-ïîëå 	 =

( 1;  2) âèðàæà¹òüñÿ ÷åðåç ñèñòåìó F = (B�� ; �; V �) òðüîõ P-

íåçâiäíèõ áîçîííèõ ïîëiâ. Âèïèñàíî òàêîæ (áåç îáãîâîðåííÿ)

ðiâíÿííÿ òèïó ÊÄÊ ó ï'ÿòèâèìiðíîìó ïðîñòîði Ìiíêîâñüêîãî.
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