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Using the model with 4-fermionic direct relativistic interaction

among nucleons, the energy spectrum of superfluid neutron matter

is investigated within the Bardeen�Cooper�Schrieffer approach.

The dependence of the energy gap at the Fermi level on neutron

density is obtained.

1. Introduction

The importance of neutron matter superfluidity
investigations has been induced by Migdal's work [1],
where this phenomenon is considered in the context of
the physics of neutron stars. Although the real neutron
stars do not consist of the pure neutron matter, and
the superfluid state cannot be presented in all regions of
stars, however, the additional experimental perspective
for the verification of nuclear models has arose after the
Migdal's work publishing.

The theoretical research of superfluidity in the
nuclear matter has been started after the elaboration
of the Bardeen�Cooper�Schrieffer (BCS) theory of
metal superconductivity (the theory of electron gas
superfluidity in metals) [2] and the paper by Bohr
with coworkers [3], where a mechanism of creation
of Copper pairs of nucleons is explored. If the
electron gas superfluidity is provided by the electron-
phonon interaction, the nuclear matter superfluidity
is associated with the competition between attraction
and repulsion forces caused by the exchange by scalar
and vector mesons, respectively. At the same time, the

existence of the superfluid state demands the suppressing
of repulsion by attraction.

Thus numerous works devoted to neutron matter
superfluidity have been done in the BCS approximation.
Using the phenomenological potentials of internucleon
interaction, the results obtained are more or less
identical and collected, for instance, in [4]. They have
already shown that the BCS approach gives too high
values for the energy spectrum of the superfluid state
and, therefore, the accounting of polarization effects
is needed. Similar conclusions came from relativistic
models [5, 6] based on the effective field-theoretic �-
model of quantum hadrodynamics [7], by means of which
a number of many-particle nuclear processes have been
explained and numerically described.

Taking qualitative predictions only within the
BCS approach into account, the attempts to make
calculations based on realistic potentials more precise
have led indeed to the desirable estimations of the energy
spectrum. However, it is achieved at the price of loosing
the unity among approaches [8�10]. For this reason, it is
now hard to say what outcomes should be standard [11].
On the other hand, various modifications of the random
phase approximation (RPA), which promise to be
strongly exact, are elaborated and verified with the
use of simple models [12�16]. It is understandable that
the necessary calculations within the modified RPA
including the variational principle are still bulk and
complicated to be applied to the models with realistic
potentials.
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These facts stimulate us to begin our investigations of
pure neutron matter superfluidity, using the microscopic
model proposed in [17], within the BCS approach.
Here, we restrict ourselves by this simple approximation,
because the deeper studies of superfluidity and other
phenomena have no sense without knowledge of
qualitative properties of the model.

The model Hamiltonian of our interest is of 4-
fermionic form and linear in the coupling constants. It
has been obtained by quantization of the relativistic
(Poincar�e-invariant) classical Hamiltonian derived from
the classical field theory by means of the reduction of the
meson fields' degrees of freedom. The idea to apply the
4-fermionic Hamiltonian of interaction (in the terms of
the annihilation and creation operators of particles) to
high-energy physics has been suggested by Nambu [18].
The models of such a kind serve as an alternative to the
field�theoretic �-model. As known [19, 20], the linear
models reflect leading effects in nuclear matter (at low
density). Remark that, including nonlinear meson self�
interactions, a more wide class of physical situations
is able to be described correctly. At a low density,
we can study the superfluidity of the nuclear matter
and the �liquid�gas� phase transition which was already
considered in [17]. There, it was also proved that
both effects allow us to neglect the spinor structure
of a quantized Dirac field corresponding to nucleons
and the antiparticle contribution. The latter becomes
evident, remembering that the thermal distribution of
antinucleons is described by the expression

1

1 + exp
h�
c
p
m2c2 + p2 + �

�
=T
i

vanishing at T ! 0.

Moreover, the dependence on finite volume V is
restored. However, the form of a relativistic interaction
among nucleons should be preserved in order to observe
the transition between the constraint and unconstraint
states of a nucleonic system. Thus, taken together, these
physical simplifications allow us to study the system
with relativistic interaction within a non-relativistic
(statistical) approach. Although we intend to apply the
BCS approximation, some generalizations due to the
relativistic form of interaction have to be done. They
will consist in the introduction of two-gap functions,
whose competition will determine the energy spectrum.
As noted above, this competition is represented by
the interactions of scalar and vector mesons. Actually,
the attraction dominates over repulsion in some region
of momentum (or density) values and is suppressed

beyond this region. This means that, in these two
physically different situations, we need to exploit two
different approaches [21]. Therefore, where attraction
forces prevail, BCS approximation is available. This
natural fact gives us a physical basis for the evaluation
of the cut-off momentum which characterizes the
superfluid region for relativistic models within the BCS
formalism [5].

