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Theoretical and numerical investigations of a nonlinear regime
of generation in a coaxial backward wave oscillator (gyro-BWO)
operating at the resonance of an electron beam with the eigenmode
of a coaxial waveguide on the normal Doppler effect are carried
out. The spatio-temporal dependences of the HF wave amplitude
in a coaxial waveguide for various values of injected electron
beam currents are analyzed. Types of excitation regimes of
a coaxial gyro-BWO and the behavior of the interaction
efficiency when changing the electron beam current are
investigated.

1. Introduction

A gyro-BWO is a high-power HF-generator acting
in the range of cm- and mm-wavelengths, in which
the interaction of an electron beam with a backward
wave excited on the normal Doppler effect is used.
Some of the advantages of a gyro-BWO (as those
of other gyro-devices) are a) the relative simplicity
of the construction (a section of the waveguide), b)
a high value of the constant longitudinal magnetic
field is simultaneously a focusing one for high-current
electron beams, and c) a rather weak dependence on
the initial longitudinal spread of the beam energy.
The shortcoming is a relatively small efficiency which
is a consequence of the longitudinal distribution
of the excited electric HF field. In this case, the
modulation of an injected beam occurs at a maximum
of the HF-field, and the following generation takes
place in the HF-field decreasing at the oscillator
output up to zero. This longitudinal structure of the
excited field is such that a regrouping of electrons
happens.

The first investigations of nonlinear regimes of
the generation of HF-oscillations in a gyro-BWO

were done in [1,2]. In [1], in particular, the steady-
state conditions in a gyro-BWO depending on the
initial transversal energy of a electron beam were
considered. The longitudinal distributions of the HF-
field amplitude along the generator presented in
[1] have allowed one to classify the effects of the
interaction occurring in a gyro-BWO. Investigations
of the dependence of the electron efficiency on both
the nonisochronism parameter and the system length
have shown that the total efficiency does not exceed
10 % even for optimal fitted parameters. In [2],
the self-consistent 3D theory of a gyro-BWO in a
steady-state regime and the effect of the longitudinal
dispersion of velocities in the beam on efficiency
are presented. A dispersion up to 5 % changes the
efficiency only slightly. Upon the further increase
in the dispersion up to 10 %, the efficiency is
decreased by two times. It is also shown in [2] that
the efficiency can be increased by the creation of
a weak inhomogeneity of the constant longitudinal
magnetic field (the numerical calculations have shown
that the efficiency is incremented by 8-23 % in
comparison with the case of a homogeneous magnetic
field).

The theoretical and experimental researches of
coaxial gyro-BWOs are on the initial stage. In
[3], a coaxial gyro-BWO in the linear regime was
theoretically investigated, and the starting currents
of the electron beam were found as functions of the
parameters of a coaxial waveguide, constant magnetic
field, beam injection energy, etc. In this paper, we
consider a nonlinear regime of generation and investigate
the operating modes of gyro-BWOs numerically for
various values of the injection current of the electron
beam.
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2. Statement of the Problem. The Basic
Equations

Let’s consider the coaxial waveguide formed by two
coaxial cylinders with length L and radii a and b (a > b).
At the input z = 0, the monoenergetic beam with an
initial distribution function

f0 = nbδ(p2
⊥ − p2

⊥0)δ(p‖ − p‖0)/π (1)

is injected. Here, nb is the electron beam density, p⊥0 and
p‖0 are the initial transverse and longitudinal momenta,
respectively. The injected beam has inner radius rb and
thickness ∆b. The system is immersed into a longitudinal
magnetic field H(z) = H0h(z), where a function h(z)
describes a slow change of the external magnetic field
along the system length. The interaction of the electron
beam with an eigenmode of the smooth waveguide takes
place only under the resonance condition on the normal
Doppler effect ω − k‖V‖ ' nΩH/γ, where ω is the
frequency of an excited wave, k‖ is the longitudinal wave
number of an excited wave, ΩH = |e|H0/mc, e is the
charge of an electron, m is the mass of an electron, c is
the velocity of light n=0,±1,±2, . . ., V|| = p||/mγ and
γ are the longitudinal velocity and the relativistic factor
of the electron beam, respectively.

