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The mutual electrostatic influence of isolated electrodes placed in
a thermal plasma is investigated. It is shown that the measured
value of a floating potential depends on the bulk plasma potential.
The spatial distribution of the bulk plasma potential is used to
dsecribe the interaction of dust grains. As the ion drag force which
is determined by the bulk plasma potential gradient and the force
of electric interaction have different directions, the formation
of the equilibrium spatial distribution of dust grains in thermal
plasmas is possible.

Introduction

The spatial distribution of the electric potential in a
neighborhood of a grain in dusty plasmas is frequently
defined by the model of a single grain or the Wigner—
Seitz model. Zero values of the potential and the electric
field at infinity in the first case and on the cell boundary
in the second case are used as boundary conditions.
The calculated potential distribution in a neighborhood
of one dust grain cannot be connected with potential
distributions at other dust grains, and it is impossible
to solve the problem of interaction of grains with one
another under such boundary conditions. Therefore, it
was offered to use the concept of bulk plasma potential
[1—3] with the purpose to connect different solutions
with one another. The bulk plasma potential was defined
as a trivial solution of the Poisson—Boltzmann equation
in [1].

The applicability of the Poisson—Boltzmann theory
to a plasma is defined by the opportunity to use the
Boltzmann distribution law. In the present paper, the
thermal plasma being at atmospheric pressure with the
admixture of alkaline metal atoms is investigated. In
this case, the charge carriers are formed by the collision
ionization in the plasma volume and the ionization
intensity is about 1020 —10*'em=3s~! that is much more
than the diffusion rate of charge carriers. Therefore, the
transport of ions and electrons through any microvolume
of plasma has no effect (or has a little effect) on the
distribution functions.
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Processes running on the “dust grain — plasma”
boundary may affect the equilibrium as well. However,
the frequency of collisions of electrons or ions with
dust grains is by two orders less than that with gas
particles, there is a thermalization of electronic and
ionic gases, and the equilibrium distribution functions
are maintained.

Therefore, the Poisson—Boltzmann theory is
applicable to thermal plasmas being at atmospheric
pressure or to combustion plasmas. The concept of bulk
plasma potential as the trivial solution of the Poisson
equation is applicable as well and will be used below for
the description of the interaction of dust grains with one
another.

1. Measurement of the Floating Potential

In experiments, we used the propyl hydride — air flame
at a temperature of 1200 K. In the air stream, a 40%
aqueous solution of potash was injected. This provided
the potassium admixture density N4 = 10110 cm 3.
Under these conditions, the electron and ion equilibrium
density was ng ~ 105cm™3. Along the flame stream, we
inlet a planar copper electrode (1 cm X 1 cm) supplied
with a thermoelectric couple. The measured values of
the electrode floating potential relative to the ground
are presented in Fig. 1.

We can calculate the floating potential of the
electrode ¢s with the boundary condition ¢(co0) = 0.
Let us take into account the absence of electric current
through the electrode surface, i.e.

Je I+ + i =0, (1)
where
dwem k2T? 4

T e

- _ _ - 2
it =~ (") = (5r) 2
is the thermionic emission current density (the
Richardson — Dushman equation), W is the work
function;
jgbs = (1/4)enesée (3)
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Fig. 1. Floating potential of the copper electrode. The curve is
calculated with the condition ¢(o0) =0

is the electron absorption current density, C. =
\/8kT /mm, is the thermal velocity of electrons, n.s =
ng exp(eps/kT) is the surface density of electrons, ng
is the unperturbed density (in atmospheric-pressure
combustion plasmas, the rate of collision ionization is
much greater than the diffusion velocity, therefore it
possible to use equilibrium distribution functions);

J'fec = _(1/4)'Ysenisci (4)

is the current density upon the surface recombination
of ions, C; is the thermal velocity of ions, n;s =
no exp(—eps/kT) is the surface density of ions, 75 is the

surface recombination coefficient;
jlon — (1/4)BsenqsC, (5)

is the current density upon the surface ionization of
atoms, C,, is the thermal velocity of atoms (C; = C,),
Ngs = N4 — njs is the surface density of atoms, and 3,
is the surface ionization coefficient.