2. The Formalism

We begin our studies of superfluidity from the
Hamiltonian of interacting neutrons from [17]

Ĥ = Ĥ0 + Ŵ ; (1)

where

Ĥ0 =
X
p;�

cp0â+
p;�âp;�; p0 =

p
m2c2 + p2; (2)

is the Hamiltonian of free neutrons. The index � = �

labels the spin projection on the axis z, namely, �~=2;
â+
p;�, âp;� are regarded as the creation and annihilation
operators of free neutrons, respectively; c is the light
velocity.

The instantaneous interaction Ŵ is of the form

Ŵ =
1

V

X
p1;p2

Wp1;p2 â
+
p2;+

â+�p2;�â�p1;�âp1;+; (3)

Wp1;p2 =
1

2

�
�p1

�
p2 � p1

~

�
+ �p2

�
p2 � p1

~

��
; (4)

where only terms corresponding to Cooper pairs are
preserved. The summing over momenta is carried out
within the interval limited by the cut-off momentum
pc which characterizes the superfluid region and is
estimated bellow.

The quantity �p(k) in the case of isotropic and
homogeneous matter is

�p(k) =
g2v

k2 � [(kp)=p0]2 + �2v
+

g2�=4

k2 � [(kp)=p0]2 + �2�
�

�
g2s(mc=p

0)2

k2 � [(kp)=p0]2 + �2s
; (5)

where g2i (i = s; v; �) are the coupling constants; �i are
the mesons' characteristics associated with the masses
mi as �i = mic=~.

Within the superfluid region, we ignore the
dependence of matrix elements on the squared
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transmission momentum k2 (= [(p1 � p2)=~]
2). Then

we obtain

Wp1;p2 = C2
v +

1

4
C2
� �

1

2
C2
s

m2c2

(p01)
2
�

1

2
C2
s

m2c2

(p02)
2
; (6)

where p01;2 =
q
m2c2 + p21;2; C

2
i � g2i =�

2
i (i = s; v; �)

are the parameters of carriers of the interaction between
nucleons. For a given model, C2

i were found in [17]. At
this stage, we only note that they obey the following
inequalities: C2

s > C2
v > C2

� , C
2
s > C2

v + C2
�=4.

This approximation simplifies calculations
considerably, however, it neglects the relativistic effect of
finiteness of the interaction transmission velocity under
the exchange of mesons between nucleons. Because of
the short Compton wavelengths of heavy mesons as
compare to the internucleon distance in the ordinary
nuclear matter, the adopted approximation occurs to be
reasonable.

For further investigations, let us transform the
Hamiltonian with the matrix element (6) as follows:

Ĥ 0 = e�ŜĤeŜ ; (7)

Ŝ =
1

2V
�

�

X
p1;p2

C2
s

m2c

(p01p
0
2)
2
(p02 � p01)â

+
p2;+â

+
�p2;�â�p1;�âp1;+: (8)

This transformation is canonical because the operator Ŝ
is anti-Hermitian, i.e. Ŝy = �Ŝ.

In the linear approximation by which we limit
ourselves, we get

Ĥ 0 = Ĥ0 + Ŵ + [Ĥ0; Ŝ] � Ĥ0 + Ŵ 0: (9)

Due to the commutation relation for Fermi operators

[a+
p;�ap;�; â

+
p2;+

â+�p2;�â�p1;�âp1;+] =

= (Æp;�p2 � Æp;�p1)â
+
p2;+

â+�p2;�â�p1;�âp1;+; (10)

the interaction becomes

Ŵ 0 =
1

V

X
p1;p2

W 0
p1;p2

â+
p2;+

â+�p2;�â�p1;�âp1;+; (11)

W 0
p1;p2

= C2
v +

1

4
C2
� � C2

s

m2c2

p01p
0
2

: (12)

Thus, now one can see that the performed
transformation factorizes the scalar relativistic
interaction. Such a form is close to the interaction term

within the BCS model of a superfluid electron gas, which
allows us to apply directly this formalism.