In this paper, we consider the interaction of an
electron beam, for which the condition of the Doppler
resonance n = 1 is satisfied, with a backward wave of
the coaxial waveguide k‖<0.

For the description of the given interaction of an
electron beam with a backward wave TE01 of the coaxial
waveguide, we make use of the equations for nonzero
components of the electromagnetic field Eϕ, Hr, Hz and
the equations of motion of beam particles in Lagrange
variables.

While deriving the nonlinear equations for the
amplitude Eϕ of an eigenwave of the coaxial waveguide
excited by an electron beam and the equations of
motion of particles of the beam, we use the following
assumptions: a slow changing of the amplitude Ẽϕ of
the HF-field over distances about a wavelength,
∣∣∣∣∣

1
Ẽϕ(z, t)

∂Ẽϕ

∂z

∣∣∣∣∣ ¿
∣∣k‖

∣∣, (2)

and a slow temporal changing of the HF-field amplitude,
∣∣∣∣∣

1
Ẽϕ(z, t)

∂Ẽϕ

∂t

∣∣∣∣∣ ¿ ω. (3)

Supposing that the electron beam does not change the
radial structure of the HF-field, we obtain the following

system of nonlinear equations:

∂Cϕ

∂τ
− ∂Cϕ

∂ξ
=

iα

2π

2π∫

0

dΨ(0)×

×
ρb+∆∫
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J1(k̄⊥a⊥/ωH)+
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k̄⊥a⊥
ωH ρ̄

J ′(k̄⊥a⊥/ωH)

]
Φ1(ρ̄)(Cϕe−iΨ + c.c.). (9)

Here, we have introduced the following dimensionless
quantities: ρb = rbk⊥, ρ̄ = r̄k⊥, ∆ = k⊥∆b is the
normalized thickness of the beam,

τ = −k‖ct, ξ =
ω

c
z, ωH =

ΩH

ω
, Cϕ =

|e|Ẽϕ

mcω
,

a⊥ =
p⊥
m0c

, a‖ =
p‖

m0c
, k̄‖ =

k‖c
ω

,
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Fig. 1. Starting current Ist versus the ratio of the initial transversal
momentum of a beam to the initial longitudinal one, µ, for the
coaxial waveguide length L = 60 cm; the inner waveguide radius
b = 3 cm; outer waveguide radius a = 5 cm; generation frequency
f ≈ 7.7 GHz; inner beam radius is 3.9 cm; outer beam radius is
4.1 cm; beam energy is E = 511 keV (γ0 = 2)

k̄⊥ =
k⊥c

ω
, γ =

√
1 + a2

⊥ + a2
||,

Sb = π(2rb + ∆b)∆b is a cross-section area of the
beam, J1(x) is the first-order Bessel function, J ′1(x) ≡
dJ1(x)

dx , α = − 2π
Sb‖Φ1‖2k̄2

⊥k̄‖
c4

ω4
Ib

IA
, Ib is the beam current,

IA = mc3

e = 17.06 kA, and ‖ Φ1 ‖2=
a∫
b

Φ2
1(k⊥r)rdr. The

function Φ1(k⊥r) describes the radial structure of the
wave field,4

Φ1(k⊥r) = J1(k⊥r)− J1(k⊥a)
N1(k⊥a)

N1(k⊥r), (10)

and N1(x) is the first-order Neumann function. The
function Ψ = ωtL − k‖z − θ + ϕ̄ describes the phase of
a particle relative to the wave, tL is the arrival time of
a particle at the point with the coordinate z (Lagrange
time), θ is an angle in the momentum space tg θ = px/py,
and p⊥ = (p2

x
+ p2

y
)1/2.

The transversal wavenumber k⊥ is determined by
solving the dispersion equation

Φ1(k⊥b) = 0. (11)

By deducing the system of equations (4), we have
used the Liouville theorem on the conservation of a phase
volume along the trajectories of movement of particles:

fd3pd3r = f0d
3p(0)d3r(0).

