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The time-averaged force of light pressure on an ellipsoidal metallic
particle has been considered. Under the action of this force, the
particle polarizability becomes a tensor quantity. The expressions
for the averaged force vector components in the cases of plane-
polarized and circularly polarized light have been derived. We
have demonstrated that the force of light pressure can depend
substantially on the shape of a non-spherical particle and its
orientation with respect to the directions of light propagation and
light polarization.

1. Introduction

The advent of lasers made the development of researches
in the field of microparticle trapping, confinement,
and manipulation possible. In 1970, Arthur Ashkin
[1] demonstrated, for the first time, the trapping and
the manipulating of a micron-sized dielectric spherical
particle in the field of two opposing laser beams. Later
[2], it has been shown that even a single focused
laser beam can trap such a particle above the focal
point. For recent years, intensively developed have been
both the researches of the peculiarities inherent to the
mechanisms of light pressure action upon microparticles
and the implication of this action in the tasks of
small particle manipulation (optical tweezers). Such
applications meet a wide usage in biology, medicine, and
microelectronics. A review of some relevant problems
can be found, e.g., in work [3].

In work [4], a theoretical study of the time-averaged
force exering upon a spherical particle in a time-
harmonic-varying electromagnetic field has been carried
out. The expression for the force components obtained
there depends on the gradient of the electromagnetic
wave intensity and on the particle polarizability.
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The particle was considered spherical, so that its
polarizability was characterized by a scalar parameter.
In this work, we consider metallic nanoparticles
of the ellipsoidal form. In this case, the particle
polarizability becomes a tensor and can depend rather
strongly on the particle’s form [5]. Moreover, the high-
frequency (optical) conductivity, which is connected to
the imaginary part of particle’s polarizability and defines
its absorption, also becomes a tensor. The dependence of
the polarizability of a metallic nanoparticle on its form
becomes especially appreciable in the infra-red range of
frequencies. Under such conditions, the expression for
the components of the force vector, which affects the
particle in the electromagnetic wave field, would differ
substantially from those obtained in work [4].

2. Formulation of the Problem

For particles, whose dimensions are considerably smaller
than the length of the electromagnetic wave, we
apply the Rayleigh approximation, i.e. the particle is
considered as a dipole in a non-uniform field. The force
affecting such a particle equals

I T
F=(-V)B+ 1ix B, 1)
where P is the dipole moment of the particle, E the
electric and B the magnetic fields, and ¢ the speed of
light. In Eq. (1), all quantities are real. It is convenient
to use complex ones, passing in Eq. (1) to the variables
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Let us consider the complex quantities to depend
harmonically on time:

—

E = Re(Eyexp(—iwt)), B = Re(Byexp(—iwt)),

P = Re(po exp(—iwt)). (3)
Here, w is the frequency of the electromagnetic wave.

Now, we can introduce the force averaged over the
period T':

T/2
=g [ a5 DE+E)+
—T/2
P i) x (B4 B ()

The second term in the integrand in expression (4) can
be integrated by parts, and the equation

= =V xE =rotE (5)

may be applied. Then, instead of Eq. (4), we obtain

T/2
=g [ @@+ DE+ B
—T/2
b7+ ) % [V x (B + B}, ()

Now, taking advantage of the explicit dependence on
time (see Egs. (3)), it is easy to carry out the integration
in Eq. (6). We obtain the expression

I O
(F) = Z{(PO “V)EG + (po ™ - V) Eo+
o X [VXEI] + 50 * x [V”xﬁo]}. (7)

We will use formula (7) to calculate the force exerting
upon the particle embedded into the electromagnetic
field.