Within the statistical approach to superfluidity,
where the number of particles is not fixed, we use the
extended Hamiltonian

Ĥ =
X
p;�

"pâ
+
p;�âp;� + Ŵ 0; "p = cp0 � �; (13)

where � is the chemical potential of neutrons.
Hereafter we apply the formalism developed by

Bogolyubov in the theory of superconductivity [22]. An
alternative approach of investigations of the phenomena
of superfluidity and superconductivity was elaborated by
Gorkov on the basis of correlation functions (see [21]).

The study of superfluidity with the use of
Hamiltonian (13) is complicated. Then we need to
replace (13) by the model Hamiltonian

Ĥm =
X
p;�

"pâ
+
p;�âp;�+

+
1

V

X
p1;p2

W 0
p1;p2

�
��
p2
â�p1;�âp1;++

+�p1 â
+
p2;+

â+�p2;� � ��
p2
�p1

�
; (14)

where the complex quantity �p is determined by the
equation

�p = hâ�p;�âp;+i =
Tr[â�p;�âp;+ exp (�Ĥm=T )]

Tr exp (�Ĥm=T )
: (15)

Here, T is the temperature of the system (in energy
units).

The validity of the use of the modeling Hamiltonian
instead of H is proved by equivalence of the results
obtained on their basis in the thermodynamic limit (see
[22]). In practice, such a replacement means that we
neglect the contribution of the interaction among Cooper
pairs and remain with the one-particle spectrum.

Let us introduce the quantities

�V �
1

V

X
p

�p; �S �
1

V

X
p

mc

p0
�p; (16)

�p � C2
s�S

mc

p0
�

�
C2
v +

1

4
C2
�

�
�V: (17)

The quantity �p, as we shall see, plays the role of
the energy gap in the spectrum of the superfluid matter
and corresponds to the binding energy of a Cooper pair of
neutrons. The energy gap which we will look for depends
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on momenta and is determined by the difference between
the scalar and vector interactions.

Now operator (14) is rewritten as

Ĥm = �+
X
p;�

"pâ
+
p;�âp;��

�

X
p

(�pâ
+
p;+â

+
�p;� +��

pâ�p;�âp;+); (18)

where the asterisk denotes complex conjugation, and the
constant � is

� � �
1

V

X
p1;p2

W 0
p1;p2

��
p2
�p1

= V

�
C2
s j�Sj

2
�

�
C2
v +

1

4
C2
�

�
j�Vj

2

�
: (19)

To diagonalize our Hamiltonian, following
Bogolyubov [22], we go over from the operators of
neutrons to the operators of quasiparticles:

âp;+ = upb̂p;+ + vpb̂
+
�p;�; (20)

â�p;� = upb̂�p;� � vpb̂
+
p;+: (21)

Such a transformation is canonical if jupj
2 + jvpj

2 = 1.
Inserting these operators into the Hamiltonian and

rewriting the complex quantities as up = jupje
i�, vp =

jvpje
i , �p = j�pje

i�, we derive the relation � +

 � � = 0. A given condition connects the phases of
the complex quantities but does not determine them.
Here we eliminate this freedom by fixing the additional
(gauge) conditions: � = 0, � = � . Taking it into
account, the absolute values of complex numbers are
related, at the same time, by the equation

2"pjupjjvpj = �p(jupj
2
� jvpj

2): (22)

Finding solutions to this equation, we arrive
immediately at

jupj
2 =

1

2

0
@1 +

"pq
"2p +�2

p

1
A ;

jvpj
2 =

1

2

0
@1�

"pq
"2p +�2

p

1
A : (23)

Substituting these quantities into the model
Hamiltonian, we come to the expression

Ĥm = K+
X
p

q
"2p +�2

p

�
b̂+
p;+b̂p;+ + b̂+�p;�b̂�p;�

�
;(24)

K = ��
X
p

hq
"2p +�2

p � "p

i
: (25)

Now we need to obtain the equations for the
parameters�V,�S which are expressed through �p. The
average �p is easily found as

�p � hâ�p;�âp;+i =
1

2

�pq
"2p +�2

p

tanh

q
"2p +�2

p

2T
; (26)

where we use the thermal distribution of quasiparticles
in the form
D
b̂+
p;� b̂p;�

E
=

1

exp
�q

"2p +�2
p=T

�
+ 1

: (27)

Further, we deal with the system at T = 0, when
tanh = 1. Using expressions (16), (17), we get the
desirable set of coupled equations

�V =

=
1

2V

X
p

C2
s�Smc=p

0
� (C2

v + C2
�=4)�Vq

"2p + [C2
s�Smc=p0 � (C2

v + C2
�=4)�V]2

;

(28)

�S =

=
1

2V

X
p

mc

p0
C2
s�Smc=p

0 � (C2
v + C2

�=4)�Vq
"2p + [C2

s�Smc=p0 � (C2
v + C2

�=4)�V]2
:

(29)

Due to the account of relativistic effects, these
equations generalize the equation for the energy gap
within usual BCS theory. In the next section, we
investigate the energy spectrum of the system in the
superfluid state with the help of the derived system of
equations.

3. The Results and Discussion

Now let us focus on the binding energy of a Cooper
pair of neutrons. In order to estimate the values of
the gap, it is necessary to know the values of the
model parameters C2

i which must reproduce preferably
equilibrium properties of nuclear matter. They are found
in [17]: C2

s =~c = 51:962 fm2; C2
v=~c = 47:269 fm2;

C2
�=~c = 8:614 fm2; where ~c = 197:35 MeV � fm:
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Fig. 1. Dependence of the energy gap at the Fermi level on the

density of neutrons

Fig. 2. Typical dependences of the gap on the density of nucleons

for different spin configurations

In the thermodynamic limit, we replace the summing
by integration,

1

V

X
p

(:::::) =

Z
(:::::)

d3p

(2�~)3
=

1

2�2~3

pcZ
0

(:::::)p2dp;

in Eqs. (28), (29). The effective cut-off momentum pc
is determined for relativistic models from the condition
of vanishing the integrand dependent on momentum, as
shown in [5]. Since numerical analysis gives us pc=~ �
1:5 fm�1, the expression mc=p0 weakly differs from 1.
Thus, with a good approximation, we take � = �V �

� �S. After that, the coupled equations for �V, �S are
reduced to the relation

1 =
1

4�2~3
�

�

pcZ
0

C2
smc=p

0 � C2
v � C2

�=4q
"2p +�2[C2

smc=p
0 � C2

v � C2
�=4]

2

p2dp; (30)

and the momentum-dependent expression for the gap
becomes

�p = �

�
C2
s

mc

p0
� C2

v �
1

4
C2
�

�
: (31)

Since �i > 3 fm�1 (i = s; v; �) empirically, taking
into account that �i > pc=~, we can argue in favor of
the replacement of the matrix element (4) by (6).

Performing numerical calculations, we put the
chemical potential � identical to c

p
m2c2 + p2

F
, where pF

is the Fermi momentum. Since "pF = 0, it is interesting
to consider the dependence of the gap at the Fermi level,

i.e. �F � �pF , on the density � connected with the
Fermi momentum by the formula

pF = ~

�
6�2�



�1=3
:

Here,  = 2 corresponds to the spin degeneration.
Our numerical calculations result in Fig. 1 where the

maximal value of the energy gap for the neutron matter
(in singlet 1S0 state) is 1:902 MeV at � = 0:025 fm�3.
In order to compare this curve with the known ones, we
present the typical dependences of the gap on density in
the BCS approximation for different spin configurations
in Fig. 2 from [4]. It is seen that the gap maximum for the
typical dependence for the pure neutron matter is about
2:8MeV in the singlet state. The contradiction of values
of the gap maximum in Figs. 1 and 2 can be explained
by the difference between the microscopic potential
exploited here and phenomenological potentials (like
the Argonne one) used in the derivation of Fig. 2.
Moreover, the parameters of our model have been fitted
in accordance with equilibrium properties of the nuclear
matter but not with the pure neutron matter data.
Such a choice gives us a complete picture of possibilities
provided by the model with a single-parameter set
which has been successfully applied to the investigation
of the nuclear �liquid�gas� phase transition [17]. Of
course, another choice of parameters can lead to a
better coincidence, and we can then expect a satisfactory
agreement with the current estimations. Nevertheless,
the other characteristics (the maximum location, the
existence interval of the superfluid state) in these figures
are the same. From this point of view, our results pretend
to be adequate, and our model can be applied to the
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description of superfluidity. On the other hand, both
2.8 and 1.9 MeV are not realistic values. They are too
high, which is connected with the use of the usual BCS
approach. Therefore, the forthcoming research should
consist in going beyond the BCS approximation, in
accounting polarization effects in the medium [4].