Here, f0 is the initial distribution function, d3p(0)d3r(0)
is the phase volume of particles of the beam in the
injection plane z = 0. We have substituted the variables
r and ϕ (r is the radius of a trajectory of particles of the
beam, tg ϕ = y/x, y is the projection of the radius-vector
of a particle onto the OY axis, and x is the projection of
the radius-vector of a particle onto the OX axis) by the
variables r̄ and ϕ̄ (r̄ is the radius of the driving center
of a Larmor orbit of electrons, and ϕ̄ is the azimuthal
angle of a Larmor orbit) according to the formulas

r2 = r̄2 +
p2
⊥

m2Ω2
H

+
2p⊥r̄

mΩH
sin(θ − ϕ̄),

ϕ = ϕ̄− p⊥
mΩH r̄

cos(θ − ϕ̄).

Let’s add Eqs. (4)—(9) by the boundary conditions
for the amplitude of an excited wave and for particles of
the beam:

Ψ|ξ=0 ∈ [−π, π], γ|ξ=0 = γ0,

(a⊥/a||)|ξ=0 = µ, Cϕ|ξ=L̄ = 0, Cϕ|ξ=0 = Cϕ0. (12)

Here, L̄ = ωL/c is the dimensionless length of the
system.

By linearizing the system of equations (4)—(9) and
taking into account the boundary conditions (12), we get
a transcendental equation and use numerical methods
to determine the dependence of a starting current Ist

on parameters of the system (the installation length L,
the beam energy γ, etc.). In more details, the results
of investigations of these dependences are presented in
[3]. It is necessary to recall that the starting current
decreases rapidly with increase in the ratio of the
initial transversal momentum to the longitudinal one,
µ. Moreover, the present nonlinear analysis has shown
that the interaction efficiency also depends strongly on
the parameter µ. A high (by the criteria concerning the
operation of gyro-BWOs) efficiency can be achieved for
relatively large values µ. But, the starting currents in
this case are not given in the cited work [3].

In Fig. 1, we show the dependence Ist(µ) derived for a
homogeneous magnetic field h(z) = 1 with the following
parameters: the oscillation frequency f0 = 7.7 GHz, inner
radius of the coaxial waveguide of a gyro-BWO b = 3 cm,
outer radius a = 5 cm, inner beam radius rb = 3.9 cm,
outer beam radius ra = 4.1 cm, energy of the injected
electron beam E = 511 keV (γ0 = 2), and system length
L = 60 cm. As follows from this plot, the starting current
strongly increases with decrease in the ratio of the initial
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transversal momentum to the longitudinal one. At
µ = 1, the starting current Ist = 3.7 A. We note that,
for the given beam energy and the geometric sizes of a
generator, the limiting vacuum current Ilim = 6.6 kA [4].

The investigation of nonlinear regimes was carried
out for numerical values of the parameters mentioned
above and also for µ = 1. The value of the initial
amplitude was chosen to be equal to Cϕ0 = 5 ·10−4. The
control over the accuracy of calculations was performed
with the help of the conservation law

∂

∂τ




L̄∫

0

dξ|Cϕ(ξ, τ)| 2

 + |Cϕ(ξ = 0, τ)|2+

+
α

π

ρb+∆∫

ρb

dρ̄(0)

2π∫

0

dΨ(0)ρ̄(0)
[
γ(ξ = L̄, τ)− γ0

]
= 0. (13)

The precision of the fulfillment of the conservation law
in our calculations at the fixed values of temporal and
spatial steps depended on the current of an electron
beam. At low and middle values of the beam current (up
to 1 kA), the accuracy was not worse than fractions of
one percent. At the currents close to the limiting vacuum
current, the accuracy becomes worse but was, in any
case, at most several percents.