The surface ionization coefficient defining the
probability of ionization of atoms on the electrode
surface [4] is

_ exp(eps/kT)

1+ (g9a/gi) exp [(I = W) [KT]
Accordingly, the surface recombination coefficient is
. 1

1+ (gi/9a) exp (W = I) /KT]
Solving Eq. (1) gives the floating potential ¢5 shown
in Fig. 1.

At the second stage of the experiment, we leave a
copper electrode in the flame at a temperature of about
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Fig. 2. Floating potential of the copper electrode (1) at a stationary
temperature of 1020 K and that of the aluminum electrode (2). The
curve is calculated with the condition ¢(co) =0

1020 K and inlet a similar aluminum electrode into the
flame at a distance of 3 cm from the first one (in this
case, the screening length rp ~ 0.1 cm). The surface
potential of the aluminum electrode ¢4 was calculated
as the solution of Eq. (1). The results of measurements
and calculations are given in Fig. 2.

We see that the measured values do not correspond
to the calculated ones. Moreover, we observe that the
potential of the first copper electrode depends on that
of the second aluminum electrode. The surveyed model
does not explain this fact as the distance between the
electrodes is much greater than the screening length. It
is determined by the poor boundary conditions.

2. Potential Barrier and Floating Potential

The spatial distribution of the potential ¢(r) in a
thermal plasma can be found as a solution of the
Poisson—Boltzmann equation,

Vg = dmeneo exp (e /kT) — niexp (—ep/kT)],  (6)

where n.g and n;y are the electron and ion densities at
a point with the zero potential.

It is easy to see that Eq. (6) has the trivial solution
relevant to the case where the potential is equal to some
value ¢ = g, at which V2o = 0,

wo = (kT'/2e)In (ni/neo) (7)

and any of two replacements ¢(r) = o £ ¢(r) reduces
Eq. (6) to the form

V2¢ = 8mey/neonio sinh (eg/kT) , (8)
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Fig. 3. Bulk plasma potential
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Fig. 4. Floating potential of the copper electrode. The curve is
calculated with regard for the bulk plasma potential

where \/n.onio = ng is the quasi-unperturbed density
which is equal to ng if ¢y = 0.

This means that all solutions of Eq. (6) are symmetric
concerning (7), and each solution which is distinct from
the trivial solution may not touch it by virtue of the
theorem of existence and uniqueness. This means that
the point R, where ¢'(R) = ¢(R) = 0, does not exist in
a restricted area. The constant value ¢y = ¢} is named
as the bulk potential of a plasma, and it is necessary
in order to interconnect the different solutions of the
Poisson—Boltzmann equation within the Wigner—Seitz
model for separate dust grains (see Fig.3).

The bulk plasma potential characterizes a value of
the work which should be made in order that plasma
has gained some volumetric charge (). The bulk plasma
potential and the volumetric charge determine the
electrostatic energy of a plasma volume

U =(1/2)Qpppi-
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Fig. 5. Floating potential of the copper electrode (1) at a stationary
temperature of 1020 K and that of the aluminum electrode (2). The
curves are calculated with regard for the bulk plasma potential

On the other hand, the energy of the arisen electric
field E is determined by the equation

U = (1/8n) | E2dV.
/

In the plane case, we have [5]

kT eds
Ypl = —2 . tanh <4kT> . (9)

Then the full floating potential of the electrode is
Ys = Ppl + ¢, Where ¢y is the potential barrier on
the “electrode—plasma” boundary calculated by Eq. (1).
In Fig. 4, we see that these values correspond to the
measured values.

