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The isochoric thermal conductivity of β-SF6 is described within
the framework of a model, where heat is transferred by low-
frequency phonons and by “diffusive” modes migrating randomly
from site to site above the phonon mobility edge. The contributions
of the phonon-phonon and one- and two-phonon scatterings to
the total thermal resistance of solid SF6 are calculated in the
supposition of the additive contribution of different scattering
mechanisms. The mobility edge ω0 is found from the condition that
the phonon mean-free path restricted by the examined mechanisms
of scattering cannot become smaller than half the wavelength. An
increase of the isochoric thermal conductivity of solid SF6 at
premelting temperatures is attributed to the weakening of the
one-phonon scattering by the collective rotational excitations of
molecules.

1. Introduction

The classical theoretical models of heat transfer in
solid dielectrics have predicted the thermal conductivity
behavior Λ∼1/T at temperatures T≥ΘD (ΘD is the
Debye temperature) [1]. Most of these models were
applied to the simplest structures such as atomic
crystals, and, under the pre-conditions, they did
not take into account the additional mechanisms of
phonon scattering in molecular crystals. One of these
mechanisms affecting the temperature dependence of
the thermal conductivity is the translation-rotation
coupling. Experimental and theoretical data on thermal
conductivity should be compared at constant densities of
samples to exclude the effect of thermal expansion [1, 2].
The isochoric thermal conductivity Λv can be measured
directly or recalculated from the isobaric data Λp if the
volume dependence of thermal conductivity is known [3]:

Λv = Λp

(
Vm (T )

V0

)g

. (1)

Here, Vm(T ) is the instantaneous value of the
temperature dependent molar volume of a free sample,
V0 is the molar volume of a sample, for which the

recalculation is carried out, and g is the Bridgman
coefficient: g = − (∂ lnΛ/∂ ln V )T .

As temperature increases, the phonon-phonon
scattering processes enhance, and the phonon mean-free
path decreases, but it cannot become smaller than half
the phonon wavelength λ/2 [4]. If all vibrational modes
scatter for a distance of λ/2, the thermal conductivity
reaches its lower limit

Λmin =
(π

6

)1/3

kBn2/3×

×
∑

i

υi





(
T

Θi

)2
Θi/T∫

0

x3ex

(ex − 1)2
dx





. (2)

The summation is carried out over three (one
longitudinal and two transverse) sound modes
with the sound velocities υi, Θi is the Debye
cutoff frequency for each polarization in Kelvins(
Θi = υi (~/kB)

(
6π2n

)1/3
)
, n = 1/a3 is the number

of atoms per unit volume, a3 is the volume of a single
atom (molecule), and kB is Boltzmann’s constant. The
calculated values of Λmin were, as a rule, considerably
smaller than experimental ones [5, 6]. The most obvious
reason for this difference is that the site-to-site transfer
of the rotational energy was not taken into account
[6]. In molecular crystals, heat is transferred by mixed
translation-rotation modes, whose heat capacity is
saturated in proportion to the total molecular degrees
of freedom:

Λ∗min =
1
2

(π

6

)1/3 (
1 +

z

3

)
kBn2/3 (υ` + 2υt) . (3)

Here, υ` and υt are the longitudinal and transversal
sound velocities, respectively, and z is the number of
rotational degrees of freedom.
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The isochoric thermal conductivity of molecular
crystals shows considerable deviations from the Λ ∼
1/T dependence at T ≥ ΘD [6, 7]. It is shown that,
in orientationally ordered phases, it can be described
within a model, where heat is transferred by low-
frequency phonons; above the phonon mobility edge, it
is transferred by “diffusive” modes migrating randomly
from site to site [6]. In orientationally disordered phases,
the isochoric thermal conductivity increases, as a rule;
the increase is due to the weakening of phonon scattering
by short-range orientational order fluctuations with
increase in temperature. The expressions for the
relaxation times of the one- and two-phonon scatterings
under rotational excitations of molecules were derived in
[8] for solid methanes.

