
OPTICS. QUANTUM ELECTRONICS. HOLOGRAPHY

SIMULATION

OF THE AMPLITUDE-PHASE

SPECTRA OF THE FABRY�PEROT

INTERFERENCE BY THE ENVELOPE

FUNCTION METHOD IN THE REGION OF RESONANT

DISPERSION OF THE RESONATOR OPTICAL FUNCTION

P.S. KOSOBUTSKYI, A. MORGULIS1

UDC 53.082.54:563.5

c
2005

National University �L'viv Politekhnika,�

Institute of Applied Mathematic and Fundamental Sciences

(12, Bandera Str., L'viv 79013, Ukraine; e-mail: petkosob@polynet.lviv.ua),

1City University of New York, BMCC

(199, Chambers Str., New York 10007, USA; e-mail: askmath@yahoo.com)

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 3 231

The theoretical simulation of the amplitude-phase Fabry�Perot

spectroscopy of the light reflected and transmitted by three-

layer plane structures in the region of the resonant dispersion

of their dielectric permittivity has been carried out. It has been

shown that there is a spectral interval of a certain width where

the multibeam interference is of no importance. Beyond this

interval, the values of the energy factors of reflection Rmax;min,

transmission Tmax;min, and phase �max;min, which are taken at

the extrema of the interference bands considered as the envelopes,

describe the amplitude-phase spectra correctly.

Introduction

The influence of absorption on the regularities in forming
the light reflection and transmission spectra of non-
uniform plane-parallel structures has been investigated
for a long time [1]. In work [2], the problems which
accompany the determination of spectral parameters
were summarized. It turned out that, in this case,
different approximations are mainly used [3]. Therefore,
this task does remain actual today.

It was substantiated earlier [4, 5] that the
instrument-induced characteristics of Fabry�Perot-
interference bands are expedient to be analyzed in terms
of the half-sums of the reflection, R, and transmission,
T , factors, i.e. 1

2
(R + T ), which are evaluated at the

extrema (max, min) of the interference bands, because

the analysis of the envelope functions Rmax;min and
Tmax;min of the amplitude spectra affords an opportunity
to express, for certain experimental setups, the phases of
the waves reflected and transmitted by an interferometer
through experimental values of reflection factors and
structural parameters. Later on, a general approach
was justified [6] which made it possible to analyze
the amplitude-phase spectra of light reflected from or
transmitted through transparent three-layer structures
which are measured with the help of Fabry�Perot
interferometers, by using the envelope method and
taking into account the relations between the refraction
indices of media.

This work is a sequel to works [4�6]. Here, the
envelope method is not only generalized for the analysis
of Fabry�Perot amplitude spectra in the region of
resonant dispersion of the resonator dielectric function,
but is also justified for the first time for the analysis
of reflection phase spectra. The envelope method
was discussed earlier [7�12] when solving the partial
problems of spectroscopy dealing with light reflection
and transmission by planar absorbing structures.

Results and Discussion

The three-layer plane structures are considered as being
composed of a Fabry�Perot resonator (subscript 2)
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Fig. 1. Reflection spectrum R(!), the envelopes Rmax(!) and

Rmin(!); and the function 
 = exp(�Im~Æ)

with thickness d and a complex refraction index n

which is surrounded from both sides by transparent
semi-bounded dielectric media (subscripts 1 and 3)
with refraction indices n1;2. The account of the light
absorption by the interferometer's body results in a
complexity of the resonator phase thickness ~Æ = 4� d

�
~n =

Re ~Æ + i Im ~Æ.
Resonant optical characteristics of the resonator are

simulated in the single-oscillator approximation by the
formula [13]

~"(!) = "0 +
4��! 2

0

! 2
0 � !2 +�i! 


= (n� i�)2; (1)

where "0 is the background value of dielectric
permittivity, !0 is the resonant frequency of a transition,
4�� is the oscillator strength, and 
 is the damping
parameter.