Below, we consider a metallic nanoparticle which
possesses the ellipsoid-of-revolution form. In the
reference frame connected to the principal axes of this
ellipsoid, the dipole moment of such a particle looks
like [5]

_ V(g —1)Ey;

0] — T 9 = 9 9 . 8
J 47T1+Lj(€jj—1) J oY 2 ()
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Here, V' is the volume of the particle, L; are the
depolarization factors,

4
o "o . B
gjj = €j; Hel =& +i—ay, 9)

¢’ is the real part of the dielectric constant which has
the form

2
w

e=1--2,

w

(10)
wp is the plasma oscillation frequency, and o;; are
the diagonal elements of the tensor of high-frequency
(optical) conductivity.

We admit the characteristic dimension of the metallic
particle to be smaller than the mean free path of an
electron in the course of its scattering by phonons.
Provided such dimensions and the asymmetric form
of the particle, the conductivity becomes, as was
demonstrated in work [5], a tensor quantity. In such
a case, the conductivity and, therefore, dissipation
are influenced by both the electric field E (electric
absorption) and the magnetic field B (magnetic
absorption) of the wave. In the case of the ellipsoid of
revolution, the following components of the tensor o;j;
are distinct from zero in the reference frame connected
to the principal axes of this ellipsoid:

Oy =Oyy =01, Ozz =0, (11)

while the depolarization factors equal

1
Li=L,=5(1-L)=L.,

1—6?, 1+ep
_ 2e3 [1 1—ep - 2€p]7 R” > RJ—’
LZ:LH = 1+g§ (12)
o lep —arctge,], R <RL.
In expressions (13), the notation
R2
ea=1- R—Jﬁ‘ , (13)

where R and R, are the corresponding semi-axes of the
ellipsoid of revolution, is introduced.

Presenting the components of the polarization vector
in the form

POi = Z aijEOjv (14)
J

Eqgs. (8) and (14) yield the following expressions for
nonzero components of the polarization tensor a;;:

V.o (-1

47T].+LJ_(€J_—].)’

Qg = Qyy
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v (-1
= = 15
(e % OCH 47_(_ 1 + LH(EH — 1)a ( )
where
4 4
6l=€/+il0l, €H=6,—|-Z'IO'H. (16)
w w

The expressions for o, and o under various specific
conditions are presented in work [5]. In particular, if
the electric absorption dominates (see work [5]), simple
analytical expressions for the components o, and o can
be obtained in the cases of strongly prolate (R > R.)
and strongly oblate (R < R, ) ellipsoids:

3 97 vp ne?
O'H ~ io—l ~ 674R7me2 (RH > RL)a
1 97 vp ne’
~ = ~——— (R R)). 17
NN T Ry e TS 17

Here, vg is the Fermi velocity, n the concentration of
electrons, m the electron mass, and e the electron charge.
For spherical particles (R = R, = R), we obtain

3op ne?

=L =R mw?
Formulae (17) and (18) are valid in the case of high-
frequency fields, when the frequency of light is higher
than the transit-time ones (w > vp/R1,vr/R)).
Starting from formulae (14) and (15),
polarization vector can be written down in the form

(19)

(18)

the

o = a1 Eo + (a1 — a))(qEo)q.

Here, ¢'is a unit vector directed along the axis of rotation
of the ellipsoid. Formulae (7) and (19) will serve as the
basic ones for studying the force of light pressure.

3. Force of Light Pressure

In order to obtain the explicit expression for the time-
averaged force (7), it is necessary to establish the
coordinate dependence of the field EO. As the first
example of such a dependence, we take this field in the
form accepted in work [4]. In terms of the dimensionless
variables, it looks like

Eo = (E070, 0); Ey = e—(x2+y2)/2€ikz' (20)

Substituting expression (20) into Egs. (7) and (19), we
obtain the expressions for nonzero components of the
time-averaged force:

(F,) = —g{|E0|2Real + [(Bod)*Re(ay — ar)},
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(F,) = =5 {|Bo|*Rea + |(Eoq)*Re(a — a)},

(F.) = §{|EO\21Ml +[(Eod)|"Tm(ey — al)}.  (21)
From Egs. (21), one can see that, contrary to the
particles with a spherical form (when oy = «), the force
components for the nanoparticles with the ellipsoid-of-
revolution geometry acquire the dependence on the angle
between the field direction and the revolution axis of the
ellipsoid. Moreover, the dependence of the force on the
particle’s form is incorporated into the depolarization
factors (13) which enter into the expressions for o) and
a) (see Egs. (15)).