In the present work, the isochoric thermal
conductivity of SF6 is calculated using both the
expressions for the phonon-phonon [1] and phonon-
rotation scattering [8] and taking into account the
limitation of phonon mean-free path [6].

2. Model

This calculation was performed on the basis of the
Debye’s expression for thermal conductivity [1] using the
approach of Roufosse and Klemens [9] who used the idea
of a lower limit for the phonon mean-free path

Λ =
kB

2π2υ2

ωD∫

0

l(ω)ω2dω, (4)

where ωD is the Debye frequency (ωD = (6π2)1/3υ/a),
and l (ω) is the phonon mean-free path.

At T ≥ ΘD, heat transfer in molecular crystals is
determined mainly by the phonon-phonon and phonon-
rotation interactions. In this case, l (ω) is the combined
phonon mean-free path determined by all of the
examined mechanisms of scattering. Therefore,

lΣ (ω) =
∑

i

(
li (ω)−1

)−1

. (5)

In turn, the phonon-rotation relaxation time is
determined by the one- and two-phonon scattering
processes. To explain the increase of the thermal
conductivity in the orientationally disordered phases
of solid methane and deuteromethane, the authors
of [8] drew the analogy between molecular and spin
systems [10]. In a number of magnetic crystals, the
thermal conductivity was observed to increase above
the magnetic phase transition. The reason for these

anomalies is the critical scattering of phonons by
the critical fluctuations of the short-range magnetic
order above the Neel point. In the orientationally
disordered phases of molecular crystals, the increase
of the isochoric thermal conductivity is due to the
weakening of phonon scattering by the fluctuations
of the short-range orientational order with increase in
temperature. Using the equations for one- and two-
phonon relaxation times in [9], the phonon mean-free
path of each of the examined scattering mechanisms can
be expressed as

lu (ω) = υ
/
ATω2, (6.1)

lI (ω) = ρυ5
/
B2ΛrotTω2, (6.2)

lII (ω) = πρ2υ8
/
C2kBCrotT

2ω4, (6.3)

A =
18π3

√
2

kBγ2

ma2ω3
D

, (7)

where the Grüneisen parameter γ = − (∂ lnΘD/∂ ln V )T ,
lu (ω) is the phonon mean-free path determined by
U -processes, lI (ω) and lII (ω) are the phonon mean-
free paths for one and two-phonon scattering, m is
the average atomic (molecular) weight, B and C are
the constants of noncentral intermolecular interactions,
Λrot is the thermal conductivity of the orientational
subsystem, and Crot is the rotational heat capacity per
unit volume. In the first approximation, B = C2 [8]. The
coefficient B can be found from the pressure dependence
of orientational ordering temperature:

B = −
(

1
χT

)
∂ (lnTf )

∂P
. (8)

Here, χT is the isothermal compressibility, Tf is
temperature of the orientational phase transition, and
P is the pressure. The thermal conductivity Λrot can be
found from the well-known gas-kinetic expression

Λrot =
1
3
Crota

2τ−1, (9)

where τ is the characteristic time of the orientational
excitation transfer from one lattice site to another one.

By substituting (6)—(8) in (5), the combined phonon
mean-free path can be expressed as

lΣ(ω) =

(
ATω2

υ
+

B2ΛrotTω2

ρυ5
+

C2kBCrotT
2ω4

πρ2υ8

)−1

.

(10)
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Expression (12) is not applicable if l (ω) becomes of
the order or smaller than half the phonon wavelength
λ/2 = πυ/ω. A similar situation was considered
previously in the case of U -processes only [6]. Let us
assume that, in the general case,

l (ω) =
{

lΣ (ω) , 0 ≤ ω ≤ ω0,
απυ/ω = α λ/2, ω0 < ω ≤ ωD,

(11)

where α is the numerical coefficient of the order of unity.
The frequency ω0 can be found from the condition

(
ATω2

0

υ
+

B2ΛrotTω2
0

ρυ5
+

C2kBCrotT
2ω4

0

πρ2υ8

)−1

=

=
α π υ

ω0
. (12)