Due to multiple reflections of the light beam from
the resonator surfaces, the ultimate Fresnel reflection
amplitude r is calculated as follows [1, 3]:

~r =
~r12 + ~r23 exp

�
�i ~Æ

�
1 + ~r12 ~r23 exp

�
�i ~Æ

� ;
which leads to the energy reflection factor

R =
�212 + �223


2 + 2�12�23
cos
�
�12 � �23 +Re~Æ

�
1 + �212�

2
23


2 + 2�12�23
cos
�
�12 + �23 �Re~Æ

� ;
(2)

where 
 = exp
�
�Im~Æ

�
, ~r12;23 = �12;23 exp (i �12;23) are

the Fresnel amplitudes for the interfaces with subscripts
12 and 23.

The arguments F = �12 � (�23 � Re~Æ) are different
in the numerator and the denominator, but they
oscillate identically. Therefore, it is possible to apply the
order-reducing formulae to (2). After the corresponding
transformations, we obtain

R =
Rmax + b2 cos2 F

2

1 + b2 cos2 F
2

=
Rmin � a2 sin2 F

2

1� a2 sin2 F
2

; (3)

where a = 2
p
�12�23


1+�12�23

, b = 2

p
�12�23


1��12�23
 , Rmax =h
�12+�23

1+�12�23


i2
, Rmin =

h
�12��23

1��12�23


i2
.

As an example, the spectra for a symmetric
interferometer, i.e. when n1 = n3, are shown in Fig. 1.
We see that the method of envelopes, as the functions
of the reflection factors Rmax;min taken at the extrema
of interference bands, correctly describes the reflection
spectra beyond the spectral region of resonant dispersion
of the dielectric function. In the resonant section, it
is possible to separate a frequency interval with width
�!p which is bounded by an interval of significant
absorption where 
(!) ! 0. Therefore, Rmax � Rmin

in it and the spectra are formed as if the light wave
is reflected from a semibounded medium with resonant
dispersion.

Let us pass to the analysis of the spectra of the
reflected-wave phase �. According to its definition,
tg � = Im~r

Re~r
. Calculating the real, Re~r, and imaginary,

Im~r, parts of Eq. (1), we obtain

tg� =
�
�12(1� �223


2) sin�12 + �23(1� �212)�

�
 sin(�23 �Re ~Æ)
�
=
�
�12(1 + �223


2) cos�12+

+�23(1 + �212) 
 cos(�23 �Re ~Æ)
�
: (4)

The analysis of this expression shows that the functions
(Fig. 2)

�max;min = 2� �
�12

�
1� �223


�
sin�12 + �23(1� �212)


�12 (1 + �223

2) cos�12

(5)

are the envelope ones for the phase spectrum beyond the
resonant interval �!p. In the resonant interval of the
spectrum, the phase of light reflected by the Fabry�
Perot interferometer is formed as if the light wave is
reflected from a semibounded medium with resonant
dispersion (Fig. 3).
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Fig. 2. Phase spectrum �(!) and envelopes �max(!) and �min(!)

for light reflected from a symmetric three-layer structure with a

resonant character of the resonator body dispersion

Fig. 3. Phase spectra of light reflected from a symmetric three-

layer structure with a resonator with the resonant dispersion [�(!)]

and from a semibounded medium with the resonant dispersion

[�12(!)], in the spectral interval �!p

Taking into account that, beyond �!p, the shifts of
phases are �12 � � and �23 � 2�, formula (5) becomes
simpler:

�max;min � 2� �
�23(1� �212)


�12(1 + �223

2)
: (6)

Note that

Re ~r �=

�12��23

1��12�23
 �

1+�2
12

2�12
b2 sin2 Re ~Æ

2

1 + b2 sin2 Re ~Æ
2

and

Im ~r �=
�

1��2
12

2�12
b2 sin2 Re ~Æ

2

1 + b2 sin2 Re ~Æ
2

ctg
Re ~Æ

2
;

where the upper sign corresponds to the case where light
transmits through the interface from the optically denser
medium into the optically less dense one. Then,

tg � � tg
Re ~Æ

2

"
�
1 + �212
1� �212

�
�12

1� �212

p
Rmin =max

sin2 Re ~Æ
2

#
: (7)

From this formula, the well-known result follows [5] that,
for the symmetrical structure,

tg � = �
1� �212
1 + �212

tg
Re ~Æ

2
:

Consider the transmission spectra. At normal
incidence, the energy transmission factor of the three-
layer structure is determined as T = n3

n1
~t � ~t�, where

~t =

~t12~t23 exp
�
�i ~Æ=2

�
1 + ~r12~r23 exp

�
�i ~Æ

�

is the Fresnel amplitude and ~t12;23 = 1 +
~r12;23. After relevant transformations, we obtain that
the transmission spectrum is expressed through the
envelopes Tmax;min as

T =
Tmin

1� a2 sin2 F
2

=
Tmax

1 + b2 cos2 F
2

; (8)

where Tmax = n3
n1

T12T23

(1��
12
�
23

)

2

, Tmin =

n3
n1

T12T23

(1+�
12
�
23

)

2

, T12;23 = ~t12;23 � ~t

�
12;23.