The author is greatly indebted to V.I. Tretyak for
many fruitful discussions and A.M. Gavrilik for his
interest to the work.

1. Migdal A. // Sov. JETP. � 1960. � 10. � P. 176.

2. Bardeen J., Cooper L.N., Schrieffer J.R. // Phys. Rev. �

1957. � 108. � P. 1175�1204.

3. Bohr A., Mottelson B.R., Pines D. //Ibid. � 1958. � 110. �

P. 936�939.

4. Lombardo U., Schulze H. // Lect. Notes Phys. � 2001. �

578. � P. 30.

5. Matera F., Fabbri G., Dellafiore A. // Phys. Rev. C. � 1997.

� 56. � P. 228.

6. Niksic T., Vretenar D., Finelli P., Ring P. //Ibid. � 2002.

� 66.� 024306.

7. Serot B., Walecka J. // Adv. Nucl. Phys. � 1986. � 16. �

P. 1.

8. Baldo M., Grasso A. // Phys. Lett. B. � 2000. � 485. �

P. 115�120.

9. Lombardo U., Schuck P., Zuo W. // Phys. Rev. C. � 2001.

� 64. 021301.

10. Bozek P. // Phys. Lett. B. � 2003. � 551. � P. 93�97.

11. Dean D.J., Hjorth-Jensen M. // Rev. Mod. Phys. � 2003. �

75. � P. 607�656.

12. Kosov D.S., Vdovin A.I., Wambach J. Nuclear Many-body

Problem at Finite Temperature: A TDF Approach [nucl-

th/9710002. � 1997].

13. Rabhi A., Schuck P., Bennaceur R. et al. Restoration of

Broken Symmetries in Self-consistent RPA [nucl-th/0106064

� 2001].

14. Rabhi A., Bennaceur R., Chanfray G., Schuck P. // Phys.

Rev. C. � 2002. � 66: 064315.

15. Severyukhin A.P., Voronov V.V., Stoyanov Ch., N. Van Giai

// Nucl. Phys. A. � 2003. � 722. � P. 123�128.

16. Storozhenko A., Schuck P., Dukelsky J. et al. // Ann. Phys.

� 2003. � 307. � P. 308�334.

17. Nazarenko A. // Intern. J. Mod. Phys. E. � 2004. � 13, N 3.

� P. 631�645

18. Nambu Y. // Phys. Rev. � 1961. � 122, N 1. � P. 345�348.

19. Typel S., Wolter H.H. // Nucl. Phys. A. � 1999. � 656. �

P. 331.

20. Horowitz C.J., Piekarewicz J. // Phys. Rev. C. � 2001. �

64: 062802.

21. Landau L.D., Lifshitz E.M. Statistical Physics (Part 2). �

Moscow: Nauka, 1978 (in Russian).

22. Bogobolyubov N.N., Bogolyubov N.N. (jr.) Introduction in

Quantum Statistical Mechanics. � Moscow: Nauka, 1984 (in

Russian).

Received 13.04.04.

ÍÀÄÏËÈÍÍIÑÒÜ Â ÑÈÑÒÅÌI ÍÅÉÒÐÎÍIÂ

Ç ÏÐßÌÎÞ ÐÅËßÒÈÂIÑÒÑÜÊÎÞ ÂÇÀ�ÌÎÄI�Þ

À.Â. Íàçàðåíêî

Ð å ç þ ì å

Âèêîðèñòîâóþ÷è ìîäåëü ç 4-ôåðìiîííîþ ïðÿìîþ ðåëÿòèâiñò-

ñüêîþ âçà¹ìîäi¹þ ìiæ íóêëîíàìè, äîñëiäæåíî åíåðãåòè÷-

íèé ñïåêòð íàäïëèííî¨ íåéòðîííî¨ ìàòåði¨ â ðàìêàõ ïiäõî-

äó Áàðäiíà�Êóïåðà�Øðiôôåðà. Îäåðæàíî çàëåæíiñòü åíåð-

ãåòè÷íî¨ ùiëèíè íà ðiâíi Ôåðìi âiä ãóñòèíè íåéòðîíiâ.
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