It equals

ω0 = − u
(
−η +

√
u3 + η2

)1/3
+

(
−η +

√
u3 + η2

)1/3

,

(13)

where the parameters u and η are

u =
πρ2υ7

3C2kBCrotT

(
A +

B2Λrot

ρυ4

)
,

η = − ρ2υ7

2αC2kBCrotT 2
. (14)

Condition (14) is the well-known Ioffe-Regel criterion
implying localization. We can therefore assume that the
excitations, whose frequencies are above the phonon
mobility edge ω0, are “localized” or “diffusive”. Since
the completely localized modes do not contribute to
the thermal conductivity, the localization is assumed
to be weak, and excitations can hop from site to site
diffusively, as was supposed in [4].

If ω0 > ωD, the mean-free path of all modes
exceeds λ/2, and the thermal conductivity is determined
exceptionally by the processes of phonon scattering.
At ω0 ≤ ωD, the thermal conductivity integral (4) is
separated into two parts describing the contributions to
the heat transfer from the low-frequency phonons and
“diffusive” modes:

Λ = Λph + Λloc. (15)

In the high-temperature limit (T ≥ ΘD ), these
contributions are

Λph =
kB

2π2υ2

ω0∫

0

ω dω
C2kBCrotT 2ω3

πρ2υ8 + ATω
υ + B2ΛrotTω

ρυ5

, (16)

Λloc =
αkB

4πυ

(
ω2

D − ω2
0

)
, (17)

In the case of orientationally ordered phases, Eq. (18)
gives the well-known dependence Λ ∼1/T at ω0 > ωD:

Λph =
kBωD

2π2υAT
. (18)

3. Results and Discussion

A number of molecular crystals have several solid
phases, which differ in their orientational orders. If the
noncentral forces are strong, and the temperature is
low, there is a long-range orientational order in the
location of molecular axes. The molecules perform small
vibrations around the selected axes (librations), so that
the motion of neighboring molecules is correlated, and
the collective orientation excitations, librons, propagate
in the crystal. In the first approximation, the librational
oscillations make an additional contribution to the
thermal resistivity W = 1/Λ of the crystal [11].

If the noncentral forces are relatively weak, and the
temperature is high enough, the molecules can have
a considerable orientational freedom. In this case, a
number of orientations are accessible to a molecule,
which can pass from one orientation to another. In
individual cases, the limit of such a reorientational
motion can be a continuous rotation. The unfreezing
of molecular rotation is accompanied by an increase of
the isochoric thermal conductivity [7], and the phonon
mean-free path can no longer be described by Eq. (6).

Sulphur hexafluoride is often classed as a substance
that has a plastic crystalline phase. Indeed, the relative
molar entropy of melting ∆Sf/R of SF6 is 2.61 [12],
which is close to Timmerman’s criterion. Here, R is
the universal gas constant. However, the nature of
orientational disorder in the high-temperature phase of
SF6 is somewhat different from that of plastic phases
in other molecular crystals, where the symmetries of
a molecule and its environment do not coincide. The
SF6 molecule has the octahedral symmetry. At 222.4 K,
sulphur hexafluoride crystallizes into the bcc lattice of
Im3m (O9

h) symmetry with two molecules per unit cell.
As a result, the molecule and its environment have the
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Fig. 1. Isochoric thermal conductivity Λv of solid SF6 (Vmol =

58.25 cm3/mole) (squares). The solid line is the fitting curve
for isochoric thermal conductivity. Λph and Λloc are relative
contributions of phonons and “diffusive” modes. The lower limit of
the thermal conductivity Λ∗min (3) is calculated taking into account
the possibility of the site-to-site transfer of the rotational energy

same symmetry. On the further cooling to 94.3 K,
a polymorphous transition occurs and suppresses
the symmetry of the translational and orientational
subsystem to the monoclinic one with the space group
C2/m (C3

2h). The interaction between the nearest
neighbors in the bcc phase is favorable for the molecular
ordering caused by the S—F bonds along {100} direction,
and the interaction with the next nearest neighbors is
dominated by the repulsion between F atoms. According
to X-ray and neutron diffraction data [13—15], a strict
order is observed in β-SF6 just above the phase
transition point. The structural dynamical factor <
characterizing the degree of orientational order is close
to unity in the interval 95—130 K.