Starting from a conservation law, it is possible to
determine the interaction efficiency as

η(τ) =

ρb+∆∫
ρb

dρ̄(0)
2π∫
0

dΨ(0)ρ̄(0)[γ(ξ = L, τ)− γ0]

π[(ρb + ∆)2 − ρ2
b ] (1− γ0)

. (14)

The results of the nonlinear analysis which has been
carried out for various beam currents consist in the
following. If the beam current I is less than 4 A, the
system is not excited. Such beam current well coincides
with the starting current Ist = 3.7 A derived in the
linear approximation (see Fig. 1). The self-excitation
of oscillations occurs at I > Ist. A small excess of
the injected beam current above the starting current
leads to the steady-state generation regime. In Fig. 2,a
the temporal variation of the backward wave amplitude
at the system input is given for I = 4 A. It follows
from this plot that, at the initial stage, the amplitude
grows exponentially, and the steady-state operation
regime takes place after some oscillations beginning from
τ=1000. The investigation of the spatial distribution
of the amplitude in the stationary mode of generation
(Fig. 3) shows the following. The distribution of the field
amplitude along the system length at a fixed moment of

Fig. 2. Normalized amplitude of an excited wave vs the
dimensionless time: a — I = 4 A, b — I = 15 A, c — I = 0.6 kA.
The ratio of the initial transversal momentum of a beam to the
initial longitudinal one µ = 1. The rest of parameters are the same
as in Fig. 1

ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 11 1233



A.V. BORODKIN, G.V. SOTNIKOV, I.N. ONISHCHENKO, V.M. KHORUZHIY

Fig. 3. Axial distribution of the normalized amplitude of an excited
wave for the steady-state regime (I = 4 A, see Fig. 2,a) in different
time moments: the dashed line corresponds to τ = 488, dotted
line corresponds to τ = 652, and solid line corresponds to τ = 900.
The rest of parameters are the same as in Fig. 2

Fig. 4. Axial distribution of the normalized amplitude of an excited
wave for the periodic self-modulation regime (I = 15 A, see Fig.
2,b) in different time moments: the short dashed line corresponds
to τ = 256, dotted line corresponds to τ = 310, solid line
corresponds to τ = 337, and long dashed line corresponds to
τ = 363. The rest of parameters are the same as in Fig. 2

time is the curve with one maximum which originates
closely to ξ = L and then is displaced to the
injection plane with a velocity close to the group
velocity. Beginning from τ ≥ 1000, the invariable field
distribution is established along all the interaction region
with a maximum near the input face.

For higher beam current values, I ≥ 15 A, the
steady-state regime of oscillation becomes unstable, and
the self-modulation regime of oscillation is established.
The typical temporal dynamics of the field amplitude
is given in Fig. 2,b (I =15 A). In this case, the period
of self-modulation oscillations is approximately equal to
the transit time of a signal through a feedback circuit
Tm = L/V‖(0) + L/|Vg|. The spatial distribution of
the self-modulation field has a complex character with
several maxima (Fig. 4) along the system length. The
self-modulation regime of operation is observed up to
current values I < 60 A. At the further increase in the
beam current, such a mode of oscillation is changed into
the stochastic regime of operation (see Fig. 2,c).

To determine the frequency characteristics of a
output signal, we performed the spectrum analysis by
the following formulas:

S(f) = lg
|P (f)|2
|Pmax(f)|2 ,

P (f) =
1
T

T∫

0

1
2
(Cϕ(ξ = 0, t)e−i2πf0t + c.c.)ei2πftdt. (15)

Here, Pmax is the maximal value of P (f), and T is the
duration of a temporal realization.

In Fig. 5,a the output signal spectrum corresponding
to the steady-state operation regime (I = 4 A) is shown.
The one-frequency mode with the frequency close to
f ≈ 7.7 GHz is realized for the steady-state regime.
With increase in the current, the oscillation frequency
corresponding to the power peak is displaced to higher
frequencies, and a number of equidistant peaks appears.
For example, at a current I = 15 A, the maximum of
spectral power is located at f ≈ 7.73 GHz, and the
equidistant peaks are tuned one from another by ∆f ≈
60 MHz (see Fig. 5,b). The spectral power harmonics
nearest to the maximum have the values comparable
to the spectral power at the fundamental frequency.
Upon the further increase in the beam current, the
number of equidistant maxima grows, and each of them
is widened. Finally, the spectrum becomes continuous.
The typical diagram of the spectral density is given on
Fig. 5,c for the beam current I = 0.6 kA. We note that
the dynamics of changing the generation regimes in the
coaxial structure and the behavior of the spectral density
under variation of the injected current qualitatively are
in close agreement with an analogous behavior of a
cylindrical gyro-BWO [5].