It is problematic to describe the phase spectrum
of light transmitted by a symmetric or non-symmetric
interferometer using the envelope method. We note only
that, at the maxima of transmission bands, the phase
of light transmitted by an interferometer is � = 2�.
This means that the period of oscillations of the phase
spectrum is twice as large as that of the transmission
one.

To summarize, we note the following. If the relation
Tmin

Tmax

=
�
a
b

�2
is taken into account, then, transforming

formula (3) to the form

R�Rmin

Rmax �R
=

Tmin

Tmax

tg2
F

2
;

we obtain that the reflection factor of the non-symmetric
three-layer system is calculated according to the formula

R =
RmaxTmax +RminTmintg

2 F
2

Tmax + Tmintg
2 F
2

: (9)
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1. Conclusions

1. The method of envelopes which are considered as
the values of the energy reflection, Rmax;min, and
transmission, Tmax;min, factors taken at the band
extrema of the light interference in the three-layer
structures with a Fabry�Perot resonator describes
correctly the amplitude spectra in the region of resonant
dispersion of the dielectric function.

2. The phase spectra are described correctly by this
method only in a reflection geometry.

3. In the resonant region of the spectrum, there
is a frequency interval of a certain width, where the
influence of the multibeam Fabry�Perot interference on
the character of the formation of an amplitude-phase
spectrum is not essential. The spectra are formed as if
light is reflected from a semibounded medium with the
resonant dispersion of the dielectric function.
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ÌÎÄÅËÞÂÀÍÍß ÌÅÒÎÄÎÌ ÎÁÂIÄÍÈÕ

ÀÌÏËIÒÓÄÍÎ-ÔÀÇÎÂÈÕ ÑÏÅÊÒÐIÂ IÍÒÅÐÔÅÐÅÍÖI�

ÔÀÁÐI�ÏÅÐÎ Â ÎÁËÀÑÒI ÐÅÇÎÍÀÍÑÍÎ�

ÄÈÑÏÅÐÑI� ÔÓÍÊÖI� ÄIÅËÅÊÒÐÈ×ÍÎ� ÏÐÎÍÈÊÍÎÑÒI

Ï.Ñ. Êîñîáóöüêèé, À. Ìîðãóëiñ

Ð å ç þ ì å

Ïðîâåäåíî òåîðåòè÷íå ìîäåëþâàííÿ àìïëiòóäíî-ôàçîâî¨ ñïåê-

òðîñêîïi¨ Ôàáði�Ïåðî äëÿ ñâiòëà, âiäáèòîãî i ïðîïóùåíîãî òðè-

øàðîâèìè ïëîñêèìè ñòðóêòóðàìè â îáëàñòi ç ðåçîíàíñíîþ äèñ-

ïåðñi¹þ äiåëåêòðè÷íî¨ ïðîíèêíîñòi. Ïîêàçàíî, ùî iñíó¹ ñïåê-

òðàëüíèé iíòåðâàë äåÿêî¨ øèðèíè, â ÿêîìó áàãàòîïðîìåíåâà ií-

òåðôåðåíöiÿ íå àêòóàëüíà. Çà ìåæàìè öüîãî iíòåðâàëó çíà÷åí-

íÿ åíåðãåòè÷íèõ êîåôiöi¹íòiâ âiäáèòòÿ Rmax;min, ïðîïóñêàííÿ

Tmax;min òà ôàçè �max;min â åêñòðåìóìàõ ñìóã iíòåðôåðåíöi¨

ÿê îáâiäíèõ êîðåêòíî îïèñóþòü àìïëiòóäíî-ôàçîâi ñïåêòðè.

234 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 3