This feature distinguishes SF6 from other plastic
crystals, such as methane, carbon tetrachloride,
adamantane, and others, where the long-range
orientational order becomes disturbed immediately after
the phase transition. The orientational disordering in
SF6 starts to intensify only above 140 K. As follows
from the analysis of the terms of the Debye—Waller
factor derived from neutron-diffractometric data for the
β-phase of SF6, F atoms have large effective librational
amplitudes. As temperature rises, the librational
amplitudes increase to 20◦ and higher, but the F
localization is still appreciable near {100} direction.
This implies that the orientational structure of SF6

does not become completely disordered even at rather
high temperatures. The disordering itself is dynamic
by nature. The increasing amplitudes of librations
are not the only factor responsible for the increasing

orientational disordering with dynamic reorentations
which become more intensive due to the frustrations of
molecular interactions.

Owing to these features, SF6 offers a considerable
possibility for studying the influence of wide-
range rotational states of molecules on the thermal
conductivity in a monophasal one-component system,
where such states can vary from nearly complete
orientational ordering to frozen rotation.

Up to now, the thermal conductivity of solid SF6

has been studied for several isochores in the narrow
temperature interval near the melting point [16] and
in the whole region of the existence of β-phase under
isobaric Λp conditions [17].

The isochoric thermal conductivity Λv was
recalculated from the isobaric data for the molar volume
of Vmol = 58.25 cm3/mole, which corresponds to
the volume of SF6 just beyond the phase transition
temperature (94.3 K). The recalculation was carried out
using formula (1) and experimental data [13, 17]. The
recalculation results are shown in Fig. 1 (black squares).
The isohoric thermal conductivity Λv of solid SF6 first
decreases with rising temperature, passes through a
smooth minimum, and then begins to increase. Such a
behaviour is in good agreement with experimental data
[16].

The computer fit to the values of isochoric thermal
conductivity was performed using Eqs. (14)—(19) by
varying coefficients α, A, B, and C. The integral of the
thermal conductivity (18) was determined by Simpson’s
method. The fitted values α, A, B, C, and parameters
of the Debye model for thermal conductivity used for
fitting are listed in Table 1. The theoretical value of
the coefficient Bth was calculated using Eq. (10) and
the data given in [13, 18]. As seen in Table 1, the
fitted coefficient B is in good agreement with Bth, the
distinction being no more than 7.5% .

Figure 1 shows the fitting results for isochoric
thermal conductivity (solid line) and contributions of
phonons Λph (18) and “diffusive” modes Λloc (19) to
heat transfer. It also shows the lower limit of thermal
conductivity Λ∗min (3) calculated taking into account the
possibility of the site-to-site transfer of the rotational
energy.

T a b l e 1. Parameters of the Debye model of thermal
conductivity used in the fitting, and other quantities
which were used in calculations

a, υ, γ g α A× 10−17, Bth B C ΘD, ΘEins,
10−8 cm m/s s/K K K

4.6 994 2 5.2 2 9.65 7.6 7 2.6 62 49.8
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Fig. 2. Temperature dependence of the phonon mobility edge ω0

in the β-phase of solid SF6, ωD is the Debye frequency
Fig. 3. Temperature dependences of Cp [19], Cv , Ctr, Cin and Crot

of solid SF6

The phonon mobility edge ω0 calculated by Eq. (15)
is presented in Fig. 2. It is seen that the localization
of high-frequency modes starts practically immediately
after the phase transition. At 100 K, the calculated
ωD and ω0 are 8.41×1012 s−1 and 8.39×1012 s−1,
respectively.
As the temperature increases, ω0 decreases, passes
through a minimum at 190 K, and increases again.