If we have two parallel planes in a plasma with
surface potential barriers with respect to the bulk plasma
potential ¢4 and ¢4z, then the bulk plasma potential is

e¢sl + (ZSSZ
4kT ’

and the total potential of each plane depends on the
surface potential of other plane: 1 = @p1(Ps1, Ps2)+ds1,
Y2 = @pl(¢sl;¢s2) + ¢s2-

In the second experiment, the bulk plasma potential
is defined by both potentials ¢4 (1020 K) and ¢ (T).
We see in Fig. 5 that it gives different signs of the relative
and total potentials of the aluminum electrode. We see
also that the change of the bulk plasma potential leads
to the change of the total potential of the first copper
electrode by 0.1 V, i.e. the second isolated electrode
inleted into the flame influences the potential of the first
electrode.

kT
Opl = —2? tanh < (10)
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3. Interaction of Dust Grains

It is obvious that the same happens under the interaction
of dust grains in plasma. However, we assume that one
dust grain does not perturb all plasma volume, because
the perturbation induced by a grain diminishes with
increase in the distance from it. Then every dust grain
should give the own value of the bulk plasma potential
around it which changes with increase in the distance.

We note that any solution of the relevant Laplace
equation has all properties of the trivial solution. In
other words, the law ¢p ~ 1/r completely satisfies
Eq. (6).

Let us consider the momentum transport to a unit
area of the grain. The total momentum is defined by
the momenta of electrons, ions, and atoms (further, we
neglect the momentum transferred by electrons). We
have

pi= —%Aic‘zmiwnmmsm,

1 _
Do = —gAaCamaV(nava)ASAt. (11)
Taking into account that the velocities of gas
particles v, = C,, v; = Cj + vg, where vg is the drift
velocity; thermal velocities C, = C; = /8kT/mm;;
masses m; = my, free lengths A; =2 A,, and n;+n, = Ny
= const, we have
1 _
P=pi+Ps = —gAlclle(nlUE)ASAt (12)
The ion density in the space charge shell of a grain
is defined by the expression [6]
—ep(r —e 2 —ep(r
n; = Ng exp 7;; ) = ng exp —(’Opl/kT il )
Taking into account, further, that ve = e(1/m;)E,
where 7 is the lifetime and C; = \;/7, we obtain

e e
kT E; 2kT

The effective force acting on a grain is defined by
summing the momentum flow, Eq.(13,) over the surface.
If the distance between grains is much more than rp,
the electric field is raised only by the given grain and
is radially symmetric, therefore in expression for force
remains

1
p= —5)\?712'6 VE, + E,Vop ASAt. (13)

Nen;sEs
S
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The equilibrium on the “dust grain—plasma”
boundary demands the existence of some surface value
of the bulk plasma potential ¢p1; independent of the
presence of other grains. However, the gradient Vop
at the surface of the chosen dust grain depends on
the influence of neighbor grains on a degree of plasma
ionization, as it is the sum of the bulk plasma potential
gradients given by the chosen grain Veps and raised
by grain k at the surface of the chosen grain Vo, =
Vippis + Vol Thus, if Vip, has radial symmetry and
converts a surface integral to zero, chgl has no radial
symmetry when the neighbor grains are located not
evenly.

Such a representation is very convenient, as the task
remains within the scope of the Poisson—Boltzmann
theory. We may calculate the surface potential of each
dust grain ¢¥, the bulk plasma potential near grains <pf)ls,
and the spatial distribution of the bulk plasma potential
cpgl(r) = gaglsak/r, where a;, is the grain radius. As a
result, we can calculate the ion pressure force (or the
ion drag force) at the surface of the chosen dust grain
if the distances between grains are known. In view of
the discreteness of the arrangement of grains, Eq. (14)
becomes

2ralr2e?n;, B, k a
= SRR Do PplsTh (15)

F= 3kT ’ R?
where Ry, is the distance to grain k, ey is the unit vector
directed to the given particle from the neighbors (the
positive direction is to the chosen grain).