Consider now a circularly polarized Gaussian beam:

Eo = (51 + ng)e—(m2+y2)/26ikz’ (22)

b1 = (b1,0,0), by = (0,b,0).
In this case, after having substituted Egs. (22) into
expressions (7) and (19), we obtain

(F) = =3¢ (0] + B)Reas +

-

+[(@1)? + (7b2)*|Re(oy — 1)},

() = =2~ {83 + B3)Rea+

+[(gb1)* + (7b2)*|Re(oy — 1)},

k 2 2
R (GRS

+(@51)* + (7b2)*Tim(a) — 1)} (23)
One should bear in mind that ¢ is a unit vector directed
along the rotation axis of the ellipsoid. We see that, in
this case, the force depends on twoﬂangles — between ¢
and b; vectors and between ¢ and by ones). In the case

of circular polarization, 51 = 52 = 5, so that
(751)? + (7b2)* = (@2 + ¢2)b* = (1 — ¢2)b*.

That is, in this case, only the dependence on the
angle between the vector ¢ and the direction of beam
propagation survives.

Thus, similarly to the cases of plane-polarized and
circularly polarized light beams, the time-averaged force
affecting a non-spherical metallic nanoparticle becomes
angle-dependent. In addition, this force depends on the
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particle’s form through the components o) and «) of
the polarization tensor; this dependence manifests itself
to the maximal extent in the infra-red range of the
spectrum (in the vicinity of the COs-laser frequency).
For example, taking w, ~ 5 x 10! s7! for gold and
w =2 x 10" s7! for the COs-laser frequency, we obtain
¢’ ~ —600. Therefore, the combinations L, (e —
1) that enter into the denominators of formula (15)
approximately equal

LJH“ (EJ_’” - 1) a2 _GOOLJ_’”. (24)

Since the quantities L, and L may vary from 0 to 1
(provided that 2L + L = 1), it is clear to which extent
quantity (24) and, respectively, the quantities «; and
«) can be sensitive to the form of a metallic particle
within this range of frequencies.

Thus, in this work, we have obtained the expressions
for the averaged (over a period) force which is exerted
by a laser beam on a non-spherical metallic nanoparticle.
We have shown that this force can depend substantially
on the form of the particle and on the angles that define
the orientation of the non-spherical particle relative to
the propagation direction and the polarization of the
beam.
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CBITJIOBUI TUCK HA HECO®EPUYHY
METAJIITYHY YACTHUHKY

II.M. Tomuyx, O.P. Opan
Pezmowme

PosrisinyTo cuity j1a3epHOro THCKY, 11O i€ Ha METAJiYHy YaCTUH-
Ky estincoigaibHol dpopmu. ITig aiero 1iel cuam noisspu30BHICTD Ya-
CTUHKH CTa€ TEH30PHOIO BEJIUYUHOI. SHAMIEHO BUDPA3U JJjisd KOM-
IIOHEHT BEKTOPA yCePeJHEHOI CUJIM y BUIIAJKY IJIOCKOIIOISPU30Ba-
HOTO 1 IUPKYJIIpHO ToJisipu3oBaHoro cpitia. [lokasano, mo cuiaa
TUCKY CBITJIA MOXKE€ ICTOTHO 3aJjiexKaTu BiJi (pOpMU YaCTHHKU, & Ta-
KOXK KYTiB, siKi BUBHAYAIOTh OPIEHTAIII0 HeCPEPUIHOI YACTUHKU
BIJIHOCHO HAIIPSAIMKY IOIIUPEHHs IIPOMEHH i Ioro mosapu3arii.
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