The isochoric heat capacity Cv of a molecular crystal
can be presented as a sum of contributions from the
translational Ctr and rotational Crot subsystems and the
intramolecular modes Cin:

Cv = Ctr + Crot + Cin. (19)

Earlier, the components of heat capacity for β-phase
SF6 were calculated in [13] using the heat capacity at
a constant pressure Cp cited in [19]. At the premelting
point temperatures, the growth of Crot does not agree
with the data of structural studies [12,15], where the
intense growth of the orientational disordering was
observed above 150 K. In our opinion, the reason for
the higher calculated values of rotational heat capacity
in the vicinity of premelting temperatures is the doubtful
value of isobaric heat capacity [19]. We therefore
recalculated the components of heat capacity. The last at
a constant volume Cv is difficult to measure. In practice,
it is recalculated, when the data on thermal expansion β
[13] and the Grüneisen parameter γ [13] are available
from the values of the heat capacity at atmospheric
pressure Cp [19] by using the known thermodynamic
relation

Cv = Cp/(1 + γβT ). (20)

To estimate the translational, intramolecular, and
rotational contributions to heat capacity, we used the

separation method similar to that described in [13]. The
calculation was carried out using the data of [12, 13,
19]. The characteristic Debye (ΘD) and Einstein (ΘEins)
temperatures (see Table 1) were determined as

ΘD = υ (~/kB)
(
6π2n

)1/3
, (21)

ΘEins = hνi/kB, (22)

where νi are the intramolecular frequencies [20]. The
calculated components of heat capacity are shown in
Fig. 3 (see also Table 2). The translational heat capacity
Ctr was calculated in the Debye approximation and
is close to 3R. The contribution of intramolecular
vibrations to the heat capacity Cin was calculated in
the Einstein approximation. The rotational component
Crot was determined as Crot = Cv − Ctr − Cin.
At premelting temperatures, the heat capacity of the
rotational subsystem Crot approaches 3/2R, which is
characteristic of a free three-dimensional rotator. This
is consistent with structural data [12,14], according to
which there is an intense growth of the processes of

T a b l e 2. Calculated values of the translational Ctr,
intramolecular Cin, and rotational Crot contributions to
the heat capacity Cv (Vmol = 58.25 (cm3/mole))

T , K Cv , Ctr, Cin, Crot,
J/(mole· K) J/(mole· K) J/(mole· K) J/(mole· K)

95 53.67 24.48 4.52 24.66
100 54.97 24.53 5.57 24.88
120 57.48 24.67 8.24 24.57
140 61.01 24.76 12.81 23.44
160 63.84 24.89 16.12 22.83
180 67.39 24.74 21.14 21.51
200 72.51 24.86 31.56 16.09
220 79.20 24.93 42.28 11.99
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Fig. 4. Contributions of the phonon-phonon scattering Wpp and
one-phonon scattering Wpr1 to the total thermal resistance of
solid SF6. Square symbols indicate the total thermal resistance
W = 1/Λph. The solid line shows the sum of thermal resistances
Wpp, Wpr1, and Wpr2

orientational disordering in solid SF6 at temperatures
above 150 K. The fairly good agreement between the
data in [13] and the present calculated values of the
rotational component Crot of heat capacity is obtained
up to 160 K.

The increase of Λv in the premelting region is related
to the increase of Λph. The temperature dependence of
Λph is determined, as was marked above, by the phonon-
phonon and phonon-rotation scattering mechanisms. We
assume that the contributions of various scattering
mechanisms to the thermal resistance are additive [1]:
∑

i

Wi = Wpp + Wpr1 + Wpr2, (23)

where Wpp is the phonon-phonon thermal resistance,
and Wpr1 and Wpr2 are thermal resistances determined
by the one- and two-phonon mechanisms of scattering,
respectively.