It is possible to describe this force by the Coulomb
interaction of dust grains with effective charges Qe =
(2ma®N2e’n;sEs)/(3kT) for the chosen grain and g =
cpf)lsak for neighbors:

F= Qeffz %ek-
k k

For example, let us consider the atmospheric plasma
with the admixture of Cs with the density Ny = 6 x
10ecm™3 (I = 3.6 eV), containing a dust grain of
aluminum (W = 3.7 eV) with a radius of 1 ym at the
temperature 7 = 2200 K (0.2 eV). These parameters
provide the unperturbed density ng ~ 4 x 103cm =2 and
the screening length rp ~ 0.4 pm. It is admissible that
the distance from the surface of the chosen dust grain to
the surface of the left-hand grain is 3 ym and to surface
of the right-hand grain is 5 ym. The distribution of the
bulk plasma potential at the grain surface in this case is
given in Fig. 6.
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Fig. 6. Distribution of the bulk plasma potential

It is visible that the bulk plasma potential gradient
on the left is less, than that on the right. Therefore,
there is the force of 5 x 107'® N which is directed
to the left-hand grain and ensures an acceleration of
about 30 cm-s~2. Hence, if a fluctuation diminishes the
distance between two identical dust grains, they proceed
to approach each other by the ion drag force, i.e. grains
tend to form agglomerates.

Conclusions

Thus, we have shown that the concept of bulk plasma
potential allows one to explain the influence of one
electrode on the potential of the other one in the thermal
plasma. It is not enough to know the potential barrier
on the “electrode—plasma” boundary for the complete
description, because the bulk plasma potential influences
the results of measurements.

The concept of bulk plasma potential allows us to
describe the ion drag force as a result of the plasma
ionization displacement. In this case, the interaction
among dust grains can be presented as the Coulomb one
if we use the effective charges of grains which take into
account the bulk plasma potential gradient.
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It is necessary to note that the sign of the effective
charge of the neighboring grains is opposite to the sign
of the real charge, sign(ypis) = — sign(p,). Similarly
to the Coulomb interaction, likely charged grains are
attracted and oppositely charged grains are repelled in
this case. It occurs because the nature of the long-
range interaction of grains is not the electric one, but
is determined by the ionization degree anisotropy and
the ionic pressure at the grain surface. When grains
approach at the distances comparable to the screening
length, the electric repulsive force begins to operate,
and, as a result, some equilibrium spatial arrangement
of grains can appear.
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IMTOTEHIIAJI IIJTABMU 4K 3ACIE OIINCYBAHHA
B3AEMO/IIi TIOPOIIMHOK ¥ IIJIA3MI

B.I. Buwuhakxos
PeswwMme

IIpoBegeHO IOCIiIPKEHHS €JIEKTPOCTATUYHOIO BILJIUBY 130JIbOBA-
HHUX €JIEKTDPOJIB OJWH Ha OJHOTO y TepMiuniii mmaswmi. [lokasza-
HO, 1[0 BUMiDIOBaHE 3HAYEHHSI [JIABAIOYOr0 IMOTEHI[IALY 3aJIEeKUTh
BiJl MOTEHMiaJIy MIJIa3MH. 3aIIPOIIOHOBAHO BHKODHUCTOBYBATH IIPO-
CTOPOBHI PO3MOiJ MOTEHIH ALY IJIa3MU JJIsi OMUCY B3a€MOZII 110~
pomnHOK. OCKIJIBKE 3aXOIJIIOBAJIbHA CHJIA IOHIB, IKa OMUCYETh-
Ccd TPaJi€HTOM MOTeHI[iaJIy IIJIa3MU, 1 CHJIa eJeKTPOCTATHIHOL
B3aeMozil manpsimyierni B pi3ui OOKHM, TO MOXKJIMBE BCTAHOBJICHHS
piBHOBaru y mpoCTOPOBOMY PO3MOJii YACTHHOK.
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