The efficiency of HF oscillations determined
according to (14) oscillates in time in the self-modulation
and stochastic modes with a great modulation depth.
Therefore, to describe the oscillation efficiency, it makes
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Fig. 5. Spectrum density of an excited wave versus the frequency:
a — I = 4 A, b — I = 15 A, c — I = 0.6 kA. The rest of parameters
are the same as in Fig. 2

Fig. 6. Beam interaction efficiency in a coaxial gyro-BWO versus
the beam current. The rest of parameters are the same as in Fig. 2

Fig. 7. Beam interaction efficiency in a coaxial gyro-BWO versus
the dimensionless time in the case of an inhomogeneous magnetic
field (16). The inhomogeneity gradient λ = 0.3. The rest of
parameters are the same as in Fig. 2

sense to carry out the temporal averaging of the
efficiency. In Fig. 6, the dependence of the average
efficiency η̄ on the beam current is presented. The
efficiency of oscillation is low near the threshold of HF
field generation. At the current I = 4 A corresponding to
the steady-state regime, η̄=1.2%. The efficiency is higher
in the self-modulation regime, but it is still low enough.
For a current I = 15 A , the efficiency η̄=3.5%. The
greatest efficiency is obtained in the stochastic regime.
The maximum of efficiency, η̄=10.6 %, is reached at the
beam current I = 0.6 kA. At the further increase in the
beam current, the oscillation efficiency slowly decreases.

The results of calculations confirm that the essential
drawback of the considered devices, as was noted in
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the introduction, is the small efficiency. One of the
possibilities to increase the efficiency is to use a tapered
magnetic field varying along the interaction gap. In the
simple case, it is possible to change the magnetic field
by a linear law [2]

h (ξ) = 1 + λξ/L̄. (16)

In Fig. 7, we show the temporal dynamics of the
interaction efficiency (14) obtained as a result of the
numerical solution of the system of equations (4)—
(9) for the inhomogeneity gradient λ = 0.3 and the
beam current I = 0.6 kA. As compared to the case
of a homogeneous magnetic field, the efficiency has
increased up to 20 %, i.e. almost twice. We note that
a small inhomogeneity of the magnetic field changes
not only the oscillation efficiency but also the spectral
characteristics of the oscillation regime. For example, the
self-modulation regime, when setting an inhomogeneity
of the magnetic field, can pass to the steady-state
oscillation regime. We are going to give a detailed
investigation of the operation of a coaxial gyro-BWO
in the applied tapered magnetic field elsewhere.

3. Conclusions

On the basis of the numerical solution of the system of
nonlinear equations, we have studied the mechanisms of
the transition to a stochastic regime of oscillation in a
coaxial gyro-BWO. It is shown that, with increase in the
current of an injected electron beam, the steady-state
operation regime changes into a self-modulation regime

which becomes further more complicated and stochastic.
The numerical results have shown that applying a
tapered magnetic field for the given type of devices leads
to a considerable increase in the efficiency.
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КОАКСIАЛЬНА ГIРО-ЛЗХ. 2. НЕЛIНIЙНА ТЕОРIЯ

А.В. Бородкiн, I.Н. Онищенко, Г.В. Сотнiков,
В.М. Хоружий

Р е з ю м е

Проведено теоретичнi i чисельнi дослiдження нелiнiйного ре-
жиму генерацiї в коаксiальнiй лампi на зворотнiй хвилi (гiро-
ЛЗХ), що використовує резонанс електронного пучка з влас-
ною хвилею гiро-ЛЗХ на нормальному ефектi Допплера.
Аналiзуються часовi i просторовi залежностi амплiтуди напру-
женостi ВЧ-хвилi в коаксiальному хвилеводi для рiзних зна-
чень струмiв iнжекцiї електронного пучка. Дослiджено типи
режимiв збудження коаксiальної гiро-ЛЗХ i поведiнку ефек-
тивностi взаємодiї зi змiною струму електронного пучка.
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