The contributions of different mechanisms of phonon
scattering to the total thermal resistance of solid
SF6 were calculated within a model assuming the
independence of the phonon mean-free path for each
scattering mechanism. Using (4) and (6)—(8), we get

Wpp = 2π2υAT

/
kB

ω0∫

0

dω, (24.1)

Wpr1 = 2π2B2ΛrotT

/
kBυ3ρ

ω0∫

0

dω, (24.2)

Wpr2 = 2πC2T 2Crot

/
υ6ρ2

∣∣∣∣∣∣

ω0∫

0

dω

ω2

∣∣∣∣∣∣


. (24.3)

The results of calculations are shown in Fig. 4. The
total thermal resistance determined as W = 1/Λph is
marked with black squares. The solid curve is the sum
of thermal resistances calculated by Eqs. (26)—(28).

The phonon-phonon component of the thermal
resistance Wpp increases with temperature and shows
the tendency to be constant above 200 K. This is in
good agreement with the concept of the minimum of
thermal conductivity (Fig. 1). The thermal resistance
due to the rotational degrees of freedom of molecules
increases initially at rising temperature. This behaviour
can be attributed to the additional scattering of
phonons by collective rotational excitations, whose
density increases as the temperature rises [12]. The
two-phonons component Wpr2 of the total thermal
resistance is practically zero and cannot be responsible
for the anomalous behaviour of thermal conductivity.
The thermal resistance Wpr1 due to the one-phonon
scattering upon rotational excitations of molecules
passes through a maximum at 180 K and then decreases.
This also agrees with the data in [12] which indicate
the intense growth of orientational disordering above
150 K. A decrease of the thermal resistance caused by
the one-phonon scattering relative to the maximum is
around 40% . The additional contribution of Wpr1 is
about 45% of the total thermal resistance. Thus, it can
be assumed that the main reason for the increase of the
isochoric thermal conductivity of solid SF6 at premelting
temperatures is a decrease of the one-phonon scattering.

4. Conclusions

The isochoric thermal conductivity of β-SF6 is described
within the framework of a model, where heat is
transferred by phonons and, above the phonon mobility
edge, by “diffusive” modes migrating randomly from
site to site. The total thermal resistance is determined
by the phonon-phonon and phonon-rotation scattering
mechanisms. In turn, the phonon-rotation relaxation
time is determined by the one- and two-phonon
scatterings. The mobility edge ω0 can be found from the
condition that the phonon mean-free path restricted by
the examined mechanisms of scattering cannot become
smaller than half the wavelength. The temperature
dependences of the translational, intramolecular, and
rotational components of the heat capacity of solid SF6
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are calculated. The contributions of the phonon-phonon,
one-, and two-phonon scatterings to the total thermal
resistance of solid SF6 are calculated in supposition
of the additive contribution of different scattering
mechanisms.

An increase of the isochoric thermal conductivity of
solid SF6 at premelting temperatures is attributed to
the weakening of the one-phonon scattering by collective
rotational excitations of molecules.
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ПЕРЕНЕСЕННЯ ТЕПЛА “ДИФУЗНИМИ” МОДАМИ
I ФОНОННЕ РОЗСIЯННЯ В β-ФАЗI ТВЕРДОГО
ГЕКСАФТОРИДУ СIРКИ

О.I. Пурський, В.О. Константiнов, В.С. Ковтуненко

Р е з ю м е

Поведiнку iзохорної теплопровiдностi в β-фазi твердого SF6

описано в рамках моделi, в якiй тепло переноситься низько-
частотними фононами, а вище вiд межi рухливостi фононiв —
“дифузними” модами, що мiгрують випадковим чином з вуз-
ла на вузол. Внески фонон-фононного, одно- та двофононного
розсiяння в повний тепловий опiр твердого SF6 розраховано у
припущеннi адитивностi рiзних механiзмiв розсiяння фононiв.
Межу рухливостi ω0 знайдено iз умови, що довжина вiльного
пробiгу фонона, яка визначається всiма розглянутими механiз-
мами розсiяння фононiв, не може стати меншою за половину
довжини хвилi. Зростання iзохорної теплопровiдностi твердого
SF6 в областi передплавильних температур пояснюється змен-
шенням однофононного розсiяння колективними обертальними
збудженнями молекул.
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